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Finite-strain elasticity theory and liquid-liquid phase separation in compressible gels
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The theory of finite-strain elasticity is applied to the phenomenon of cavitation observed in polymer gels
following liquid-liquid phase separation of the solvent, which opens a fascinating window on the role of
finite-strain elasticity theory in soft materials in general. We show that compressibility effects strongly enhance
cavitation in simple materials that obey neo-Hookean elasticity. On the other hand, cavitation phenomena in gels
of flexible polymers in a binary solvent that phase separates are surprisingly similar to those of incompressible
materials. We find that, as a function of the interfacial energy between the two solvent components, there is a
sharp transition between cavitation and classical nucleation and growth. Next, biopolymer gels are characterized
by strain hardening and even very low levels of strain hardening turn out to suppress cavitation in polymer gels
that obey Flory-Huggins theory in the absence of strain hardening. Our results indicate that cavitation is, in
essence, not possible for polymer networks that show strain hardening.
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I. INTRODUCTION

Biological physics has been enriched by the realization that
the physics of phase separation provides insight into segrega-
tion phenomena that take place inside cells [1–3]. Examples
are the formation of stress granules in the cytoplasm of cells
and the formation of nucleoli in the cell nucleus. These mem-
braneless organelles typically contain a high concentration of
macromolecules, such as RNA or proteins, that are in a liquid-
like state [4–6]. The formation of these structures is triggered
by changes in environmental conditions such as concentration,
pH, salinity, or temperature.

Cellular separation phenomena have characteristics that set
them apart from the well-studied liquid-liquid phase separa-
tion of simple binary liquids [7]. A striking example is the
absence of Oswald ripening, or coarsening, which refers to
the growth of larger droplets of the minority phase and a
corresponding shrinkage of smaller droplets. It is driven by
the interfacial energy between the two components of the
liquid [8]. In contrast, liquid-liquid phase separation in cells
produces a distribution of droplets with constant radii. This
is attributed to the fact that both the cytoplasm of cells and
the interior of the cell nucleus are permeated by networks
of biopolymers. As confirmed by numerical simulations [9],
growth of minority-phase droplets can be stopped by elastic
deformation of the surrounding polymer network.

The cytoplasm of a cell and the interior of the cell nucleus
are both complex environments with complex elastic prop-
erties. However, model systems are available in the form of

*Deceased.

permanently cross-linked synthetic gels with a solvent that is
a simple binary liquid [10]. The majority component of the
binary liquid is a good solvent for the gel polymers while
the minority phase is a poor solvent. Upon phase separation,
a relatively monodisperse phase of minority phase droplets
appears inside the polymer matrix. For lower levels of super-
saturation, droplet growth is indeed arrested by the polymer
matrix but the droplets grow in an unlimited fashion when
the osmotic pressure of the minority phase exceeds a critical
value, which is of the order of the elastic modulus of the
polymer network.

An interesting possibility is that this is a form of cavitation,
which refers to the swelling of a pressurized cavity inside an
elastically deformable material when the pressure exceeds a
certain critical value. Cavitation has been observed in rubber-
like materials [11] as well as in soft-matter materials [12,13].
Cavitation cannot be understood within the confines of the
theory of linear elasticity. It is a consequence of the inherently
nonlinear nature of elasticity when the elastic strains no longer
are small compared to one. When finite-strain elasticity theory
[14] is applied to cavity formation in rubberlike materials, one
encounters cavitation with a critical pressure equal to 5/2 of
the shear modulus of the material [11].

In theoretical studies of the cavitation of rubberlike ma-
terials, it is assumed that the material is incompressible, or
nearly so, and this same assumption is also commonly made
in theoretical studies of cavitation by liquid-liquid phase
separation in polymer gels. The assumption allows for an
important simplification: For incompressible materials, the
displacement field surrounding a pressurized spherical cavity
has a known analytic form that is completely determined by
mass conservation. Once this deformation map is known, one
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can directly compute the relation between pressure and cavity
radius. However, for compressible materials, obtaining the
displacement field requires using the mathematical machinery
of finite-strain elasticity theory, which leads to an equation for
mechanical equilibrium that is of a daunting mathematical
complexity.

While the combined system of solvent plus polymers as
a whole indeed is (nearly) incompressible, osmotic com-
pression and expansion of the polymer matrix with respect
to the solvent at fixed total volume certainly is possible.
The study of osmotic compression is, in fact, a central feature
of the physics of polymer gels [15]. Measured values of the
osmotic compressional and shear moduli of gels composed of
flexible synthetic polymers typically are comparable to each
other [16], so the assumption of incompressibility certainly
is not valid—but is compressibility really an important issue
for cavitation? Compressibility could drastically alter the de-
formation and density profiles surrounding the cavity. On the
one hand, the density profile could develop a maximum at or
near the surface of the swelling cavity due to pile-up of the
material that has been pushed out of the cavity (snowplow
effect). This could slow down cavitation. On the other hand, as
the cavity swells, the density might also develop a minimum
at the cavity surface due to the lateral stretching of volume
elements (balloon effect) and this could accelerate cavitation.
It so happens that in linear elasticity theory, these two effects
cancel each other exactly, with the result that in that case the
density surrounding a pressurized cavity is uniform. As we
shall see, this is certainly not so under the theory of finite-
strain elasticity.

An important question about cavitation in biogels involves
strain hardening. This refers to an increase of the differential
shear modulus under increasing levels of shear strain. Strain
hardening is not significant for the type of gels on which
cavitation experiments have been carried out but it is a known
characteristic of biopolymer networks [17]. Strain hardening
plays an important role in the biomechanics of cells and
tissue. A numerical study of phase separation in a network
of biopolymers indicate that strain hardening can suppress
cavitation [9]. Synthetic biomimetic hydrogels have been de-
veloped with a tunable level of strain hardening [18–21], so
it now is possible to study quantitatively the effects of strain
hardening.

A final question of interest concerns the relation between
cavitation and the classical scenario of droplet nucleation
and growth in phase-separating binary liquids. It would seem
that when the interfacial energy between the two components
of the binary solvent increases, cavitation should somehow
transform to the spontaneous growth of droplets with a radius
larger than that of the critical nucleus but it is not clear how
this transformation takes place.

The aim of this article is to apply finite-strain elasticity
theory to explore the effects of compressibility, interfacial
energy, and strain hardening on cavitation. In Sec. II we briefly
review finite-strain elasticity and discuss the general form of
invariant free energy densities. In Sec. III, we apply finite-
strain elasticity theory to the simpler case of compressible
neo-Hookean materials. There, we also develop a variational
method to obtain the deformation map for cavitation in the
presence of compressibility, strain hardening and surface

FIG. 1. Schematic deformation map of a spherical cavity that has
a radius r0 in a strain-free reference configuration. When pressurized,
the radius of the cavity increases to R0. The deformation map ϕ(r)
relates points in the reference configuration to points in the deformed
configuration. The figure shows the mapping for the case of a point
on the cavity surface.

tension. The variational method is tested by comparing it
with the outcome of a numerical solution of the equations for
mechanical equilibrium. In Sec. IV, the variational method is
applied to cavitation in gels. We conclude in Sec. V.

II. FINITE-STRAIN ELASTICITY THEORY

Finite-strain elasticity theory can be formulated in different
but equivalent ways [14,22,23]. In this section, we review our
particular choice.

A. Deformation maps and the Green-Lagrange strain tensor

Consider a material whose internal configuration is defined
by the positions of material elements that form a coarse-
grained description of the underlying molecular structure of
the material. The reference configuration B0 of the material
is defined to be a state with neither internal nor external
stresses. By assumption, the material elements are uniformly
distributed in this state. When the material is exposed to
external stress, it deforms into a new configuration B. In
the Lagrangian formalism, this deformation is described by
a continuous mapping of each position �x ∈ B0 in the refer-
ence configuration to a new position �X ∈ B in the deformed
configuration:

�ϕ : �x �→ �X . (1)

Figure 1 shows an example of a material that, in the strain-
free reference configuration, has a spherical cavity of radius
r0. When this cavity is pressurized it swells up, with a new
radius R0.

The distinction between the reference configuration B0 and
the deformed configuration B is a key feature of finite-strain
elasticity theory: the vectors �x and �X live in two distinct vector
spaces. In the following, vectors and tensors defined in the
reference space will carry Greek indices while vectors and
tensors defined in the deformed space will have Latin indices.
Final expressions for physical quantities will all be defined
on the reference space, i.e., we use a Lagrangian frame of
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reference. We also will be using curvilinear coordinate sys-
tems for both spaces with gαβ the metric tensor of the
reference space and Gi j that of the deformed space. Covariant
derivatives in the reference space will be denoted as D

Dxα while
those in the deformed space will be denoted as D

DX i . The
associated Christoffel symbols are �α

βγ , respectively, �̄i
jk .

A line element dxα in the reference space is transformed
into a line element dX i in the deformed space by the deforma-
tion gradient matrix:

dX i = Ai
αdxα, (2)

with

Ai
α ≡ ∂ϕi

∂xα
. (3)

Note the mixed indices of the deformation gradient matrix.
The norm squared of the line element transforms as

|d �X |2 = AiαAiβdxαdxβ ≡ (
2Uα

β + δα
β

)
dxαdxβ. (4)

Here

Uα
β ≡ 1

2

(
AiαAiβ − δα

β

)
(5)

is the Green-Lagrange strain tensor defined on the reference
space. Indices are here raised and lowered using the two
metric tensors. In the limit of small deformations, the Green-
Lagrange strain tensor is conveniently expressed in terms of
the displacement vector

�u(�x) = �X − �x = �ϕ(�x) − �x (6)

of a material point under the action of the force. In the limit
�u → 0, the Green-Lagrange strain tensor reduces to

Uα
β lin

= 1
2 (∂αuβ + ∂βuα ) + O(u2), (7)

which is the strain tensor of linear elasticity theory [24].
Using the polar decomposition theorem, one can write the

deformation gradient A as the product of a rotation matrix R
and the symmetric, positive definite matrices U and V :

Ai
α = Ri

βU α
β = V i

j R j
α. (8)

Here, U is defined on the reference space and is referred to as
the right stretch tensor, while V , which lives in the deformed
space, is the left stretch tensor. The three eigenvalues of U
and V are identical and denoted by λi=1,2,3. They correspond
to the principal stretch ratios in the sense that a spherical
volume in the reference space is transformed into an ellipsoid
in the deformed space whose principal axes are along the
directions of the eigenvectors while the stretching ratios along
the principal axes are λi. Note that ATA = U 2 and AAT = V 2

both have eigenvalues λ2
i .

A volume element dv in the reference space transforms
under the deformation into a volume element dV in the de-
formed space given by dV = Jdv, where J is the Jacobian
of the deformation map A. Conservation of mass allows us to
write J in terms of the local densities of the material before
and after the deformation,

ρdV = ρ0dv ⇒ J = ρ0

ρ
, (9)

so J = 1 for incompressible systems. For convenience, the ra-
tio ρr ≡ ρ

ρ0
= 1

J will be referred to as the relative density. The

Jacobian can be expressed as J = det A = det U = det V =
λ1λ2λ3. In linear elasticity theory, J ≈ 1 + trUlin. The linear
shear strain tensor Ūlin is constructed from the linear strain
tensor by subtraction of the trace times the unity matrix, so
the trace of the shear strain tensor is zero in linear elasticity.

These relations break down for large deformations and the
shear strain tensor must be constructed differently. As a first
step, consider an area element in the reference space dsα =
ds nα , where n̂ is the unit vector normal to the area element
of the deformation. Under the deformation, a volume element
dxαdsα transforms as

dX idSi = Jdxαdsα, (10)

where dX i = Ai
αdxα . This gives for the transformed area

element

dSi = J (A−1) i
αdsα, (11)

where A−1 is the inverse deformation gradient matrix:

(A−1)αi ≡ ∂ (ϕ−1)α

∂X i
. (12)

Next, write a general deformation mapping �ϕ as the product
of two successive mappings:

�ϕ(�x) = �ϕshr(�ϕcmp(�x)). (13)

The first map �ϕcmp(�x) is here a pure dilation given by

�ϕcmp(�x) = J1/3�x, (14)

with J the Jacobian of the full deformation �ϕ. The second map
�ϕshr is a volume-preserving shear. Using the chain rule, the
deformation gradient matrix of the full map �ϕ is

Ai
α = ∂ϕi

shr

∂ϕ
β
cmp

∂ϕ
β
cmp

∂xα
= J1/3Āi

α. (15)

The new deformation gradient matrix Ā is volume preserving
since

det Ā = det(J−1/3A) = 1

J
det A = 1. (16)

The associated Green-Lagrange shear strain tensor is then

Ūα
β = 1

2

(
ĀiαĀiβ − δα

β

) = 1
2

(
J−2/3AiαAiβ − δα

β

)
= J−2/3Uα

β + 1
2 (J−2/3 − 1)δα

β . (17)

While this nonlinear shear strain tensor is volume preserving,
it is—unlike its linearized counterpart—not traceless. The
trace of the shear strain tensor will play a central role in the
following.

For the cavitation problem, one assumes spherical sym-
metry. The reference configuration B0 will be defined as a
strain-free state that has a spherical cavity with radius r0

at the center. The cavity is then pressurized with a pres-
sure P. The new configuration B is described by a mapping
from a material point at (r, θ, φ) ∈ B0 to the new location
(ϕ(r), θ, φ) ∈ B (see Fig. 1). The radius of the swollen cav-
ity in B is then R0 = ϕ(r0). Recall that the density ρ(R) of
the deformed material is related to that of the undeformed
material by the Jacobian J (R) = ρ0

ρ(R) = 1/ρr . It follows that
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ρ(R)R2dR = ρ0r2dr, which gives ρr = r2

ϕ(r)2ϕ′(r) . For an in-
compressible system with fixed Jacobian J = 1, this reduces
to the differential equation ϕ′(r) = r2

ϕ(r)2 with solution ϕ(r) =
(R3

0 + r3 − r0
3)1/3. For spherical symmetry, the deformation

gradient matrix, Jacobian, and strain tensor reduce—in spher-
ical coordinates—to

Ai
α = ∂ϕi

∂xα
=

⎛
⎝ϕ′ 0 0

0 1 0
0 0 1

⎞
⎠, (18)

J =
√

det G

det g
det A = ϕ2

r2
ϕ′, (19)

Uα
β = 1

2

⎛
⎜⎝ϕ′2 − 1 0 0

0 ϕ2

r2 − 1 0
0 0 ϕ2

r2 − 1

⎞
⎟⎠, (20)

trU = ϕ2

r2
+ 1

2
ϕ′2 − 3

2
. (21)

Finally, the trace of the shear strain tensor is

tr Ū = J−2/3

(
ϕ2

r2
+ 1

2
ϕ′2

)
− 3

2
. (22)

An important part of finite-strain elasticity theory are the
definitions of the different stress tensors that can enter in
the equation for mechanical equilibrium [see Eq. (A5)]. The
variational method that we will use does not involve the stress
tensor. For completeness, the different versions of the stress
tensor are briefly reviewed in Appendix A.

B. Elastic free-energy densities

In finite-strain elasticity theory, the free-energy density
of a material is, in general, expressed as a combination of
scalar quantities obtained from the strain tensor U that are
invariant under coordinate transformations. The lowest-order
invariant is the trace trU of the strain tensor. This invariant
can be expressed in terms of the principle stretch ratios λi as
1
2 (

∑3
i=1 λ2

i − 3) (in the engineering literature, this invariant
is normally denoted as I1). Next, the Jacobian J = λ1λ2λ3 is a
cubic invariant that enters in the equation of state of materials.
Contributions to the free-energy density that only depend on
the density ρr can be expressed in terms of J = 1/ρr . Finally,
free-energy densities associated purely with shear strain can
be constructed from invariants of the shear strain tensor Ū .
The lowest order invariant of Ū is the trace:

tr Ū = 1

2

[
J−2/3

(
3∑

i=1

λ2
i − 3

)
− 3

]

= J−2/3

(
ϕ2

r2
+ 1

2
ϕ′2

)
− 3

2
. (23)

The lowest order shear strain invariant energy density thus has
the form fs = μ′ tr Ū with μ′ a constant. Following Shokef
and Safran [25], one can extend this expression to include
shear hardening by imposing a maximum shear strain 1/η

through

fs = μ′ tr Ū
(

1

1 − η tr Ū

)


 μ′ tr Ū (1 + η tr Ū + η2 (tr Ū )2 + ...). (24)

The constant μ′ can be identified by going to the limit of
infinitesimal deformations. Expanding in powers of the strain
tensor of linear elasticity theory, ui j = 1

2 ( ∂ui
∂x j

+ ∂u j

∂xi
) [Eq. (7)]:

μ′tr Ū 
 μ′(uik − 1
3δikull

)2 + O(u3). (25)

In linear elasticity theory, the elastic energy density of an
isotropic material has the form [24]

fLE = μ

4

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
δi j

∂ui

∂x j

)2

+ 1

2
κ

(
∂uk

∂xk

)2

, (26)

with μ the shear modulus and κ the compressional modulus.
The first term corresponds to the trace of the nonlinear shear
strain tensor, so it follows that one can equate μ′ with the shear
modulus μ of linear elasticity theory.

III. NEO-HOOKEAN ELASTICITY AND CAVITATION

Before discussing cavitation in gels, it is useful to first
examine the simpler case of cavitation in materials that
obey neo-Hookean elasticity. The elastic energy density of a
neo-Hookean materials generalizes the energy density of
isotropic materials according to linear elasticity [Eq. (26)] by
replacing the linearized strain tensor Ulin with the full Green-
Lagrange strain tensor U . The resulting elastic energy density
can be expressed in terms of the invariants I1 and J as

fNH = μ
1

2

[
J−2/3

(
3∑

i=1

λ2
i

)
− 3

]
+ κ

2

1

J
(1 − J )2

= μ

[
J−2/3

(
ϕ2

r2
+ 1

2
ϕ′2

)
− 3

2

]
+ κ

2

1

J
(1 − J )2, (27)

with J = ϕ2

r2 ϕ′ [26]. The first term is the shear strain energy
density contribution and the second term the contribution
from changes in density. Shear-strain hardening is included
by replacing this first term with Eq. (24). The second term
can be expressed in the deformed space as κ

2 (ρ/ρ0 − 1)2. The
Jacobian J has to be included to allow for the transformation
of volume elements when going from the deformed to the
reference space.

The deformation map ϕ(r) is determined by minimization
of the functional

F [ϕ] = γ
(
4πR2

0

) − P

(
4π

3
R3

0

)
+ Fel[ϕ]. (28)

Here, P is the pressure inside the cavity and γ represents a
surface tension of the cavity, which is treated as an external
force per unit area. The last term is the elastic energy:

Fel[ϕ] = 4π

∫ ∞

r0

dr r2 fNH. (29)
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A. Cavitation in incompressible neo-Hookean systems

The simplest case is the incompressible limit in which case
the mapping ϕ is determined by mass conservation. We also
can drop, in this case, the compressional term in the elastic
energy density. The resulting elastic energy density is

fNH = μ

(
ϕ2

r2
+ 1

2
ϕ′2 − 3

2

)
. (30)

The stretch ratio along the radial direction is

λ(r) ≡ ϕ

r
= 1

r

(
r3 + R3

0 − r3
0

)1/3
. (31)

The stretch ratio of the surface of the cavity is then λ(r0) =
R0/r0, which we will denote by λ0. Since ϕ′ = 1/λ2, one can
write the elastic energy density as

fNH(r) = μ

(
λ(r)2 + 1

2λ(r)4
− 3

2

)
. (32)

The elastic energy Fel is given by

Fel = 4π

∫ ∞

r0

dr r2 f (r)

= 4πμ

∫ ∞

r0

dr r2

(
λ2 + 1

2λ4
− 3

2

)
. (33)

Change the integration variable from r to λ using

λ(r) = 1

r

(
r3 + R3

0 − r3
0

)1/3 ⇒ r(λ)3 = R3
0 − r3

0

λ3 − 1
(34)

and

dλ = 1

r

(
ϕ′ − ϕ

r

)
dr = −λ − λ−2

r
dr ⇒ dr

r
= − λ2

λ3 − 1
dλ.

(35)

This gives

Fel = 4πμ
(
R3

0 − r3
0

) ∫ λ0

1
dλ

(
λ

λ3 − 1

)2(
λ2 + 1

2λ4
− 3

2

)

= 4πμr3
0

[
5

6
λ3

0 − λ2
0 + 1

2λ0
− 1

3

]
. (36)

Minimization of the full energy F with respect to λ0 gives(
5

2
− P

μ

)
λ2

0 + 2

(
γ

μr0
− 1

)
λ0 − 1

2λ2
0

= 0, (37)

so

P/μ =
(

2γ

μr0

)
1

λ
+

(
5

2
− 2

λ
− 1

2λ4

)
. (38)

where we dropped the subscript of λ0. The first term of
Eq. (38) is the Laplace capillary pressure. In the following,
surface tension will be expressed in dimensionless form as
γ̄ = γ

μr0
[27]. The second term reproduces the known relation

between pressure and radial extension for cavitation in incom-
pressible materials [11]. The physical meaning of Eq. (38)
can be illustrated by expanding it to second order in the
dimensionless radial displacement ε = λ − 1 = (R0/r0 − 1).
This gives

P/μ = 2γ̄ + (4 − 2γ̄ )ε + (−7 + 2γ̄ )ε2 + O(ε3) (39)

The zeroth order term 2γ̄ is the Laplace capillary pressure of
the original cavity. The first-order term (4 − 2γ̄ )ε is the result
that would have been obtained if one had used linear elasticity
and expanded the Laplace Law pressure to first order in ε.
If one keeps only the zeroth order and first-order terms for
a cavity that is not under pressure (so, for P = 0), then the
radial strain is ε = −2γ̄ /(4 − 2γ̄ ). This is a negative quantity,
which is reasonable since the capillary pressure exerted by
surface tension should cause the radius of an unpressurized
cavity to shrink. The second-order term (2γ̄ − 7)ε2 is the
lowest-order nonlinear correction term. It states that, for γ̄ less
than 7/2, the actual cavity radius will be larger than the radius
obtained from linear elasticity. The effect of finite-strain elas-
ticity is thus to soften the material.

This softening is the key to the cavitation effect. It can be
illustrated by a toy model for a balloon treated as a thin spher-
ical elastic shell of radius R composed of a two-dimensional
lattice of N harmonic springs with equilibrium spacing a0.
The shell is under an interior pressure Pshell. By minimizing
the total energy, it is easy to show that the pressure is related
to the radial extension λ = R/R0, where R0 ∼ N1/2a0, by

Pshell(λ)/P0 =
(

1

λ
− 1

λ2

)
.

Here, P0 is proportional to the spring constant and inversely
proportional to R0. Expanding Pshell(λ) again in powers of
the radial displacement ε = (λ − 1) produces a term propor-
tional to ε with a positive coefficient and a term proportional
to ε2 with a negative coefficient, just as for Eq. (38).
For the shell case, Pshell/P0 has, as a function of λ, a max-
imum at λ = 2 after which it decreases to zero in the limit
of large λ. Thermodynamic stability requires that the deriva-
tive of pressure with respect to volume must be positive.
Because Pshell decreases with λ for P > 2P0, that section of
the curve corresponds to an energy maximum. It follows that
the stable section for P < 2P0 actually is only metastable. The
unstable section describes energy maxima that correspond to
the transition states that need to be crossed before spontaneous
bursting of the elastic shell [28].

Does Eq. (38) describe a scenario similar to the bursting of
a pressurized elastic shell? Equation (38) has a finite pressure
solution when we set λ to infinity, namely, P∞ = 5

2μ, inde-
pendent of surface tension. This the known critical cavitation
pressure of the rubber elasticity literature. Figure 2 shows that
the radial extension (R0 − r0)/r0 diverges continuously as the
pressure P approaches P∞, provided γ̄ is less than one.

There are no other solutions for γ̄ less than one. These plots
are, in fact, fully stable solutions, so cavitation is physically
quite different from the bursting of a pressurized shell.

If γ̄ is larger than one, then the cavity radius does not
diverge at P = P∞. For P > P∞, there are again two solution
branches, similar to the case of pressurized shells. One of
these—the bottom one in Fig. 2—is stable since the radius
increases with pressure while the top branch is unstable as
the radius decreases with increasing pressure. This absence
of a divergence at P∞ seems mathematically puzzling since
λ = ∞ is a solution of Eq. (38) at P∞. However, if γ̄ > 1,
then Eq. (38) acquires additional solutions at P = P∞. One
of these, λ = 1

4(γ̄−1)1/3 , is real and it is this solution that

024418-5



LITTLE, LEVINE, SINGH, AND BRUINSMA PHYSICAL REVIEW E 107, 024418 (2023)

FIG. 2. Dimensionless cavity pressure P/μ versus radial ex-
tension ratio for an incompressible system for different values of
the dimensionless surface tension γ̄ = γ /μr0. The surface tension
values are γ̄ = 0 (solid, blue); γ̄ = 0.5 (dashed, yellow); γ̄ = 1
(dashed, green); γ̄ = 1.5 (dotted, red); and γ̄ = 2 (dash-dotted,
purple). The dashed black line shows the critical pressure P∞ = 5

2 μ.

corresponds to the lower branch for P > P∞. As for the elastic
shell, the lower branch is metastable with the upper branch
corresponding to a transition-state energy maximum that sep-
arates the metastable state from the actual minimum energy
state with infinite radius. The metastable solution survives un-
der increasing pressure up to a maximum radius r0/(γ̄ − 1)1/3

when the two branches fuse. Droplet growth for γ̄ > 1 se-
quence is consistent with the nucleation-and-growth scenario
of conventional phase separation. There is thus a well-defined
transition between cavitation for γ̄ < 1 and nucleation for
γ̄ > 1.

Shear strain hardening is included by extending the neo-
Hookean energy density through the use of Eq. (24) for shear
strain energy density. There are two limiting cases. If η1/2λ

is small compared to one, then one can use the perturbation
series in powers of the inverse maximum shear strain η. To
second order in η, one obtains [29]

P(λ)/μ 

(

2γ

μr0

)
1

λ
+

(
5

2
− 2

λ
− 1

2λ4

)

+ η

[
4λ − 177

20
+ 6

λ
− 2

λ2
+ 3

2λ4
− 2

5λ5
− 1

4λ8

]

+ O(η2λ3). (40)

The zeroth order term in η reproduces Eq. (38) for η = 0.
The first-order term (second line) has a term that diverges
linearly in the limit of large λ. This will dominate over the
zeroth order term, which is finite in the limit of large λ. The
second-order term (not shown explicitly) diverges even faster,
as λ3. Higher powers in λ appear as one includes higher order
terms in the perturbation expansion in η. Next, in the limit
that λη1/2 approaches one, the integral in the elastic energy is
determined by the singularity at λη1/2 = 1 with the result that
the pressure diverges in this limit as

P(λ)/μ 
 η1/2

2(1 − λη1/2)
. (41)

FIG. 3. Dimensionless cavity pressure P/μ versus radial exten-
sion ratio for an incompressible system for various values of the
dimensionless surface tension γ̄ = γ /μr0 and strain-hardening pa-
rameter η = 0.01. The dimensionless surface tensions are γ̄ = 0
(solid, blue); γ̄ = 0.5 (dashed, yellow); γ̄ = 1 (dashed, green); γ̄ =
1.5 (dotted, red); and γ̄ = 2 (dash-dotted, purple). The dashed black
line shows the critical pressure P∞ = 5

2 μ.

Figure 3 shows the relation between cavity radius and pressure
for a strain hardening parameter η = 0.01 up to and including
the second-order term in the expansion in η. The figure is
restricted to λ values for which the third-order term in η

can be neglected. The divergence of the radius at P/μ = 5
2μ

has disappeared. For increasing γ , the elastic energy again
develops a maximum. Beyond a threshold pressure, the radius
again increases discontinuously but the radius now does not
diverge. Instead, it saturates at a finite value. There is thus
still a transition to nucleation-type behavior for larger γ̄ and
for dimensionless pressures larger than 5/2 but droplets no
longer expand without limit. For large values of the pressure,
λ = R0/r0 increases less rapidly and eventually levels off as it
approaches the maximum strain 1/η, according to Eq. (41).

B. Cavitation of neo-Hookean Ccompressible systems

For compressible systems, the deformation map ϕ(r) is not
known ahead of time. We used the following variational form:

ϕ(r) = r + (R0 − r0)

(
1 + b + c(

r
r0

)2 + b r
r0

+ c

)
, (42)

with b and c variational parameters. To see why this form
is reasonable, note first that it obeys the required condition
ϕ(r0) = R0. Next, the elastic strain must go to zero in the limit
of large r, so the theory of linearized elasticity should become
valid in this limit. It is a textbook problem to show that, within
linear elasticity, the displacement field u(r) surrounding a
pressurized spherical cavity embedded in an infinite volume
has the form ulin(r) = A(r0/r)2 with amplitude A = (R0 − r0)
[24]. For the present nonlinear case, the asymptotic amplitude
A is expected to have a different, renormalized value. For
r  r0, the displacement field u(r) ≡ ϕ(r) − r of the varia-
tional deformation map goes to zero as 1/r2 with amplitude
A = (R0 − r0)(1 + b + c). If b + c > 0, then the amplitude
of the asymptotic strain field exceeds that of linear elasticity
theory while for b + c < 0 it is reduced. Next, mass conser-
vation requires that, as the cavity expands, material is pushed
radially outward, which could produce an excess density at the
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FIG. 4. Top: (black line) u(r)/r0 = (ϕ(r) − r)/r0 for a cavity
radial extension of 6 as obtained by the variational method. The result
is compared with u(r)/r0 obtained by the finite element method
(FEM) for cavity radial extensions of 5.52 (blue), respectively, 6.16
(gold), as carried out on a spherical sample with outer radius of
100r0. Bottom: Same data but plotted on a log-log scale. The red
dashed line has the slope of a 1/r2 power law.

cavity surface (snowplow effect). On the other hand, lateral
stretching could produce a density deficit (balloon effect). The
density at r = r0 is given by

ρ(r0)

ρ0
= (r0/R0)2

ϕ′(r0)
= (r0/R0)2[

1 − (R0 − r0) 2+b
1+b+c

] . (43)

If 2 + b is positive, then the surface density is increased with
respect to ρ0 while it is decreased if 2 + b is negative. The
variational ansatz thus allows the density at the cavity surface
and the asymptotic amplitude far from the surface to act as
separate parameters in the variation.

The variation parameters b and c were obtained by numer-
ical minimization of the elastic energy F [ϕ]. Figure 4 shows
the results.

The dimensionless displacement u(r)/r0 = (ϕ(r) − r)/r0

is shown as a function of r/r0 on a linear-linear scale (top,
black line) and on a log-log scale (bottom, black line) for the
case of λ = 6. These variational results are compared with the
outcomes of a numerical solution of the equation for mechani-
cal equilibrium [see Eq. (A5)] using the finite-element method
(FEM). This was done for cavity radial extensions of 5.52
(blue) and 6.16 (gold) that straddled λ = 6. The linear-linear
plot shows that the agreement is reasonable for r/r0 less than

FIG. 5. Relative density ρ/ρ0 versus distance from cavity sur-
face for the neo-Hookean model for various values of the ratio
κ/μ: κ/μ = 0.1 (blue, solid); κ/μ = 0.5 (yellow, dashed); κ/μ = 1
(green, dashed); κ/μ = 5 (red, dotted); and κ/μ = 10 (purple, dash-
dotted). The final cavity radius was twice that of the initial radius.

about five. The log-log plot shows that for 5 � r/r0 � 50 the
FEM radial extension is also consistent with a 1/r2 power law.
However, the FEM results have a negative ofset with respect
to the variational results, which means that the values of the
asymptotic amplitudes A do not agree. Finally, the FEM result
has an upturn for the largest values of r.

Starting with the last issue, the FEM analysis necessarily
had to be done for a finite system. Stress-free boundary con-
ditions were imposed at an outer radius R2, which was set
to 100r0. To obey this outer boundary condition, the large r
displacement field must—according to linear elasticity—have
the form u(r) = ar + b/r2, where a = b/R3

2 [24]. The linear
term ar becomes comparable with the b/r2 term when r is
of the order of the outer radius R2, which explains the upturn
in the deformation map for r 
 R2. The reason for the negative
offset of the FEM has to be different because introducing a
stress-free boundary condition should produce a larger, not a
smaller radial extension. It is discussed in Appendix B that
the FEM software package appears to be less reliable for large
values of κ/μ.

Using the variational deformation map, one can con-
struct other physical quantities. The density profile, obtained
through the relation ρr = r2

ϕ(r)2ϕ′(r) , is shown in Fig. 5.
In all cases, there is a density deficit, indicating that the

balloon effect overcomes the snowplow effect. For increasing
values of κ/μ, the density deficit decreases and the density
profiles approach the limit ρr = 1 of incompressible materials
(the FEM method produces a density excess at the cavity
surface, see Appendix B).

Next, the relation between pressure P and radial extension
is obtained by inserting the variational deformation map into
the elastic free-energy density of Eq. (27). After integration
over the volume to obtain Fel[φ], the total free energy F [φ] is
minimized with respect to R0. The result is shown in Fig. 6.
Cavitation is encountered for all values of κ/μ. The cavitation
critical pressure is significantly reduced for lower values of
κ/μ. Compressibility effects thus enhance cavitation. In con-
trast, for low pressures, the radial extension of the cavity is
practically independent of the κ/μ ratio.

Figure 7 shows the effect of varying the surface tension
for κ/μ = 1. The plots are quite similar to the case of
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FIG. 6. Radial extension ratio versus dimensionless cavity pres-
sure P/μ for the neo-Hookean model for various values of the
ratio of bulk and shear moduli: κ/μ = 0.1 (blue, solid); κ/μ = 0.5
(yellow, dashed); κ/μ = 1 (green, dashed); κ/μ = 5 (red, dotted);
and κ/μ = 10 (purple, inverted triangles). The solid black curve is
the incompressible solution, while the dashed black line shows the
critical pressure P∞ = 5

2 μ.

incompressible materials, apart from the fact that the criti-
cal pressure is reduced. Just as for incompressible materials,
surface tension can transform cavitation into nucleation and
growth above a threshold value of the dimensionless sur-
face tension γ̄ , except that this threshold value now is less
than one.

Figure 8 shows what happens if one includes shear hard-
ening for η = 0.1 and no surface tension. The plots of Fig. 8
show cavitation behavior in the presence of strain hardening in
the case that the κ/μ ratio is less than about one. Recall that
for incompressible systems, cavitation was suppressed even
for a shear hardening parameter that was ten times smaller
than the current value of η = 0.1. Once again, one sees that
compressibility promotes cavitation.

FIG. 7. Radial extension ratio versus dimensionless cavity pres-
sure P/μ for the neo-Hookean model for κ/μ = 1 and various
values of the dimensionless surface tension γ̄ = γ /μr0: γ̄ = 0 (blue,
circles); γ̄ = 0.5 (yellow, triangles); γ̄ = 1 (green, diamonds); and
γ̄ = 1.5 (red, squares). There is no shear hardening.

FIG. 8. Radial extension ratio versus dimensionless cavity pres-
sure P/μ for the neo-Hookean model for shear hardening parameter
η = 0.1, no surface tension, and various values of κ/μ: κ/μ = 0.1
(blue, circles); κ/μ = 0.5 (yellow, triangles); κ/μ = 1 (green, di-
amonds); κ/μ = 5 (red, squares); and κ/μ = 10 (purple, inverted
triangles). The solid black curve represents the incompressible so-
lution, while the dashed black line shows the critical pressure
P∞ = 5

2 μ.

IV. CAVITATION IN POLYMER GELS WITH
TWO-COMPONENT SOLVENTS

With this experience, we now can turn to the actual case
of interest, namely, cavitation in polymer gels. From the
viewpoint of finite-strain elasticity theory, there is an im-
portant new ingredient. A cross-linked polymer gel placed
in a one-component solvent can swell or shrink by absorb-
ing or releasing solvent. On the one hand, in good solvent
the free energy associated with volume interactions between
the monomers and the solvent molecules decreases under
swelling. On the other hand, swelling stretches the polymer
chains, which reduces entropic configurational entropy. In the
state of swelling equilibrium, the swelling pressure is balanced
by the elastic stress of the stretched polymers [16,30]. The
state of swelling equilibrium is not stress-free, so it cannot
serve as the reference frame. In the theory of gel elasticity,
the stress-free reference state is the dry, solvent-free gel with
no solvent and hence no stretching of the polymer chains [31]
and no surface energy.

Now, let the solvent be a two-component binary liquid
where the majority component is a good solvent for the
monomers of the gel while the minority component is a poor
solvent. In the absence of the gel, the thermodynamic work of
formation of a minority phase droplet in a homogeneous su-
persaturated binary solution equals W = −N�μ + Fex. Here,
N = V/v0 is the number of molecules in the droplet, V is
the volume of the droplet, v0 is the molecular volume of
the minority phase molecules, and N the number of minority
molecules in the droplet. Next, �μ is the difference between
the chemical potential of minority phase molecules in the
homogeneous mixture and those inside the drop. Finally, Fex

is the increase of the free energy of the surrounding environ-
ment due to the presence of the drop. In classical nucleation
theory (CNT), only the interfacial energy of the droplet is
included in Fex, so Fex = γ A where γ is the interfacial energy
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per unit area and A the surface area of the drop. The radius
R∗ of the droplet in a stationary state in which the droplet
neither grows nor shrinks is determined by the condition that
the virtual work δW associated with an infinitesimal change
of the droplet radius is equal to zero [32]. The positive work
by the chemical potential is given by δN�μ = δV (�μ/v0),
where � = �μ/v0 can be interpreted as an osmotic pressure
that drives droplet swelling. The total work δW associated
with an infinitesimal change δR of the radius R of the droplet
is then

δW = γ δA − �δV, (44)

where δA = 8πRδR and where δV = 4πR2δR. The radius of
the stationary droplet is then R∗ = (2γ /�), which is known
as the critical droplet size in CNT. A stationary point with
δW = 0 represents a thermodynamically stable state only if
the derivative of osmotic pressure � with respect to the cavity
volume is positive. The state δW = 0 is unstable, so smaller
droplets shrink and disappear while larger drops grow without
limit.

Next, assume that the droplet nucleates in a solvent-filled
cavity inside a gel that is originally in a state of swelling
equilibrium. Let the initial radius be r0. Once the radius of
the growing droplet exceeds that of the cavity, the work of
elastic deformation of the gel by the growing droplet must
be included as an additional excess free-energy term Fex. The
condition δW = 0 for a stationary corresponds to the station-
ary state of the variational free energy expression F [φ] [see
Eq. (29)], provided P is interpreted as an osmotic pressure
and γ as an interfacial free energy (below, we will use P for
the osmotic pressure of the drop).

A. Flory-Huggins theory and cavitation

To compute the elastic deformation energy F [φ] of the gel,
we will use the Flory-Huggins (FH) mean-field theory of gels
in which the polymer chains are treated as ideal Gaussian
chains composed of Nx identical segments [31]. It has been
established that the physical properties of gels composed of
flexible polymers are well described by FH theory, which also
can be extended to include liquid-liquid phase separation [7].
In FH theory, the free energy density is the sum of the entropic
elasticity free energy of the Gaussian chains and the mixing
free energy of the monomers [16,30]:

fFH = 1

2
C1(φ)

(
3∑

i=1

λ2
i − 3

)

+ kbT

w
[(1 − φ) ln(1 − φ) + χφ(1 − φ)], (45)

where we followed the notation of Refs. [16,31]. Here, φ is
the volume fraction of monomers where φ = 1 is the state of
the dry, solvent-free gel. Next, C1(φ) equals kBT φ

wNx
, where w

is the volume per Kuhn segment of the polymer chains. The
quantities λi are, as before, the three principal stretch ratios
such that in the dry state the stretching parameters are equal
to one. For a uniformly swollen gel, the stretch parameters are
equal to each other and to φ−1/3 because of mass conserva-
tion. Finally, χ is the Flory χ parameter. For good solvents,
the Flory parameter is less than 1/2. Note that this is the

free-energy density in the deformed space. Note also that,
unlike the neo-Hookean elastic energy, the FH free energy
density is not the sum of separate shear and compression or
swelling terms since the first term of fFH describes simulta-
neously the energy cost of stretching the polymers both under
shear strain and under isotropic swelling.

The state of swelling equilibrium is found by minimizing
f /φ with respect to φ. The appearance of the factor 1/φ is
understood here by noting that the volume element dV in the
physical space of the swollen gel transforms to the the volume
element dv = φdV in the dry gel so f /φ is the free energy
density in the coordinate system of the dry gel. Minimizing
f /φ with respect to φ gives, for Nx  1, the result is that
φeq 
 [(1/2 − χ )Nx]−3/5. This same result is obtained if one
sets the osmotic pressure �(φ) = φ2 d ( f /φ)

dφ
of the gel to zero,

where

�(φ) = −kBT

w

[
(χφ + 1)φ + log(1 − φ) + φ1/3

Nx

]
. (46)

If the deformation away from the state of swelling
equilibrium is infinitesimal, then the free-energy density as-
sociated with the deformation has the same form as the elastic
energy density of uniform materials that obey linear elasticity
[see Eq. (26)]. The shear modulus is given by

μ = kBT

wNx
φ1/3 (47)

and the osmotic modulus κ = φ d�
dφ

by

κ = kBT

w

((
1

1 − φ
− 2χ

)
φ2 − φ1/3

3Nx

)
(48)

(see Ref. [31]). For an FH gel, shear and bulk moduli are
thus replaced as control parameters by the number of polymer
segments Nx per link and the Flory χ parameter, the latter
a measure of the solubility of the polymers in terms of the
majority component of liquid.

B. Cavitation without strain hardening or surface tension

The density profile in an FH gel surrounding a minority
phase droplet under osmotic pressure is found in the same
way as for neo-Hookean materials. Results for the case of
no interfacial energy and no strain hardening are shown in
Fig. 9. This density profile has a maximum near the cavity
surface. For FH gels, the snowplow effect apparently over-
comes lateral stretching, just the opposite of what we found
for neo-Hookean materials. The density profile is quite de-
pendent on the Flory χ parameter. The excess density at the
surface increases as the solubility of the polymers for the
mixed phase decreases (i.e., for more negative values of χ ),
which agrees with physical intuition.

Figure 10 shows the dependence of radial extension on
cavity pressure. The radial extension plots for different values
of Nx and χ are surprisingly similar and close to that of incom-
pressible materials (black line). Differences become visible
only for dimensionless pressures close to the critical 5/2 ratio
for incompressible materials.

A plot of the ratio of bulk and shear moduli of the FH
model as a function of χ is shown in Fig. 11. For Nx
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FIG. 9. Relative density ρ/ρswl versus distance from cavity sur-
face for the Flory-Huggins model, with final cavity radius twice that
at swelling equilibrium, cross-link separation Nx = 10, and various
values of the Flory χ parameter. The values of χ are χ = −0.4
(solid, blue); χ = −0.2 (dashed, yellow); χ = 0 (dashed, green);
χ = 0.2 (dotted, red); and χ = 0.4 (dash-dotted, purple).

large compared to one, the ratio of bulk and shear moduli
approaches 5/3 for χ less than 1/2, independent of either χ

or Nx. Since the ratio of the shear and bulk moduli of an FH
gel near swelling equilibrium is of the order of one, one would
have expected a significant reduction of the critical cavitation
pressure as compared to that of incompressible materials,
based on the earlier results for the neo-Hookean model, but
this is not the case. Another surprise is the persistent lack of
dependence of the radial extension on the Flory χ parameter
and Nx outside the regime where linear elasticity holds. Recall
that the density profile did not show this universality.

Figure 12 shows the effect of surface tension on the radial
extension versus pressure plot and compares it with incom-
pressible materials. The effect of surface tension on cavitation

FIG. 10. Radial extension ratio with respect to the equilib-
rium state versus dimensionless cavity pressure P/μswl for the
Flory-Huggins model with μswl the shear modulus at swelling equi-
librium. The cross-link separation is Nx = 10 and there is neither
surface tension nor shear hardening. The values of the Flory χ pa-
rameter are χ = −0.4 (blue, circles); χ = −0.2 (yellow, triangles);
χ = 0 (green, diamonds); χ = 0.2 (red, squares); and χ = 0.4 (pur-
ple, inverted triangles). The black line shows the relation between
radial extension and pressure for an incompressible material.

FIG. 11. Dependence of the ratio of shear and bulk moduli of
the FH model at swelling equilibrium on the Flory χ parameter for
different values of Nx: Nx = 1 (blue); Nx = 10 (yellow); Nx = 100
(green); and Nx = 1000 (red).

in FH gels is practically the same as the effect of surface
tension on cavitation for incompressible systems.

Next, we include strain hardening. Because in the FH free-
energy density, shear strain, and expansion or compression
strain both contribute to the first term, we cannot include
strain hardening only in the shear strain. We included strain
hardening by replacing the first term of fFH by

C1(φ)trU (1 + η trU + η2 (tr xU )2 + ...), (49)

where trU = 1
2 (

∑3
i=1 λ2

i − 3). Figure 13 shows the effect of
this term on plots of the radial extension as a function of
pressure. For a strain-hardening parameter η = 0.01, there is
no cavitation, just a somewhat higher rate of radial expansion
for higher pressures. Strain hardening suppresses cavitation in
FH gels even more effectively than in incompressible systems
with the same shear modulus. Next, the radial expansion plots

FIG. 12. Radial extension ratio versus dimensionless cavity pres-
sure P/μswl for the FH model, with cross-link separation Nx = 10,
Flory χ parameter χ = −0.2, no shear hardening, and various values
of dimensionless surface tension γ̄ = γ /μswlrswl. The values of γ̄

are γ̄ = 0 (blue, circles); γ̄ = 0.5 (yellow, triangles), γ̄ = 1 (green,
diamonds); and γ̄ = 1.5 (red, squares). The black dashed line shows
the critical pressure for the incompressible solution, P∞ = 5

2 μswl.
The solid lines show the corresponding radial extension curves of
an incompressible material according to Eq. (38).
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FIG. 13. Radial extension ratio versus dimensionless cavity pres-
sure P/μswl for FH gels with μswl the shear modulus at swelling
equilibrium, cross-link separation Nx = 10, no surface tension, shear
hardening parameter η = 0.01, and various values of the Flory χ

parameter: χ are χ = −0.4 (blue, circles), χ = −0.2 (yellow, trian-
gles); χ = 0 (green, diamonds); χ = 0.2 (red, squares); and χ = 0.4
(purple, inverted triangles). The solid black curve shows the radial
extension or pressure plot of an incompressible material for the
same amount of strain hardening and the same shear modulus [see
Eq. (40)].

are now significantly dependent on the Flory χ parameter for
higher pressures: The suppression of cavitation becomes more
pronounced as the solubility of the polymers for the mixed
solvent is reduced. Similarly, if the cross-link separation Nx is
increased then the cavitation is suppressed more effectively.
This plot must be compared with Fig. 8 for neo-Hookean
materials. There, compressibility significantly enhanced cav-
itation for an η value that was ten times higher than for
the present case. Strain hardening suppresses cavitation very
effectively for FH gels.

V. CONCLUSION

We applied finite-strain elasticity theory to cavitation in
compressible FH gels to explore the effects of strain harden-
ing and droplet surface or interfacial tension on cavitation.
The results for FH gels were compared with those for
neo-Hookean materials with comparable elastic moduli. In
this Conclusion, we briefly review these results and then dis-
cuss parameter ranges for different cases and implications for
experiment.

The effect of surface tension on cavitation is described
by the dimensionless parameter γ̄ = γ

μr0
. If γ̄ is less than a

number close to one, then the effects of surface tension on
cavitation are secondary but if γ̄ is greater than that number
then cavitation is replaced by activated droplet nucleation and
growth. What are reasonable values for γ̄ ? Biomolecular con-
densates in aqueous environments have interfacial energies in
the range of 10−4 mN/m to 100 mN/m [33]. If the cavity
radius r0 for the dry gel is estimated to be of the order of the
size of a monomer of a synthetic flexible polymer (of the order
of one nm) and μ is taken to be of the order of the G’ modulus
of hydrogels (about 103 Pa), then γ̄ falls in the range of
0.1 to 103. However, the estimate of the cavity radius of a dry

gel is uncertain and it probably will be larger for less flexible
polymers, so this parameter may have to be used as a fitting
parameter. Despite this uncertainty, the estimate indicates that
both cases are possible. It may be possible to distinguish
the two cases experimentally on the basis of the statistically
broad range of waiting times associated with activated growth
kinetics for γ̄ greater than one versus the case of continuous
cavity swelling for γ̄ less than one.

This transition between discontinuous, activated bursting
for γ̄ > 1 and continuous cavitation if γ̄ < 1 has an in-
teresting similarity with the tricritical point encountered in
the theory of phase transitions when a line of continuous
phase transitions transforms into a line of first-order phase
transitions [34]. It would be interesting to investigate exper-
imentally the regime γ̄ 
 1 and P/μ 
 5/2 in more detail
to see if there is a tricritical point for phase separation in
polymer gels near the transition point between cavitation and
nucleation.

Our second important result is that compressibility signifi-
cantly reduces the critical cavitation pressure of neo-Hookean
materials, provided the compressional modulus is compara-
ble to (or less than) the shear modulus. For FH gels on the
other hand, the critical cavitation pressure is practically the
same as that of incompressible materials. Because the shear
and compressional moduli of an FH gel are comparable at
swelling equilibrium, this was surprising. Actually, the elastic
properties of FH gels were also in other respects more similar
to incompressible materials than to a compressible materials
with similar elastic moduli. We encountered this in the case of
surface tension, strain hardening, and density profile. The fact
that the deformation map of an incompressible material is a
reasonable approximation for that of a gel with a pressurized
cavity is convenient. It allows one to easily include effects
such as strain hardening and surface tension [see Eq. (40)].
The observation that FH gels behave in some respects as
incompressible materials was actually made before in an ex-
perimental study of the response of hydrogels to externally
applied osmotic pressure [35]. The proposed explanation there
was that this effect is due to the prestress in the state of
swelling equilibrium. The hydrogel did not respond signif-
icantly to external pressures that were small compared to
the internal stress. In general, prestressed materials (like pre-
stressed concrete) are much less responsive to external stress
than materials that are stress-free prior to the application of the
external stress. While the response of biogels to shear stress
has been extensively studied, there is little literature on mea-
surements of prestress in biogels, though in vitro observations
on thermal fluctuations of biogel filaments would suggest that
prestress is small. Active gels, such as in vitro actin-myosin
solutions in the presence of Adenosine triphosphate (ATP),
certainly do have significant internal stresses and it would be
very interesting to know how such systems respond to osmotic
pressure and whether they show cavitation when placed in a
two-component solvent.

Our key result is that cavitation in FH gels is very sensitive
to strain hardening. We found that cavitation is suppressed
for strain hardening parameters η as small as 0.01. Typical
synthetic polymer gels composed of highly flexible polymers
with a low level of cross-linking densities show no observ-
able strain hardening [18]. Next, synthetic biomimetic gels
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show various levels strain hardening depending on the ma-
terial but, for example, synthetic gels composed of triblock
copolymers [20] have effective η values in the range of one.
Similarly, biomimetic DA/PDA hydrogels have η values in
the range of ten [18]. Next, for a sequence of actin, collagen,
fibrin, vimentin, and neurofilaments biopolymer networks,
measured η values decrease from about ten (actin) to about 0.1
(neurofilaments) [17]. Shear hardening in biogels strongly
depends on the cross-linking density. For collagen gels, the η

value increased from about 101 to about 103 under increasing
cross-linking density [36]. All of these η values are well above
0.01. This would mean that none of these systems ought to
show cavitation according to our results. It could be countered
that biogels are composed of semi-flexible polymer, whose
osmotic properties may differ from FH gels. The experimen-
tal literature on the osmotic properties of biomimetic gels
composed of semiflexible polymers is quite small, but the
osmotic properties of gels composed of cross-linked DNA ap-
pear to obey FH [37]. This question will have to be addressed
experimentally.

If our claim is confirmed, then this would seem to indi-
cate that cavitation is not relevant for biogels. In actuality,
the biopolymer networks of the cell are transiently cross-
linked. The shear modulus and strain-hardening properties
of viscoelastic materials such as these are dependent on the
timescale on which they are measured: they become increas-
ingly more fluidlike on longer timescales. A slow-motion,
viscoelastic version of cavitation thus seems quite possible
and we hope to investigate this question in the future.

We finish by noting that cavitationlike phenomena may
involve mechanisms that we did not discuss. Reference [38]
discusses the effects of finite segregation strength. If the dif-
ference �γ between the interfacial energies per unit area of
the polymer material with minority and majority solvent com-
ponents is sufficiently small, then it is expected that, instead
of cavitation, growing droplets may permeate the polymer
network. The authors argue that cavitation requires the so-
called permeoelastic number given by p = 2φ�γ /(rμ) to be
larger than a number of the order of one (r is here the poly-
mer radius and μ the shear modulus). They estimate that for
synthetic biogels, like silicone gels in an oil-water mixture, p
is large compared to one while p is small compared to one for
the cytoplasm. For the interior of the nucleus, p may or may
not be large compared to one. It should be noted though that
even if a droplet permeates the polymer matrix, then this still
induces strains in the polymer matrix. These strains could well
be large compared to one for small φ. It would be interesting
to investigate if one could have a hybrid form of permeation
and cavitation. Finally, the elastic stress at the surface of the
cavity may exceed the fracture stress of the polymer network,
producing cavitationlike effects.

True cavitation is, however, of fundamental interest as a
phenomenon that is present in non-linear, finite-strain elastic-
ity theory but that is absent in conventional linear elasticity.
Synthetic biogels now seem to provide us with the oppor-
tunity for precision experimental studies of cavitation that
allow us to test finite-strain elasticity theory at small length
scales.

Note added. In the course of preparation of this article, one
of the co-authors, Alex Levine, passed away.
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APPENDIX A: CAUCHY AND FIRST PIOLA-KIRCHHOFF
STRESS TENSORS

The definition of a stress tensor starts from the surface
element d �S = dS N̂ in the deformed space with normal unit
vector N̂ . If a force (or traction) �T is acting on this surface
element, then the Cauchy stress tensor σ at the location �X of
this element is defined such that

T i = σ i
jdS j . (A1)

The Cauchy stress tensor is defined in the deformed space,
the physical space in which the force is being applied. When
external stresses or pressures are applied to the surface of
the material then the Cauchy stress tensor provides a direct
approach to implement boundary conditions. However, within
the Lagrangian formalism that we use, it is useful to also
construct a stress tensor in terms of the coordinates of the
undeformed space with �X = ϕ(�x) the deformation map.

Let �B represent a body force per unit volume, and �t = σ N̂
represent a contact force per unit area acting on the surface
of the body. Applying Newton’s second law to a body in
mechanical equilibrium—in the deformed space—gives∫

B
dV Bi +

∫
∂B

dS σ i
jN

j = 0. (A2)

Using the divergence theorem, one can write this in local
form as

Dσ i j

DX j
+ Bi = 0. (A3)

Changing variables in the integral equation to those of the
undeformed space gives∫

B0

dv JBi +
∫

∂B0

ds J (A−1)αjnασ i j = 0. (A4)

Define the first Piola-Kirchoff stress tensor Siα ≡ J (A−1)αjσ
i j .

Using the divergence theorem, this can be expressed as a local
equation for mechanical equilibrium:

DSiα

Dxα
+ JBi = 0. (A5)

The deformation map ϕ is obtained by solving this equation.
Summarizing the definitions:
Deformation map: �X = ϕ(�x).
Deformation gradient matrix: Ai

α = ∂ϕi

∂xα .
Green-Lagrange strain tensor: Uα

β ≡ 1
2 (AiαAiβ − δα

β )
Jacobian: J = ρ0

ρ
= det A.

Nonlinear shear strain tensor:
Ūα

β = 1
2 (J−2/3AiαAiβ − δα

β )

= J−2/3Uα
β + 1

2 (J−2/3 − 1)δα
β

Cauchy stress tensor: σ i
j .

Piola-Kirchoff stress tensor: Siα = J (A−1)αjσ
i j .
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FIG. 14. Top: Radial density profiles obtained from the finite-
element method (FEM) for different values of the ratio κ/μ between
bulk and shear moduli. Bottom: Cavity extension versus dimension-
less cavity pressure P/μ using the FEM, for the same values of κ/μ.
The values of κ/μ are 0.5 (blue circles), 1 (yellow triangles), 5 (green
diamonds), and 10 (red squares).

APPENDIX B: FINITE ELEMENT METHOD AND THE
VARIATIONAL ANSATZ

We used the FEBIO STUDIO [39] software package to per-
form a finite element analysis for a sphere with a concentric
spherical cavity made up of a compressible neo-Hookean

material. The simulations were force controlled, i.e., the
pressure acting on the surface of the cavity was an input and
displacements of the nodes of the finite element mesh were
the output. We used 20-node quadratic hexahedral elements.
Taking advantage of the spherical symmetry of the problem,
we modeled only one-eighth of the sphere with appropriate
symmetry boundary conditions. We chose the outer radius of
the sphere to be 102 times the radius of the cavity. We checked
for convergence by comparing the critical pressure for a mesh
with 3552 elements and a mesh with 24 057 elements. The
resulting deformation map was shown in the main text and
compared with the map obtained by the variational method.
The density profile and radial extension or pressure profiles
obtained by the FEM are shown in Fig. 14. According to
the top figure, there is a density excess instead of the density
deficit that was obtained by the variational method. According
to the bottom figure, there is qualitative agreement between
the radial expansion or pressure plots of the FEM and the
variational methods. However, the critical cavitation pressure
produced by the FEM is significantly smaller than the one
predicted by the variational method and appears to be only
weakly dependent on κ/μ. In particular, the FEM critical
cavitation pressure does not approach the known critical cavi-
tation pressure P/μ = 2.5 of incompressible systems for large
values of κ/μ as it should.

The density at the surface of the cavity is determined
by the slope ϕ′(r0) of the deformation map through ρ(r0 )

ρ0
=

1
λ2

0ϕ
′(r0 )

. A density excess will occur at the cavity surface if

0 < ϕ′(r0) < 1
λ2

0
while a density deficit occurs when ϕ′(r0) >

1
λ2

0
. For λ0 = 6, the variational method gives ϕ′(r0) ≈ 0.1763,

which exceeds 1/λ2
0, corresponding to a density deficit. The

FEM analysis gives λ0 = 5.52 and ϕ′(r0) ≈ 0.0187, which
is less than 1/λ2

0, and for λ0 = 6.16, ϕ′(r0) ≈ 0.0119, which
is also less than 1/λ2

0. Both correspond to a surface density
excess. So, even though the deformation maps of the varia-
tional and FEM methods appear to be similar in the region of
smaller r, there is a substantial difference between the slopes
of the deformation maps at the cavity surface. This difference
produces the difference in signs of the change in density at
the cavity surface. The origin of the discrepancy is not clear
but because the FEM does not reproduce for large κ/μ the
exact result for incompressible systems, we believe that the
variational method is more reliable in this case.
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