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The mechanical properties of a thin, planar material, perfused by an embedded flow network, have been
suggested to be potentially changeable locally and globally by fluid transport and storage, which can result in
both small- and large-scale deformations such as out-of-plane buckling. In these processes, fluid absorption and
storage eventually cause the material to locally swell. Different parts can hydrate and swell unevenly, prompting
a differential expansion of the surface. In order to computationally study the hydraulically induced differential
swelling and buckling of such a membrane, we develop a network model that describes both the membrane
shape and fluid movement, coupling mechanics with hydrodynamics. We simulate the time-dependent fluid
distribution in the flow network based on a spatially explicit resistor network model with local fluid-storage
capacitance. The shape of the surface is modeled by a spring network produced by a tethered mesh discretization,
in which local bond rest lengths are adjusted instantaneously according to associated local fluid content in the
capacitors in a quasistatic way. We investigate the effects of various designs of the flow network, including
overall hydraulic traits (resistance and capacitance) and hierarchical architecture (arrangement of major and
minor veins), on the specific dynamics of membrane shape transformation. To quantify these effects, we explore
the correlation between local Gaussian curvature and relative stored fluid content in each hierarchy by using
linear regression, which reveals that stronger correlations could be induced by less densely connected major
veins. This flow-controlled mechanism of shape transformation was inspired by the blooming of flowers through
the unfolding of petals. It can potentially offer insights for other reversible motions observed in plants induced
by differential turgor and water transport through the xylem vessels, as well as engineering applications.

DOI: 10.1103/PhysRevE.107.024419

I. INTRODUCTION

Natural shape-morphing systems, which are ubiquitous in
various living organisms and are of great interest for soft
matter and biological physics, have been extensively studied
by both theorists and experimentalists in attempts to under-
stand and reproduce their dynamic morphological properties
in biomimetic materials. Shape-morphing phenomena which
depend on the hydraulics and mechanics of liquid flowing
through living matter are widespread in animals, plants, and
fungi, accommodating diverse needs for speeds and length
scales of motions. The ability to absorb or release fluids in the
system and the resulting variations of cell hydrostatic pressure
(turgor) play a critical role in most common mechanisms for
the generation and control of these shape transformations.
For instance, in many invertebrate animals, from nematodes
(without blood vessels) to mollusks (with blood vasculature),
hydrostatic skeletons have evolved and are used to harness
turgor pressure, maintain structural rigidity, and regulate body
movements [1]. Likewise, plants utilize turgor pressure to
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generate and control both irreversible (such as growth) and
reversible motion and deformation in a wide range of time
scales by employing several distinct mechanisms [2,3]. For
example, the Venus flytrap achieves a swift snapping closure
by a mechanical instability involving hydrostatic accumu-
lation. This is in stark contrast with other slow, gradual
movements driven purely by water transport whose speed
is limited by diffusion [4,5]. The latter hydraulically driven
transformations include the folding and shrinking of pollen
grains which dehydrate in a dry environment [6,7], and the
swelling and expansion of thin and nearly flat plant structures
like leaves and flower petals, which can be facilitated by fluid
flow networks to overcome the spatiotemporal limitations of
water diffusion on transport efficiency [8].

Examples of such flow-controlled deformations of thin
sheets are manifested in the motion of petal expansion in
reversible flower blooming, which is a biologically important
phenomenon where petals open and close repeatedly in a
24-hour cycle. [An illustration of flower blooming is shown
in Fig. 1(a).] Reversible flower opening is thought to have
evolved to take place when plants need to attract insect polli-
nators that are only present during a specific time window in a
day (e.g., during the night) [9,10]. In general, large-scale petal
deformations often take place during the flowering process
(reversible or irreversible), with time scales ranging between
minutes and days. They frequently result from differential
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FIG. 1. Biological inspiration of flow-controlled shape transformation. In each panel, the changes proceed from left to right. (a) Flower
blooming of Easter lily (Lilium longiflorum). Snapshots taken by a Canon EOS 1200D camera. (b) The flow of fluorescence dye in the
xylem venation of plantain lily (Hosta sp.) petals in a flower that has already bloomed, opened for visualization. Images captured by a Nikon
D3300 camera. See the Appendix for the experimental approach to create these fluorescent images. (c) Cartoon illustration of the effect of
a flow network on petal deformation. As incoming liquid flux (yellow) fills up empty vessels (black), the originally flat surface (1) expands
differentially and buckles out of the plane (2), and eventually resumes a flatter shape as a uniform saturation of the surface is being approached
(3).

tissue growth and cell elongation in the organ, which requires
the regulation of water flow and turgor pressure [11]. In a hy-
dration process, cells of different petal segments absorb water
and become saturated at different rates, and swell under turgor
unequally as a result of the uneven distribution of instant local
water content, causing a differential expansion of petal surface
which may go through remarkable buckling and shape morph-
ing. The hydraulic behaviors of petals can partially depend on
the embedded vascular networks for fluid delivery [illustrated
in Fig. 1(b)] and are in many ways similar to leaf hydraulics
with the same driving force of water potential [12]. Petal vena-
tion systems consist of both phloem and xylem vessels which
can form a rich diversity of network architectures including
various hierarchies, though usually accompanied by far lower
density of stomata and much less transpiration on the surface
than leaves [13,14]. Petals have also been found to make
use of large hydraulic resistance (reduced conductance) and
capacitance (for water storage) to sustain floral water status
and turgor pressure, strengthening flower structural rigidity in
a similar fashion to animal hydrostatic skeletons [15,16]. The
considerations of the presence of fluid transport vasculature,
the absence of noticeable water loss through evaporation,
and the existence of fluid-storage capacitance are all crucial
for identifying the specific dynamics of turgor change and
subsequent petal motion and deformation. The biological in-
spiration for this work is summarized in Fig. 1, in which the
cartoon in Fig. 1(c) depicts the effect of liquid movement
through a flow network on the surface expansion and shape
morphing (buckling) of a single petal.

In this work, we focus on the role that flow networks
with a local fluid-storage function play in controlling shape
transformations of thin sheets actuated by fluid flows. We
are particularly interested in differential surface expansion as
inspired by flower petals, and implement a simplistic theo-
retical model that couples hydraulic networks to deformation
mechanics. Specifically, the model numerically simulates a
variety of time-dependent swelling and deformation path-
ways, controlled by multiple uniform or hierarchical designs
of flow network architecture and influenced by hydraulic
traits. This way we quantitatively explore the extent to which
the venation structure can affect the emergence of deformed
shapes and guide these pathways, while ignoring any transpi-

ration. Mechanical inhomogeneities in the tissue (in particular
multiple layers that swell differentially), spatiotemporal vari-
ations of fluid storage ability, details of liquid transport
mechanism, and biochemical regulating factors in real-life
petals [10,11] are all beyond the scope of our minimal physi-
cal model.

Conventionally, studies of petal differential expansion have
concentrated on the growth of certain parts of a petal, like
the inner layer, midrib, edge [17], or epidermal cells versus
underlying layers [18]. Motivated by these findings, engineers
have created flowerlike biomimetic thin materials that exhibit
large-scale deformations by incorporating anisotropic growth
moduli in the plates [19,20]. The mechanical coupling be-
tween hydraulics and elasticity can play a role in deforming
such a thin film with a flower shape through capillary forces
[21]. We aim to draw attention to an alternative mechanism
that can actuate large-scale deformations, i.e., fluid flows
through venation networks, which can substantially alter the
differential stored fluid distribution and subsequent surface
expansion patterns. We present our modeling methods and
results in Secs. II and III, respectively, in which the hierar-
chical network designs are inspired by leaf venation models
with either branching or reticulate (loopy) structure [22,23],
as petal venation is visually similar to the variety of hydraulic
hierarchies contained in both monocotyledonous and dicotyle-
donous leaves (see micrographs in Refs. [14,24].) In Sec. IV,
we discuss our results and their implications for both plant
biology and biomimetics.

II. SIMULATION METHODS FOR THE COUPLED FLOW
AND SPRING NETWORK MODEL

The hydrodynamic-mechanical coupling model, which we
develop to simulate the spatiotemporal dynamics of fluid
transport and storage (using a flow network) and to study the
time-dependent resulting shape change (using a mechanical
network), is elaborated in Fig. 2. The two network systems
comprising the model, though essentially different in their
physical properties and functions, have identical topology and
connections, overlapping in real space with one-to-one corre-
spondence between their edges and nodes. The flow network
operates independently from the mechanical one, and changes
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(c) Mechanisms of model coupling and simulation

Initial flat shape (zero fluid content)
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Fluid distribution at t induced by flows

After time t
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Fluid distribution at t + Δt

. . . After sufficiently long time

Surface fully irrigated (flat shape resumed with larger size)

Shape deformation
at t quasi-statically
induced by fluid

Shape at t + Δt

FIG. 2. The hydrodynamic-mechanical coupling model, consist-
ing of (a) a fluid-storing flow network and (b) an overlapping
mechanical network, which models the shape changes. In (a), the
same hierarchy composed of major (thicker) and minor veins is used
to induce the shapes in Fig. 4(b). The specific hydraulic connectivity
for the resistors and capacitors is shown between a node i and one of
its neighbors n(i). Note that the vein segment highlighted with a red
box in the network of (a) is in fact the wire linking pressures Pi and
Pn(i) through a resistor Rn(i),i, while the underlying circuit for baseline
pressure Ps is not included in the diagram of the large network. At
node i, Ci is the local capacitor with voltage Vi and associated resistor
R(c)

i . In (b), examples of nodes ( j and k), bonds, and faces (α and β),
as well as their normals (nα and nβ ) are shown. The positions of j
and k in the mechanical network are the same as n(i) and i in the flow
network, respectively. (c) Specific coupling methods and simulation
procedures.

in stored fluid are assumed to instantly affect the properties
of the mechanical network and induce a deformation as de-
tailed in Fig. 2(c). While the state of the flow network affects
the state of the mechanical one, to first-order approximation
we assume that their relationship is unidirectional, i.e., that
the flow network is not affected by the deformation of the
mechanical one. In this section we describe in detail the prop-
erties and function of each network, and specify the coupling
and interactions between the flow and mechanical networks.

A. Numerical simulation of the flow network

We numerically simulate the dynamics of the flow network
by making use of a spatially explicit capacitive model that
we developed previously for modeling leaf hydraulics with

water-storage functions [25]. This model was based on the
analogy between electrical circuit and laminar flow networks
[26]. Figure 2(a) illustrates an example of such a network
model consisting of a venation system in which fluids flow
(such as xylem vessels), where major veins with smaller re-
sistivity (and larger conductivity) than the rest of the network
are represented by thicker lines. [The simulation results of the
same network can be found in Fig. 4(b).] Electric (ohmic)
analogs of hydraulic traits, which include both abilities to
allow fluid flow (measured by conductance or resistance) and
to store fluid (measured by capacitance), are also shown for a
vein segment (representative of every vein segment) between a
node with index i and one of its neighbors with index n(i). The
driving force of the fluid flow, pressures Pi and Pn(i) which are
analogous to electric potentials, are labeled at the respective
nodes. The direction of the flow current In(i),i between them,
analogous to electric current, is assumed to point from node
n(i) to i over a hydraulic resistance Rn(i),i defined on the vein
segment. Therefore, we have

In(i),i = Pn(i) − Pi

Rn(i),i
. (1)

In a hierarchical network like the one in the figure, major veins
are characterized by smaller hydraulic resistance than minor
veins. To model the function of fluid storage (reservoir) at
each node, we define a baseline pressure Ps which is uniform
throughout all the nodes. In a water-storing plant leaf or petal,
the pressure Pi at a node corresponds to xylem water potential
and Ps is controlled by a baseline osmotic potential. This
baseline potential is determined by the most negative osmotic
potential of reservoir cells (which contain aqueous solutes)
when the cells hold a minimum water amount and can still
behave like linear capacitors [25,27,28]. In the electric analog,
a current I (c)

i fills the storage capacitor Ci with voltage drop
Vi across its terminals (whose physical meaning in a leaf or
petal is the hydrostatic pressure or turgor of storage cells)
with polarity shown in Fig. 2(a) by the plus and minus signs,
through a hydraulic resistance R(c)

i . Here we have

I (c)
i = ∂

∂t

[
Ci

(
Pi − Ps − R(c)

i I (c)
i

)] = Ci
∂Pi

∂t
− CiR

(c)
i

∂I (c)
i

∂t
,

(2)

as all hydraulic traits, as well as Ps, are time independent. The
capacitor is shown in the process of being charged, increasing
in fluid content which can be calculated readily as Wi = CiVi

anytime throughout the process. Unlike a plant leaf, the mate-
rial we consider here does not contain distributed fluid sinks,
i.e., surface pores (such as stomata) through which the fluid
can evaporate and transpire into the atmosphere. Therefore,
all fluids entering the network will eventually be absorbed
and stored in capacitors when the system approaches a steady
state, in which the surface is fully hydrated and pressure Pi of
all the nodes is uniform and equal to the pressure of the fluid
source.

Our simulation methods follow to a large degree the meth-
ods described in Ref. [25], adapted to the modeling in this
work as follows. We denote n(i) to be the label of any
neighboring node of i, and then from mass conservation we
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have ∑
n(i)

In(i),i = I (c)
i . (3)

Substituting Eqs. (1) and (2) into Eq. (3), we derive the fol-
lowing equation:⎛

⎝∑
n(i)

1

Rn(i),i
+ 1

R(c)
i

⎞
⎠∂Pi

∂t
−

∑
n(i)

1

Rn(i),i

∂Pn(i)

∂t

= 1

CiR
(c)
i

∑
n(i)

Pn(i) − Pi

Rn(i),i
. (4)

The set of equations for all nodes i = 1, 2, . . . , N , where N is
the total number of nodes, is further organized into a matrix
equation Ax = b, where the vector to be solved is

x =
(

∂P1

∂t
,
∂P2

∂t
, . . . ,

∂Pi

∂t
, . . . ,

∂PN

∂t

)T

(5)

with T indicating the transpose. At time t , the ith element of
vector b is

bi = 1

CiR
(c)
i

∑
n(i)

Pn(i)(t ) − Pi(t )

Rn(i),i
(6)

and the elements in the invertible and symmetric matrix A are

Ai, j =
⎧⎨
⎩

∑
n(i) 1/Rn(i),i + 1/R(c)

i , i = j
−1/Rj,i, j is neighbor of i
0, i �= j and j is not neighbor of i.

(7)
For a node i connected to a fluid source pressure Pp, we have
bi = 1/(CiR

(c)
i )[(Pp − Pi )/Rp,i + ∑

n(i)(Pn(i) − Pi )/Rn(i),i] and

Ai,i = 1/Rp,i + ∑
n(i) 1/Rn(i),i + 1/R(c)

i , where Rp,i is the re-
sistance between i and the external node of fluid source.

We start the numerical simulation from an initial state
Pi(t = 0) = 0 for the whole network. We define the baseline
pressure Ps = 0, and thus have fluid content Wi(t = 0) = 0
for all the nodes. A constant positive source pressure Pp is
connected to a node (here the leftmost node of the midline)
at t = 0 to initiate the dynamic changes of Pi and Wi. At each
simulation time t , we calculate b and then x = A−1b, and then
update the pressures after a small time step �t :

Pi(t + �t ) = Pi(t ) + ∂Pi

∂t
�t . (8)

Based on Vi = Pi − Ps − I (c)
i R(c)

i , the fluid content Wi(t ) at
node i is calculated from the instant value of Pi(t ):

Wi(t ) = Ci

⎛
⎝Pi(t ) − Ps − R(c)

i

∑
n(i)

Pn(i)(t ) − Pi(t )

Rn(i),i

⎞
⎠. (9)

The simulation proceeds indefinitely toward all Pi = Pp and
W (max)

i = Ci(Pp − Ps) which is the maximum fluid content.
Theoretically, the process can take an exponentially long
time. The average of Wi(t ) can be fitted to a function a−
B exp(−t/τ ) where a, B, τ > 0. The time constant τ is depen-
dent on hydraulic traits, with a unit determined by the product
of capacitance and resistance (see discussions in Sec. II C).
The relative fluid content, Wi(t )/W (max)

i , is used in this work

to represent the time-varying fluid content distribution in the
network.

B. Numerical simulation of the mechanical network and
evaluation of the three-dimensional shape

The simulation methods of the mechanical network, which
captures the deformation process (differential expansion) of
the simulated surface in three dimensions, are based on a
tethered mesh surface discretization model (similar to a spring
system) developed for the modeling of deformable mem-
branes and spherical shells [6,7,29]. Figure 2(b) illustrates
a slightly deformed mechanical network, whose buckling is
induced by the hierarchy of the flow network in Fig. 2(a) that
is overlaid upon it. [Other obtained shapes can be found in the
simulation results of Fig. 4(b).] Also shown are the details of
two neighboring faces and their edges and vertices (nodes) in
this triangular tessellation of the thin membrane. Each edge
behaves like a Hookean spring, and the rest length of the
bond between nodes j and k [whose positions are r j and rk

in three-dimensional (3D) space] is ρ jk . The elastic stretching
energy of the bond is thus

E (str)
jk = 1

2ε jk (|r j − rk| − ρ jk )2, (10)

where ε jk is the discretized stretching modulus (spring con-
stant). The elastic surface bending energy, on the other hand,
is determined by the angle θαβ made by the normals of neigh-
boring faces α and β and is calculated from their respective
unit normal vectors nα and nβ as

E (bend)
αβ = καβ

(
1 − cos

(
θαβ − θ0

αβ

)) = καβ (1 − nα · nβ ),
(11)

where καβ is the discretized bending modulus [30,31] and
the equilibrium angle is θ0

αβ = 0. The total elastic energy of
the mechanical network, which is the sum of stretching and
bending energies of each bond and between each pair of faces,
respectively, is defined as

E =
∑
〈 jk〉

E (str)
jk +

∑
〈αβ〉

E (bend)
αβ

= 1

2

∑
〈 jk〉

ε jk (|r j − rk| − ρ jk )2 +
∑
〈αβ〉

καβ (1 − nα · nβ ),

(12)

where the summations are over adjacent nodes and faces.
At simulation time t = 0, the initial surface shape has all

bonds relaxed at their rest lengths, which are ρ0
jk at t = 0.

As the simulation proceeds, the rest lengths ρ jk enlarge with
time according to the associated fluid contents at the two
ending nodes of bonds [e.g., Wj (t ) and Wk (t )]. We apply a
linear relationship between ρ jk and the average of relative
fluid contents at nodes j and k, and have

ρ jk (t ) = ρ0
jk + mjk

2

(
Wj (t )

W (max)
j

+ Wk (t )

W (max)
k

)
, (13)

where mjk > 0 so that the surface expands locally as fluid
accumulates. Given the fluid content distribution generated
from the flow network at time t , the total elastic energy E
in Eq. (12) is provided with a particular distribution of ρ jk (t ),
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leading to a change of the shape of the mechanical network
which presumably adjusts according to the new rest lengths
at time scales much faster than the ones governing the fluid
flow. The positions of nodes are adjusted in a quasistatic way
in order to minimize E , and the system is assumed to have
reached mechanical equilibrium before the next fluid flow
simulation step at t + �t . Note that the shape change is as-
sumed to have no effect on the properties of the flow network.
This unidirectional influence is summarized in Fig. 2(c).

C. Specifics of network design and architecture

In this study, we use the same regular triangular lattice
for both fluid channels (flow network; see also Ref. [22])
and surface mesh discretization (mechanical network). The
boundary of the network system has a hexagonal shape which
is symmetric about its midline (the horizontal long axis at
the center in Fig. 2) but nonequilateral. The total number
of nodes is 949 including 37 nodes along the midline, and
the number of edges is 2740. The network size is chosen
so that the discretization of the mechanical network is finer
when compared with its effective thickness [see the discussion
below Eq. (14)], while also keeping the numerical simulations
computationally efficient. We have tested that a coarser net-
work with fewer nodes and edges generates simulation results
that are qualitatively similar to our chosen discretization.

In the flow network, the same constant hydraulic ca-
pacitance Ci = C and resistance to capacitor, R(c)

i = Rc, are
assigned to all the nodes, so that W (max)

i = C(Pp − Ps) = Wmax

is also a constant. Note that Rn(i),i of each vein segment can
be nonuniform. In the mechanical network, uniform, constant
discretized stretching (ε jk = ε) and bending moduli (καβ = κ)
are used throughout the whole network. The initial bond rest
length ρ0

jk = ρ0 is also identical for all the bonds. We choose a
positive constant parameter mjk = m with a length dimension
in Eq. (13) for the evaluation of rest length change. The sur-
face shape is initially planar and undeformed at the beginning
of a simulation, when all the bonds have the same length and
triangular faces in the mesh grid are equilateral. The surface
expands differentially as the bond lengths extend quasistati-
cally according to Eq. (13) (induced by fluid irrigation and
storage) in the simulation. When the surface is fully irrigated
and all capacitors approximately contain the same amount of
fluid, Wmax, the rest lengths of all the bonds are once again
identical (ρ jk = ρ0 + m), and the surface resumes a planar
shape with larger bond length and overall area. In this work,
we select ρ0 = 1, which is used as the basic length unit, as
well as m = 1, so that the rest length increases from 1 to
2 from the beginning to the end of the simulation. We also
choose Rc = 1 and C = 2 for the simulations, and the basic
time unit in this work is hence CRc/2.

The effective thickness h of the elastic membrane and
regular triangular network can be calculated by using the
relationships between discretized moduli and Young’s mod-
ulus Y as well as Poisson ratio ν: ε = √

3hY/2 and κ =
h3Y/[6

√
3(1 − ν2)], where ν = 1/3 for this discretization

[6,32]. We thus obtain

h = 3

√
(1 − ν2)κ

ε
= 2

√
2κ

ε
, (14)

which is independent of bond lengths or network size and
is only dependent on the ratio of discretized moduli. Using√

κ/ε = 0.306 (in the length unit ρ0 = 1) in this modeling,
we estimate the effective thickness to be h = 0.8655, which
is thus always smaller than bond lengths and so the system is
reasonably a good model for thin membranes.

In the next section we present the numerical simulation
results of several shape transformations, all with the same
mechanical design but different hierarchies of hydraulic resis-
tance Rn(i),i in the flow network. For the uniform flow network
designs in Fig. 3, all Rn(i),i = R are identical. Different R
values are applied along with Rc = 1 and C = 2 to study the
effect of edge resistance on the transformation dynamics for
both fluid spreading and surface expansion. The hierarchical
network designs in Figs. 4–6 are based on the parameters
of the last uniform network, in which R = 0.2 is used for
the assignment of Rn(i),i in a hierarchy. We define the cost
of each vein segment to be directly proportional to 1/Rγ

n(i),i,
where γ = 0.5 [22,33]. This can be understood in terms of a
Poiseuille flow through a pipe of radius rp, where the resis-
tance Rp is proportional to 1/r4

p; when the cost of the pipe, Kp

(amount of material), is proportional to its cross-section area
(or r2

p), Kp is thus also proportional to 1/R0.5
p . We keep the total

cost of each hierarchy to be the same as that of the uniform
network with R = 0.2, which means

∑
1/

√
Rn(i),i over all

the veins is conserved. In each hierarchy, a small resistance
value (Rmaj) and a large value (Rmin) are used for major and
minor veins, respectively, which are changed for different
designs but always have Rmaj = Rmin/1000. Major veins are
thicker in a real-life material and are highlighted with greater
thickness in the diagrams. Three categories of hierarchies
are designed, including “forklike” (Fig. 4, where major vein
branches are mostly parallel to the midline), “leaflike” (Fig. 5,
where branches extend from the midline), and loopy ones
(Fig. 6, where major veins form loops).

In each simulation, the fluid always enters the network
from the leftmost node on the midline, which is connected
to a fluid source across a small resistance at t = 0. With
simulation time step �t = 0.01, at each integer time point
(t = 1, 2, . . . until t = 500 for uniform networks and t = 100
for hierarchies), the instant distribution of relative fluid con-
tent is calculated (which is used to get the time constant τ ).
We then find the shape with minimum mechanical energy E
in Eq. (12), initializing the optimization with either a planar
shape (at the first time step) or a deformed shape (the opti-
mized shape at a previous time point at subsequent time steps).
To quantify the resulting shape, the Gaussian curvature at each
node is estimated using an angular deficit method derived
from the Gauss-Bonnet theorem [34]. We show in Figs. 3–6
the 3D visualizations of obtained shapes, which also illustrate
time-dependent fluid distributions in colors, both for uniform
networks (which, for our parameters, stay nearly flat) and
for various hierarchical structures at certain time points. The
3D renderings are generated from the Mayavi package of the
PYTHON programming language [35], and do not reflect the ac-
tual thickness or overall size of the membrane which enlarges
gradually, but are plotted to display the surface deformation
and buckling. Correlation analyses using linear regression are
performed for the fluid distributions and Gaussian curvature
arrangements of the resulting shapes of each hierarchical de-
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FIG. 3. Numerical simulation results of time-dependent shape transformations induced by fluid expansion in a uniform flow network.
Different resistance parameters R (but identical capacitance C with associated resistance Rc) are used for (a)–(c) to generate the 3D shapes
at different time t , whose side views are shown below front views to illustrate possible buckling. With larger resistance, the fluid expansion
becomes slower (indicated by larger time constant τ ) and the buckling lingers for a longer time.

sign from t = 1 to 50. Examples of the analysis performed on
the loopy hierarchy are given in Fig. 7, which also includes
two-dimensional (2D) plots of relative fluid distribution and
Gaussian curvature whose values at each node are linearly
interpolated on the surface. Summaries of linear regression
results for all hierarchies, as well as more examples of such
2D plots, can be found in Figs. 8–10.

III. RESULTS

A. Uniform flow networks

For a uniform flow network embedded in a surface, such
as those shown in Fig. 3, the fluid flow resembles uniform
diffusion, with a speed of spreading affected by the hydraulic
resistances (and capacitance). The rate of fluid spreading
and the resulting shape expansion is characterized by a time
constant τ estimated from the temporal changes of average
fluid content over the surface. In each simulation series, the
membrane keeps a relatively flat shape at the beginning, and
then gradually buckles out of the plane, making a slightly
curved saddle shape. The curvature of the shape first grows
and then diminishes slowly with time as the fluid diffuses
spatially, and ultimately, after a long period of time, the whole
surface is almost uniformly hydrated and the planar shape
reemerges. Apart from estimating τ from the exponential fit-
ting of average fluid content (see Sec. II A), one can visually
compare the expansion speeds of the different simulations by
observing both the time- and space-dependent relative fluid
content distributions, which are linearly related to local bond
rest lengths and measured by the color bar, and the shape
transformations represented by a front view and a side view
featuring out-of-plane buckling.

In the flow network, an increase of any of the hydraulic
traits R, Rc, and C will slow down the process, increase
the time constant, and extend the period during which the
surface buckles. This happens as a large resistance hin-
ders the fluid movement and large capacitors require more
time to fill. The effect of a large resistance R of each vein

segment (edge), which increases τ almost twofold when
doubled, is directly visible in Fig. 3. A selection of larger
Rc or capacitance C will be accompanied by a change in
the time scale of the simulations, effectively extending τ

and sustaining the buckling deformations for a prolonged
period. Based on the selection of large hydraulic parameters
in Fig. 3(c), we design different flow network hierarchies
to generate various, more pronounced shape changes of the
surface.

B. Hierarchical flow networks

The hierarchical network designs, including forklike,
leaflike, and loopy hierarchies, have the same hydraulic pa-
rameters used in Fig. 3(c) except for R = 0.2, which is used to
derive the major and minor vein resistances for which the total
cost of all vein segments is conserved. The high efficiency of
fluid transport in major veins with much lower resistance than
minor veins is apparent: in Figs. 4–6, all simulated surfaces
starting with an even distribution of fluid (zero everywhere)
experience an uneven irrigation process, first through major
veins in a fast motion, quickly filling capacitors along these
veins, and then through minor veins, gradually spreading into
areas farther away in a diffusionlike manner. Correspondingly,
the shape of a surface experiences large-scale deformations
and buckling induced by differential expansion of the sur-
face because of the nonuniform fluid distribution in the
intermediate stages of the fluid flow simulation process. Sim-
ilar to simulation results of uniform flow networks, most
generated shapes in Figs. 4–6 are symmetric about the net-
work midline, and are posted at an angle in the figures to
illustrate the visual effects of buckling and deformations.
After an exponentially long time, the eventually uniform dis-
tribution of fluid on the thin surface (nearly fully hydrated
everywhere) produces a nearly flat configuration, similar to
the starting shape. The areas proximal to fluid source (leftmost
node) start to saturate with fluid and deform earlier, and also
begin to flatten out earlier than areas on the distal side. The
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Fork-like hierarchy

(a)
Rmaj = 0.00411
Rmin = 4.11

τ ≈ 37

t = 1 t = 5 t = 10 t = 25 t = 100

(b)
Rmaj = 0.00224
Rmin = 2.24

τ ≈ 26

(c)
Rmaj = 0.000935
Rmin = 0.935

τ ≈ 25

(d)
Rmaj = 0.00175
Rmin = 1.75

τ ≈ 27

(e)
Rmaj = 0.00107
Rmin = 1.07

τ ≈ 28

FIG. 4. Dynamic simulation results of shape transformations induced by flow networks with “forklike” hierarchies, whose hydraulic
resistances of major (Rmaj) and minor veins (Rmin) are chosen (in addition to Rc = 1 and C = 2) so that the total cost of network is conserved.
The 3D visualizations at different times t illustrate the instant fluid content distribution (whose average spreading speed is characterized by
time constant τ ) according to the same color bar of Fig. 3. Note that the 3D renderings, which are symmetric about their midlines, are at an
angle with the paper to show the subsequent buckling from their original planes.

Leaf-like hierarchy

(a)
Rmaj = 0.00411
Rmin = 4.11

τ ≈ 49

t = 1 t = 5 t = 10 t = 25 t = 100

(b)
Rmaj = 0.00224
Rmin = 2.24

τ ≈ 39

(c)
Rmaj = 0.00123
Rmin = 1.23

τ ≈ 31

(d)
Rmaj = 0.000935
Rmin = 0.935

τ ≈ 30

FIG. 5. Dynamic simulation results (with time t) of shape transformations induced by flow networks with “leaflike” hierarchies. See the
caption of Fig. 4 for detailed information of the parameters.
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Loopy hierarchy

(a)
Rmaj = 0.0107
Rmin = 10.7

τ ≈ 69

t = 1 t = 5 t = 10 t = 25 t = 100

(b)
Rmaj = 0.00491
Rmin = 4.91

τ ≈ 43

(c)
Rmaj = 0.00181
Rmin = 1.81

τ ≈ 29

(d)
Rmaj = 0.00134
Rmin = 1.34

τ ≈ 28

FIG. 6. Dynamic simulation results (with time t) of shape transformations induced by flow networks with loopy hierarchies. See the caption
of Fig. 4 for detailed information of the parameters.

pace of hydration and length of time it takes to expand all
over the surface can be characterized by the time constant τ

labeled for each hierarchy.
Two relationships between structure and deformation are

easily discernible among all the numerical simulation results
of distinct hierarchical flow networks. First, a denser arrange-
ment of major veins (with narrower gaps between major vein
branches) leads to a smaller overall curvature change and
moderately deformed shapes with less prominent buckling in
our dynamic simulation process than a sparser major vein ar-
rangement. Dense arrangements also bring about longer time
constants τ , while sparse ones are generally more efficient
for fluid movement over the surface on average. Second, at a
particular time point, areas on the surface with relatively more
fluid content tend to form concave or convex shapes sustaining
a positive Gaussian curvature, whereas areas with relatively
small fluid amount are more likely to form saddle shapes with
a negative Gaussian curvature. These correlations increase
with the extent of deformation and decline at later time stages
as the fluid saturates the capacitors and the shape becomes flat,
and are demonstrated with detailed calculation and analyses
in Figs. 7–10. Both relationships between structure and defor-
mation are most noticeable in the forklike hierarchy results in
Fig. 4, where the dense major vein connections in Figs. 4(a)
and 4(b) give rise to bowl-shaped deformations with minimal
out-of-plane buckling. The magnitude of curvature variation
and extent of buckling dramatically grow when major vein
branches are spatially more distant from each other such as in
Fig. 4(c). There the midline is formed by major veins (with
higher instant fluid content) and goes through large positive
curvatures before straightening out, while the areas on the
two sides of the midline, which are filled with minor veins
(with lower fluid content), go through saddle shapes with large
negative curvatures. When the midline is formed by minor

FIG. 7. Examples of correlation between local relative fluid con-
tent and Gaussian curvature over the surface obtained by linear
regression at time t = 25, for the two loopy hierarchical designs
from Figs. 6(b) and 6(c), respectively. Both the linear regression
equation and correlation coefficient r are shown with each plot. (a) A
small slope and low degree of correlation (small r value), and (b) a
large slope and high degree of correlation. On the right-hand side
of each correlation plot, the 2D plots illustrate both the instant dis-
tribution of relative fluid content and that of the estimated Gaussian
curvature of the obtained shape.
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4(c) t = 25
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FIG. 8. The correlation between local relative fluid content and
Gaussian curvature over the surface, as represented by the linear
regression results (slope, y intercept, and correlation coefficient r)
for each “forklike” hierarchy at each integer time point from t = 1 to
50. On the right side, 2D plots of fluid content (RFC) and Gaussian
curvature (GC) distributions are shown for several hierarchies at
certain time points (corresponding to some shapes in Fig. 4). The
symbols 4(a)–4(e) represent vein patterns with the same labels as in
Fig. 4.

veins surrounded by parallel major vein branches such as in
Figs. 4(d) and 4(e) where the midline holds less fluid than its
surroundings, the resulting saddle-shaped surfaces illustrate
negative curvatures around the center and midline. Thus, the
hierarchies drastically alter the outcome of specific shapes
and curvatures according to the aforementioned observed
correlations.

Similar to the forklike hierarchies, the leaflike and loopy
hierarchies also generate a diverse set of dynamically chang-
ing shapes. In Fig. 5(a), showing the most dense major vein
arrangement, the leaflike hierarchy leads to overall saddle
shapes (unlike the bowl shapes in Fig. 4). With a smaller
major vein density, shown in Fig. 5(b), the saddle shapes occur
at later times (around t = 25) after the earlier generation of
distorted, asymmetric shapes (around t = 5 and 10), in which
the area near the fluid source is twisted at an angle with
area far from the source. The transition between the twisted
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Leaf-like hierarchy from Figure 5
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FIG. 9. Linear regression results for each “leaflike” hierarchy,
with 2D plots corresponding to some shapes in Fig. 5. The symbols
5(a)–5(d) represent vein patterns with the same labels as in Fig. 5.
See the caption of Fig. 8 for more information on the parameters.

and saddle shapes appears to be discontinuous, and the same
discontinuity also exists in the shape change between t = 10
and 25 in Fig. 5(c). The shape transformations in Figs. 5(c)
and 5(d) show the same effects of correlations as summarized
above, with more pronounced deformations.

Last, we study loopy hierarchies by adding major veins
parallel to the midline onto leaflike structures, similar to su-
perimposing the forklike and leaflike structures. With dense
major veins, the formation of loops hugely reduces curvature
development and suppresses large-scale buckling in Figs. 6(a)
and 6(b). With smaller density (larger gaps) of major veins,
the loop formation in Fig. 6(c) gives rise to fascinating shapes
with alternations of concave (or convex) and saddle points
on the surface (alternating positive and negative Gaussian
curvatures; see Figs. 7 and 10). The loops in Fig. 6(d) appear
to promote the development of curvature, bringing about more
curved shapes.

C. Correlation analysis of shape and fluid distribution

The correlation between local deformation and fluid con-
tent can be quantified through linear regression of the
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FIG. 10. Linear regression results for each loopy hierarchy, with
2D plots corresponding to some shapes in Fig. 6. The symbols 6(a)–
6(d) represent vein patterns with the same labels as in Fig. 6. See the
caption of Fig. 8 for more information on the parameters.

Gaussian curvature versus relative fluid content, for the op-
timized surface shapes in Figs. 4–6 at each simulation time
point. Figure 7 specifies this type of analysis for two deformed
shapes obtained at time t = 25 from the loopy hierarchies
in Figs. 6(b) and 6(c). On the right, the instant distributions
of relative fluid amount and Gaussian curvature are plotted
in two-dimensional hexagons for the two loopy designs, one
with minimal buckling (caused by dense major veins) and the
other showing a spatial alternation of positive and negative
Gaussian curvatures. In each design (except for peripheral
nodes, whose curvatures are assigned zero), the Gaussian
curvature at each node is then plotted against its local relative
fluid content. The scatter plot including data from all these
nodes is used to calculate the least squares linear fitting repre-
sented by the solid straight line, and the linear equation and
correlation coefficient r. Though both correlations are pos-
itive, indicating that a more positive Gaussian curvature is
more likely to emerge from higher fluid content, the architec-
ture with dense major veins shows a weak correlation (small r)
and the architecture with sparse major veins tends to maintain
a strong correlation (large r). The magnitude of slope, on the

other hand, serves as a measure of shape change, with large
slopes indicating prominent deformation. Thus both observa-
tions mentioned above about the effects of major vein density
are confirmed by this analysis.

Correlation analyses carried out by using the same method
as in Fig. 7 (containing linear fit slope, y intercept, and corre-
lation coefficient, all of which vary with time) and applied
to forklike, leaflike, and loopy hierarchy results (optimized
surface shapes) from time t = 1 to 50, are summarized in
Figs. 8–10, respectively. Similar 2D hexagonal plots to those
of relative fluid content and Gaussian curvature in Fig. 7 are
generated for several selected shapes found in Figs. 4(b)–4(d),
5(b)–5(d), and 6(b)–6(d). They can be located on the summary
plots of the linear regression results. In general, the resulting
slopes are positive and y intercepts are negative, and they are
approximately negatively related for a certain hierarchy: as the
slope becomes more positive, the corresponding y intercept
generally becomes more negative, but slightly lags behind the
change of slope and reaches a minimum at a little later time
than the peak of slope. The correlation coefficients (as well as
both slopes and y intercepts) are generally larger in magnitude
for designs with less dense major vein arrangements (wider
gaps between major vein branches). These findings general-
ize the observations from Fig. 7 about positive correlations
and their strengths (and also intensities of deformation) in
different hierarchies to basically all obtained shapes at all
times, with sparser major vein connections giving rise to
stronger correlations (and larger deformations). The dynamic
variations of linear fit results follow comparable trends with
time for all hydraulic hierarchical categories. The correlation
sharply increases, initially starting with empty capacitors and
undeformed surface, rapidly growing as represented by the
correlation coefficient along with the intensive shape trans-
formation and curvature development (in terms of slope, with
y intercept becoming more negative) that happen simultane-
ously. After reaching a peak correlation (which is also near
the point of maximum deformation and curvature forming of
the surface) it finally diminishes in a slow pace, corresponding
to the gradual decline of curving and buckling to a uniformly
expanded flat shape with full capacitors. In this process, the
Gaussian curvature plots clearly exhibit the movement of
curvature formation from the near side of the fluid source
(left side of the surface) to the far side (right side) following
the fluid spread and differential expansion. The discontinuous
shape transitions in leaflike hierarchies of Figs. 5(b) and 5(c)
are also reflected by the discontinuity in one or more of the
linear regression outcomes at around t = 18 in Fig. 9, for
example, the breaking of the correlation coefficient trend for
both Figs. 9(b) and 9(c) and also the jumping of slope and y
intercept for 9(c).

Further rescaling the emergent curvature patterns (e.g. with
respect to the gap distance between two major veins) to ex-
plore a more general correlation between Gaussian curvature
and fluid content distribution (to be applicable to all kinds
of hierarchies) could be complex. The amount of generated
curvature is a complicated function of the bending and stretch-
ing moduli, as well as the differential swelling, and a simple
rescaling of length cannot easily capture these dependencies.
Furthermore, this rescaling may work to some degree for a
continuous surface, but is limited in this work by the dis-
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cretized nature of our mechanical network (spring system)
and its internal length scale, which is the original bond rest
length of an edge (and is also the unit length we use). Since
the bond lengths in the network are not negligible compared
to gaps between major veins, the obtained correlations should
be understood with the consideration of this size comparison.
Specifically, even with the same degree of variation of rela-
tive fluid content, the curvature formation in a network with
smaller major vein gaps is suppressed by the discretization
to a greater extent than one with larger gaps. This differ-
ence enhances the correlation contrasts among the various
hierarchical designs in Figures 8–10. An extension of these
observations from networking systems to a continuous limit
is out of the scope of this study.

IV. DISCUSSION

Our work contributes to the large volume of literature
regarding the shape morphing of thin membranes related to
hydraulics, by revealing the significant roles of fluid delivery
and storage capability. We show that, besides helping to with-
stand drought conditions [25], the large hydraulic capacitance
in petals can also contribute to the extension of petal buckling
and unfolding period (see Sec. III A), affecting the time scale
of opening in many species. Our work, however, was only in-
spired by biology, and ignores biological complexity, such as
the biochemistry that might affect the storage capacity of the
cells. We also simplified the coupling between hydrodynamics
and mechanics in our model, by only taking into account how
the fluid flow can change the surface shape but not the effects
of shape transformations on flow network changes. This is
acceptable in a first-order approximation in order to focus on
the most fundamental physics of these phenomena. The in-
verse effects, which can deform the conduit cross section and
lead to variations of hydraulic conductance in the flow net-
work of a living system, can be important for physiological
fluid-structure interactions in both animals [36] and plants
[37,38]. To study a real-life system where the higher-order
effects are not negligible, rigorous investigations should be
applied to the particular material being explored to find out
and implement the specific dependence of flow network prop-
erties on surface deformations, which is usually complicated
and distinct from other materials. In order to investigate the
extent to which our findings are relevant for real-life petals,
experimentalists can apply novel, advanced measurement ap-
proaches on petals, such as time-lapse imaging and video of
deformation processes [39], and also innovative techniques to
extract flow network architecture [40,41] or to keep track of
fluid movement using fluorescent dyes [22,42]. Ideal species
to be tested are those whose flowers open and close repeatedly
(e.g., opening during the night and closing during the day,
or vice versa) with a pace not too fast or slow, and with a
mechanism clearly due to the regulation of water loss or refill,
such as the Silene species pointed out in Ref. [9].

The existence of hierarchies in vascular flow networks was
shown to optimize transport efficiency (with branches [43])
and be robust to damages and fluctuations (with loops [44]).
Similarly, in mechanical networks, the network rigidity was
shown to be strengthened by hierarchical elastic structures
[45]. In this work, we demonstrate another straightforward

impact of the topology of venation on thin sheet mechan-
ics, through local fluid absorption, differential expansion, and
ensuing deformation. With fluid quickly spreading through
low-resistance major vein highways (confirmed experimen-
tally in leaves [46]), fluid storage elements are rapidly filled up
in their vicinity undergoing local growth. Unless there exists
a nonlocal feedback control mechanism, the surface cannot
remain flat when growing [47].

The differential expansion due to fluid storage forces the
surface to bend into a buckled shape, in which positive Gaus-
sian curvatures build up in relatively liquid-rich areas and
negative ones form in liquid-poor regions. The emergence
of saddle shapes similar to those in Figs. 4 and 5 has been
observed in leaves and petals and modeled using differential
growth, in addition to rippling patterns near the surface mar-
gin due to edge elongation [17,48,49]. Similar patterns are
produced by some of our modeling results [Figs. 5(c) and
6(c)] with an overall surface undulation (because of the spatial
alternations of positive and negative Gaussian curvatures).
The undulating shapes in this work, controlled by flows, can
be compared to patterns emerging on confined, intrinsically
curved thin shells arising from their surface area mismatch
with the geometry of the confinement [50–52]. Hence, our
work provides an alternative mechanism for the appearance
of nontrivial deformations of a thin shell in a physical or
biological system in addition to well-established methods.

These deformation mechanisms, including the one in this
study, tend to emphasize the geometric aspects of shape trans-
formations by focusing on surface growth and expansion.
However, mechanical factors can be easily introduced to our
model by having stretching and bending moduli in Eq. (12),
rather than just bond rest length, also increase with the buildup
of local fluid content. This would correspond to a differential
stiffening, which may accelerate the restoration of flat shape.

Our work focuses on analyzing how the topology and
hierarchy of irrigation networks affect the flow-controlled
deformation dynamics of the fluid absorbing membrane. The
connectivity of our model flow network was selected to rep-
resent broad classes of biologically inspired networks. All of
the “forklike,”“leaflike,” or loopy hierarchies of major veins
were readily observed in the micrographs of flower petals of
several dicot species [14,16]. The branching designs resem-
bling leaves (Fig. 5) and reticulate ones with loops (Fig. 6)
are actually inspired by the model leaf venations in Ref. [23].
Some network models were developed as inspired by the leaf
of a monocotyledon (like wheat [53]) or dicotyledon (like
laurel [54]), in which square grids were applied and multi-
ple levels of resistances were assigned to different degrees
of veins. In this work, on the contrary, we only apply two
resistance values, different by a factor of 1000, to major and
minor veins to focus on the fundamental aspects of hierarchy.
We also implement a triangle, rather than a square, mesh grid
with hexagonal boundary which was also used for leaf models
previously [22,40]. The triangular grid of the fluid flow system
can be readily used for the architecture of the mechanical
network that models the elastic properties and shape changes
of the thin sheet surface, as triangle grid meshes capture both
stretching and bending. Our simple model with only very
basic components can be easily augmented to incorporate
spatiotemporal inhomogeneities into the flow and mechanical
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networks. For example, there can be more than two levels
of vein resistance to capture the tapering and reduction of
conductance in major veins from petiole (fluid source) to
the margin [23]. The effect of transpiration can be added
by setting internal nodes as flow sinks, and the mechanical
properties can be spatiotemporally variable, reflecting the in-
plane anisotropy of the thin material (e.g., the diversification
of petal cell elasticity) or more complicated effects of fluid
accumulation.

The numerical findings in this work, especially the local
correlations between surface curvature and fluid content in the
thin membrane, can also provide helpful insights into how the
conformation of a swellable thin material can be fine tuned.
This fine tuning is achieved by adjusting the fluid distribution.
Given a target surface configuration, the arrangement of cur-
vatures can be calculated, and then correlated to relative fluid
contents through the correspondences found in Figs. 7–10.
Though the shapes created in this work are dynamical and
transient, one can potentially program the surface into a desir-
able shape with high confidence (based on a linear relationship
with strong correlation) by holding the underlying local fluid
contents in a steady state through an arresting mechanism.
Practical, quantitative correlations will need to be determined
through experiments and not directly from our numerical re-
sults based on the minimal model.

Formerly, by manipulating deforming mechanisms like
differential growth, engineers have fabricated thin sheets re-
sponsive to environmental stimuli, making a large variety
of structures including nematic glass cantilevers [55,56] and
temperature-sensitive copolymer disks [57], which can buckle
when being heated or cooled. Expansive computational stud-
ies and analytical calculations have also been carried out in
order to design real physical systems that harness differen-
tial swelling to transform into intended shapes when needed
[58,59]. Our work serves as a complement to this field by
involving fluid flow and storage as a controlling factor behind
the swelling. A similar actuation principle was recently ap-
plied to macroscopic air-filled rubber plates embedded with
airway channel networks, which cause shape morphing when
being inflated [60,61]. For this work, notably, hydrogel poly-
mers, which enlarge in size when immersed in water and
have been made into numerous conformations in biomimetic
four-dimensional (4D) printing [19], appear to be an ideal ma-

terial for the fabrication of deformable thin sheets implanted
with a microfluidic channel network, which can possibly test
our modeling results. Microchannels embedded in thin films
have already been used to simulate plant hydraulics, with
one example in silicone PDMS [62] and another in hydrogel
PHEMA [63], and also embedded in liquid crystal elastomer
sheets to preprogram intrinsic spontaneous curvatures [64,65].
The combination of microfluidics and micromechanics in a
hydrogel-based soft membrane prone to flows can recreate
the coupling effects in our network model, whose major veins
are explicitly mimicked by the channels and minor veins im-
plicitly approximated by the rest of the surface where fluids
diffuse and remain, and then the dynamic deformation path-
ways can be scrutinized physically. Overall, our study in this
work reveals a plethora of possibilities in physics, biology,
and applied science for future theoretical, computational and
experimental investigations to further discover.
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APPENDIX: EXPERIMENTAL METHOD TO CAPTURE
PETAL FLUORESCENT IMAGES IN FIGURE 1(b)

Hosta sp. was collected at the University of Pennsylva-
nia, brought back to the laboratory, and recut under water
immediately. Right before the measurement, the flower was
cut, flattened, and affixed onto a black background using clear
tape. At time 0, the cut end of the pedicel was submerged in
a Petri dish with 0.1% fluorescein solution (fluorescein free
acid, Honeywell Fluka, in 15 mM KCl solution of pH 8). The
Petri dish was covered with foil paper to prevent any fluores-
cent noise. Images were taken in a photo light box to eliminate
any light source from the laboratory. In the photo light box,
the light was provided by an LED growth light strip with
photosynthetic photon flux density of ≈300 μmol m−2 s−1.
Images were taken every 120 s with a Nikon D3300 camera
and a color blocking filter (Filter Orange No. 22, Heliopan,
Munich) mounted on a tripod stand and connected to a PC
with the digiCamControl software.

[1] R. Monahan-Earley, A. M. Dvorak, and W. C. Aird,
Evolutionary origins of the blood vascular system
and endothelium, J. Thromb. Haemostasis 11, 46
(2013).

[2] J. Dumais and Y. Forterre, “Vegetable dynamicks”: The role
of water in plant movements, Annu. Rev. Fluid Mech. 44, 453
(2012).

[3] Y. Forterre, Slow, fast and furious: Understanding the physics
of plant movements, J. Exp. Bot. 64, 4745 (2013).

[4] Y. Forterre, J. M. Skotheim, J. Dumais, and L. Mahadevan,
How the Venus flytrap snaps, Nature (London) 433, 421
(2005).

[5] J. M. Skotheim and L. Mahadevan, Physical limits and design
principles for plant and fungal movements, Science 308, 1308
(2005).

[6] E. Katifori, S. Alben, E. Cerda, D. R. Nelson, and J. Dumais,
Foldable structures and the natural design of pollen grains, Proc.
Natl. Acad. Sci. USA 107, 7635 (2010).

[7] E. Couturier, J. Dumais, E. Cerda, and E. Katifori, Folding of
an opened spherical shell, Soft Matter 9, 8359 (2013).

[8] E. Katifori, The transport network of a leaf, C. R. Phys. 19, 244
(2018).

[9] W. G. van Doorn and U. van Meeteren, Flower opening and
closure: A review, J. Exp. Bot. 54, 1801 (2003).

024419-12

https://doi.org/10.1111/jth.12253
https://doi.org/10.1146/annurev-fluid-120710-101200
https://doi.org/10.1093/jxb/ert230
https://doi.org/10.1038/nature03185
https://doi.org/10.1126/science.1107976
https://doi.org/10.1073/pnas.0911223107
https://doi.org/10.1039/c3sm50575h
https://doi.org/10.1016/j.crhy.2018.10.007
https://doi.org/10.1093/jxb/erg213


FLOW-NETWORK-CONTROLLED SHAPE TRANSFORMATION … PHYSICAL REVIEW E 107, 024419 (2023)

[10] W. G. van Doorn and C. Kamdee, Flower opening and closure:
An update, J. Exp. Bot. 65, 5749 (2014).

[11] L. Beauzamy, N. Nakayama, and A. Boudaoud, Flowers under
pressure: Ins and outs of turgor regulation in development, Ann.
Bot. 114, 1517 (2014).

[12] L. Sack and N. M. Holbrook, Leaf hydraulics, Annu. Rev. Plant
Biol. 57, 361 (2006).

[13] A. B. Roddy, C. M. Guilliams, T. Lilittham, J. Farmer, V.
Wormser, T. Pham, P. V. A. Fine, T. S. Feild, and T. E.
Dawson, Uncorrelated evolution of leaf and petal venation pat-
terns across the angiosperm phylogeny, J. Exp. Bot. 64, 4081
(2013).

[14] F.-P. Zhang and T. J. Brodribb, Are flowers vulnerable to
xylem cavitation during drought? Proc. R. Soc. London B 284,
20162642 (2017).

[15] A. B. Roddy, C. R. Brodersen, and T. E. Dawson, Hydraulic
conductance and the maintenance of water balance in flowers,
Plant Cell Environ. 39, 2123 (2016).

[16] A. B. Roddy, G.-F. Jiang, K. Cao, K. A. Simonin, and C. R.
Brodersen, Hydraulic traits are more diverse in flowers than in
leaves, New Phytol. 223, 193 (2019).

[17] H. Liang and L. Mahadevan, Growth, geometry, and mechanics
of a blooming lily, Proc. Natl. Acad. Sci. USA 108, 5516
(2011).

[18] X. Huang, Y. Hai, and W.-H. Xie, Anisotropic cell growth-
regulated surface micropatterns in flower petals, Theor. Appl.
Mech. Lett. 7, 169 (2017).

[19] A. S. Gladman, E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan,
and J. A. Lewis, Biomimetic 4D printing, Nat. Mater. 15, 413
(2016).

[20] W. M. van Rees, E. Vouga, and L. Mahadevan, Growth patterns
for shape-shifting elastic bilayers, Proc. Natl. Acad. Sci. USA
114, 11597 (2017).

[21] B. Roman and J. Bico, Elasto-capillarity: Deforming an elastic
structure with a liquid droplet, J. Phys.: Condens. Matter 22,
493101 (2010).
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