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Mathematical modeling of microscale biology: Ion pairing, spatially varying permittivity,
and Born energy in glycosaminoglycan brushes
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Biological macromolecules including nucleic acids, proteins, and glycosaminoglycans are typically anionic
and can span domains of up to hundreds of nanometers and even micron length scales. The structures exist in
crowded environments that are dominated by multivalent electrostatic interactions that can be modeled using
mean-field continuum approaches that represent underlying molecular nanoscale biophysics. We develop such
models for glycosaminoglycan brushes using steady state modified Poisson-Boltzmann models that incorporate
important ion-specific (Hofmeister) effects. The results quantify how electroneutrality is attained through ion
electrophoresis, spatially-varying permittivity hydration forces, and ion-specific pairing. Brush-salt interfacial
profiles of the electrostatic potential as well as bound and unbound ions are characterized for imposed jump
conditions across the interface. The models should be applicable to many intrinsically-disordered biophysical
environments and are anticipated to provide insight into the design and development of therapeutics and drug-
delivery vehicles to improve human health.
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I. INTRODUCTION

Many biological structures are characterized by beds of
intrinsically-disordered anionic biopolymers. In particular,
nucleic acids, proteins, and extracellular glycosaminoglycans
(GAGs) are polyelectrolytes that perform functions controlled
by their hydration and their neutralization by cations and
cationic residues of associated proteins. These anionic beds
of slowly-diffusing macromolecules can be considered fixed
in space over times scales of counterion neutralization phe-
nomena. Although transient phenomena occur with molecular
conformation changes, we can place the reference frame at
the center of mass of the bed of the macromolecules to make
analysis tractable. If the anionic bed is tethered to a tissue- or
cell-surface, or a biopolymer is grafted to a surface, simplified
structural models known as brushes can be defined and analy-
sis can draw from a long history of brush research in polymer
and surface science [1–4].

Another set of simplified structural models of anionic
biopolymer beds are spherical biomolecular condensates.
Here, nontethered anionic macromolecules interact with
counterion atoms and molecules to form two coexisting liquid
phases where a dense phase appears in the form of microscale
spheres within a dilute phase. The discovery of biomolecular
condensates (or membraneless organelles) has revolutionized
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our perspective of biological structure and function, as the
formation of condensates helps explain the acceleration of
biochemical reaction rates and epigenetic control of biological
processes that occur in both intracellular and extracellular do-
mains [5,6]. In polymer science, such condensates fall within
the broader category of coacervates as described in two recent
review articles [7,8].

Pathologies associated with cell surfaces, mucosal sur-
faces, and membraneless organelles can be recapitulated in
laboratory studies of biological structures that can be approx-
imated as brushes and biocondensates. Thus, in a relatively
new approach to drug discovery, biomacromolecules can be
designed and applied to control microscale biology for thera-
peutic benefit. Examples include well-known polysaccharides
such as heparin and hyaluronic acid as well as more recent
cationic lipids used in mRNA vaccines [9], poly(acetyl, argyl)
glucosamine (PAAG) for mucosal disorders [10], as well as
cationic arginine-rich peptides for drug delivery applications
[11].

In this paper, we develop a broadly-applicable mean-field
mathematical model of anionic beds of macromolecules neu-
tralized by cations focusing specifically on GAG brushes as
a test case. The model aims to elucidate complexities of the
biophysics of these molecularly-crowded environments where
there is a delicate balance of multiple monovalent electrostatic
ion pairing accompanied by release of water and ions upon
binding. Calculations of the electrostatic coupling parameter
(Table VI) from the data described in Sec. IV are less than
unity suggesting weak coupling, but observed ion pairing
indicates that modification of standard mean-field models is
needed [12]. A steady state model is developed that depicts
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FIG. 1. Schematic of model depicting GAG brush region, �G =
{0 � x � �}, salt region, �S = {� � x � L}, and total domain, � =
�G ∪ �S .

steady state electrostatic interactions of a GAG brush in a bulk
salt solution taking into account spatial variation of the per-
mittivity, which leads to ion Born Hydration energy gradients,
and ion pairing between the salt and the GAG brush. This
model is known as a modified Poisson-Boltzmann (MPB)
model.

We begin with the derivations of two MPB models using
different assumptions for the variation of GAG brush-salt
permittivity. We then compare our models to a previous model
[13], which does not incorporate spatially-varying permittiv-
ity or ion pairing, showing how electrostatic potential and
ion concentration profiles match in the limit and we com-
pare results from both models. We then consider molecular
simulation data [14], which show that varying permittivity
and ion pairing lead to Born energy and a binding energy,
respectively. We show how to relate the binding energy to
our dissociation constant and compare predictions from our
model to the simulation data. We then consider extensions to
the models that include two counterions. Finally, we end with
a discussion of our model applicability, its shortcomings, and
future directions of this work.

II. THE STEADY-STATE MODEL

To derive a mathematical model to describe the electrostat-
ics in Fig. 1, we begin, as normal, with the differential form
of Gauss’s law:

∇ · (εE ) = ρ, in �, (1)

where E is the electric field, ρ is the total charge density, and
ε is the permittivity of the medium. Assuming electrostatic
conditions or that the magnetic field variation with time is
negligible, the curl of the electric field can be assumed zero:
∇ × E ≈ 0, so that we can define a relationship between the
electric field and the potential as

E = −∇φ, in �. (2)

Substituting (2) into (1), we arrive at

−∇ · (ε∇φ) = ρ, in �. (3)

The total charge density is related to the concentration of the
unbound ions present:

ρ =
∑

i

ziNAe[Ci], (4)

where zi is the valence and [Ci] is the concentration of un-
bound ion i, respectively, NA is Avogadro’s constant, and e is
the elementary charge. We make the simplifying assumption
that the variation in potential and ion concentrations is only
present in the x direction, which reduces our model to a single
second order ordinary differential equation (ODE)

− d

dx

(
ε

dφ

dx

)
=

∑
i

ziNAe[Ci], in �. (5)

Finally, we focus on a negatively charged GAG in a monova-
lent salt solution and thus, zi = ±1

− d

dx

(
ε

dφ

dx

)
= NAe([C+] − [A−] − [G−]), in �, (6)

where [C+] represents the cation concentration (such as Na+

or K+), [A−] represents the anion concentration (such as Cl−),
and [G−] represents the concentration of unbound negatively-
charged groups attached to the fixed GAG molecules.

Previous models [13] assume a constant permittivity
throughout the whole domain. However, molecular simula-
tions [14] show a decrease in the permittivity within the GAG
region. In what follows, we continue to develop our model us-
ing two different assumptions about how the permittivity and
total concentration of the GAG vary throughout the domain.
To this end, we incorporate a Born energy term [15] to account
for this varying permittivity. The Born energy is given by

Ui = z2
i e2

8πεri
, (7)

where ri is the Born radius of ion i. This is an effective radius
and not a physically measured ion radius.

We also take into account ion pairing (the ability for the
cation to bind to the GAG ions). In a reversible reaction,
at equilibrium we must have k1[G−][C+] = k−1[GC], which
leads to

[GC] = [C+]

(k−1/k1)
[G−] = [C+]

K1
[G−]. (8)

Here [GC] is the concentration of the GAG and the cation that
are bound together, k1 is the forward reaction rate constant
at which the GAG and the cation bind together, k−1 is the
backward reaction rate constant at which the bound GAG and
cation break apart, and

K1 ≡ k−1

k1
(9)

is known as the dissociation constant and has units of concen-
tration.

The total GAG concentration, [G−]0, is the sum of the
unbound GAG concentration, [G−], and the concentration of
GAG that is bound to the cation, [GC]. Therefore, [G−]0 =
[G−] + [GC] = [G−](1 + [C+]/K1), resulting in

[G−] = [G−]0

(1 + [C+]/K1)
. (10)
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A. Piecewise constant permittivity and total
GAG concentration

The simplest assumption that we can make for the vary-
ing permittivity and total GAG concentration is to assume
piecewise constant values for both. This allows us to break
the problem into two separate domains where the permittivity
and the total GAG concentration are both constant.

Let

ε = ε0εrεx, (11)

where ε0 is the vacuum permittivity, εr is the dielectric con-
stant of a reference medium, and

εx =
{
εS, in �S

εG, in �G
(12)

are constant scaling factors to the permittivity in the salt and
GAG regions.

In the salt region, the total GAG concentration is taken to
be zero. Thus, we can represent the ODE of Eq. (6) as

−ε0εrεS
d2φ

dx2
= NAe([C+] − [A−]), in �S. (13)

We scale all concentrations with some concentration, C0. Pos-
sible choices for C0 are the bulk concentration of the salt or
the total GAG concentration. Define the dimensionless con-
centrations as

c ≡ [C+]

C0
, a ≡ [A−]

C0
. (14)

Scale the electric potential, φ, with the thermal voltage

kBT

e
= NAkBT

NAe
= RT

F
, (15)

where kB, T , R, and F are Boltzmann constant, absolute
temperature, gas constant, and Faraday constant, respectively.
Define the dimensionless potential as

y ≡ φ

(RT/F )
. (16)

Substituting (14)–(16) into (13) and dividing both sides by F
yields:

−ε0εrεSRT

F 2C0

d2y

dx2
= c − a. (17)

To nondimensionalize lengths, we define a modified Debye
length, λD, as

λ2
D = ε0εrRT

F 2C0
, (18)

and scale x, �, and L by λD. That is,

x̂ = x

λD
, �̂ = �

λD
, L̂ = L

λD
. (19)

Our dimensionless ODE in the salt region becomes

−d2y

dx̂2
= 1

εS
(c − a), in �S. (20)

In crowded macromolecular environments, details of hydra-
tion can substantially impact ion motion and partitioning.
Thus, assuming that the Born radii are the smallest length

scales [16], the ions partition according to Boltzmann distri-
butions that combine electrostatic energy with Born hydration
energy [17] (see Eq. (5.1) in [16]), and we can write:

c = c̄ exp(−y − ûc/εS ), (21)

a = ā exp(y − ûa/εS ), (22)

where ûc = e2/8πkBT ε0εrrc and ûa = e2/8πkBT ε0εrra are
the dimensionless Born energies in the reference medium with
dielectric constant εr for the cation and anion, respectively.
Estimating the length scales from molecular dynamic simula-
tions of [14] indicate that the Born-augmented PB equation is
appropriate. In the salt region this takes the explicit form:

−d2y

dx̂2
= 1

εS
[c̄ exp(−y − ûc/εS ) − ā exp(y − ûa/εS )], in �S.

(23)

Since the potential is relative, we need to define the zero
reference. We choose to define the reference potential where
electroneutrality is locally met. That is, take d2y/dx̂2 ≡ 0,

where y = 0 in �S , so that

0 = c̄ exp(−ûc/εS ) − ā exp(−ûa/εS ). (24)

This can be written as c̃ = ã, where c̃ = c̄ exp(−ûc/εS ) and
ã = ā exp(−ûa/εS ) are rescaled dimensionless concentrations
in the bulk salt solution.

The final version of the governing equations, known as the
Born-energy augmented Poisson-Boltzmann equation [16],
reduce to the following. In the salt region we have

−d2y

dx̂2
= c̃

εS
[e−y − ey], in �S. (25)

In the GAG region, the total GAG concentration, [G−]0, is
taken to be constant, whereby

−ε0εrεG
d2φ

dx2
= NAe

(
[C+] − [A−] − [G−]0

(1 + [C+]/K1)

)
, in �G.

(26)

Using the same scaling parameters (C0, RT/F , λD) from the
salt region derivation we obtain:

−d2y

dx̂2
= 1

εG

[
c − a − ḡ

1 + c/K̃1

]
, in �G, (27)

where ḡ = [G−]0/C0 and K̃1 = K1/C0. Again, assuming
Boltzmann distributions combined with Born energy for the
mobile ions:

c = c̃ exp

(
−y − ûc

[
1

εG
− 1

εS

])
, (28)

a = c̃ exp

(
y − ûa

[
1

εG
− 1

εS

])
. (29)

Substitute Eqs. (28) and (29) into (27) to arrive at the final
version of the ODE in the GAG region. The value of the
dimensionless potential, y, that makes the right-hand side zero
is known as the Donnan potential, yD.
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Thus, the model assuming piecewise constant permittivity
and total GAG concentration is complete with Eqs. (25) and
(27)–(29) along with the boundary conditions:

y(�̂−) = y(�̂+), (30a)

εG
d

dx̂
y(�̂−) = εS

d

dx̂
y(�̂+), (30b)

− d

dx̂
y(0) = σ̂2, (30c)

d

dx̂
y(L̂) = σ̂1. (30d)

The first two conditions equate the potential and positive and
negative surface charge densities at the interface. For elec-
troneutrality to hold overall, we must have σ̂1 = −σ̂2. These
are the surface charge densities at the two boundaries.

B. Smoothly varying permittivity and total GAG
concentration

Perhaps a more accurate assumption for the varying per-
mittivity and total GAG concentration is to take them to vary
smoothly with respect to x rather than being discontinuous at
the interface. The same MPB equation thus holds throughout
the domain:

−ε0εr
d

dx

(
ε1(x)

dφ

dx

)
= NAe([C+] − [A−] − [G−]). (31)

Using the same scaling parameters (C0, RT/F , λD, ûc, and ûa)
from Sec. II A, the dimensionless ODE becomes

−ε1(x̂)
d2y

dx̂2
− dε1(x̂)

dx̂

dy

dx̂
= c − a − ḡ(x̂)

1 + c/K̃1
, in �,

(32)
where

c = c̄ exp

(
−y − ûc

ε1(x̂)

)
, (33)

a = ā exp

(
y − ûa

ε1(x̂)

)
, (34)

with boundary conditions

− d

dx̂
y(0) = σ̂2, (35a)

d

dx̂
y(L̂) = σ̂1. (35b)

To complete the model, we need to define the smooth func-
tions ε1(x̂) and ḡ(x̂). A convenient choice for a smooth
function is the hyperbolic tangent. Let

f (x̂) = 1

2

[
tanh

(
1 − x̂/�̂

α

)
+ 1

]
. (36)

The transition is centered at x̂ = �̂, and α > 0 controls the
transition length. We then define

ḡ(x̂) ≡ g0 f (x̂), (37)

ε1(x̂) ≡ (εG − εS ) f (x̂) + εS. (38)

We can express ā in terms of c̄ by defining the first and second
derivative of y to be zero when y = 0, noting that ε1 ≈ εS and
ḡ ≈ 0 in this case. With this we see that

ā = c̄ exp

(
ûa − ûc

εS

)
. (39)

We argue that this model is equivalent to the model (25) and
(27)–(30) in the limit. With the proposed smooth function,
for α � 1, the permittivity and total GAG concentration are
essentially piecewise constant except for near the interface
(x̂ ≈ �̂). So the model (25) and (27)–(30) is an approximation
to this model away from the interface. Further, we also note
that as α → 0,

f (x̂) →
{

1, in �G

0, in �S
, (40)

that is, f (x̂) approaches a piecewise constant function, and
this version of the model approaches that of (25) and (27)–
(30).

Figures 3–7 show solutions of this model with the input
parameters described in Table IV. These results are discussed
in Sec. IV C.

III. PREVIOUS VOLUME CHARGE MODEL:
GAG BRUSH NEAR A CHARGED SURFACE

A. Brief description of the model

Dean et al. [13] provide three mathematical PB models to
describe the electrostatic interactions of a negatively charged
chondroitin sulfate GAG in a bulk NaCl salt solution. The
basic form of the models is

∇2� = 2FC0

εw

sinh

(
F�

RT

)
− ρfix

εw

, (41)

where C0 is the bath concentration of NaCl, ρfix is a fixed
charge density term, and εw is the permittivity of the bulk
solution.

The volume charge model in Fig. 2 approximates the GAG
brush as a fixed uniform volume charge density of height, h.
Inside the GAG brush region, the ODE has the form

∇2� = 2FC0

εw

sinh

(
F�

RT

)
− ρvolume

εw

, (42)

FIG. 2. Schematic of constant volume charge model depicting
GAG brush with constant volume charge density, ρvolume, in region
II of height, h, bulk salt in region I extending from h � z � D, and
surface charge density, σ1. Recreated from [13].
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TABLE I. Parameters from [13].

Parameters Volume model

σ1 (C/m2) −0.015
σ2 (C/m2) 0
Q (C) −8.00 × 10−18

s (nm) 6.5
h (nm) 20
D (nm) 30
ρvolume (C/m3) Q/(s2h)
T (K) 298
εw (C2/N m2) 6.92 × 10−10

C0 (M) 0.01, 0.1, 1.0

and in the salt region, the ODE has the form

∇2� = 2FC0

εw

sinh

(
F�

RT

)
. (43)

The boundary conditions are given as

∂

∂z
�(0) = 0, (44a)

∂

∂z
�(D) = σ1

εw

, (44b)

�(h−) = �(h+), (44c)

∂

∂z
�(h−) = ∂

∂z
�(h+). (44d)

B. Relationship between models

The models in [13] assume a constant permittivity through-
out both the salt and GAG regions. In our model, this would
imply εS = εG = 1 and thus, εw = ε0εr . Nondimensionaliz-
ing the ODEs, using the same scaling parameters from our
model, and replacing z with x:

d2y

dx̂2
= 2c̄ sinh (y) = c̄[ey − e−y], in I, (45)

d2y

dx̂2
= c̄[e−y − e−y] − ρvolume

FC0
, in II. (46)

These are similar to our model in Eqs. (25) and (27), with two
important differences. The first is that [13] does not include
a Born energy term. However, because the permittivity is
assumed constant, the Born energy would also be constant.
Therefore, it could be lumped into the dimensionless concen-
tration c̄, which matches our c̃. The second difference is that
[13] ignores any ion pairing. In other words, the total GAG
concentration is equal to the unbound GAG concentration.
If we allow the dissociation constant to approach ∞, then
[G−] → −ρvolume, and we see that our model approaches the
model in [13] in the limit.

Table I summarizes the parameters used in [13].
Table II summarizes the input parameters needed for our
model (25) and (27)–(30) and how they relate to the values in
Table I. Note that since the permittivity is constant, the terms
ûc[1/εG − 1/εS] and ûa[1/εG − 1/εS] from equations (28)
and (29) are zero and not needed. Using the model equa-
tions from [13] [summarized in equations (43)–(44d)], with
the parameters summarized in Table I, we replicated the pre-
dicted profiles for potential, φ, and both the cation and anion
concentration. We then used our model (25) and (27)–(30),
with the parameters summarized in Table II to generate the
same profiles. The results are in perfect agreement, further
showing that in the limit, our model approaches the volume
charge model in [13].

IV. PREVIOUS MOLECULAR DYNAMICS SIMULATIONS:
GAG BRUSH-SALT INTERFACE

A. Brief description of molecular simulations

Sterling et al. [14] performed all-atom molecular dynamics
nanoscale simulations of hyaluronic acid (HA) and oversul-
fated heparin (HS) GAG brushes in NaCl and KCl solutions.
The results of the simulation are reported for the average
brush values, represented by subscript b relative to values
in the bulk salt layer denoted by subscript o including the
Donnan potential, variation of the permittivity, Born energy

TABLE II. Input parameters to piecewise constant permittivity and total GAG concentration model.

Parameter Notes Value for C0 = 0.01 Value for C0 = 0.1 Value for C0 = 1

εr ε0/εw 78.155 78.155 78.155

εS Constant εw 1 1 1

εG Constant εw 1 1 1

�̂ h/λD 4.660 14.737 46.603

L̂ D/λD 6.990 22.106 69.904

K̃1 No binding 1016 1016 1016

c̃ C0/C0 1 1 1

ḡ
−ρvolume

FC0
9.812 9.812 × 10−1 9.812 × 10−2

σ̂1
σ1FλD

εwRT
−3.623 −1.146 −0.362

σ̂2
−σ2FλD

εwRT
0 0 0
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and the total concentrations of the ions. Thus, a Born-modified
Boltzmann partitioning with ion-pair binding is proposed as

ci,b = ci,o exp

(
− qiϕb

kBT
− −�Gs

i

kBT

εw

εw − 1

[
1

εb
− 1

εo

]
− �μi

kBT

)
,

(47)

where the first term represents the ion charge qi in Donnan
potential ϕb, the second term is the Born energy term, the third
term represents the ion-pair binding free energy between ion
atoms and brush anionic charges.

B. Relationship between simulation data and model

In [14], the simulation models consisted of a bulk solution
occupying z = −240 Å to 240 Å and GAG brushes of vary-
ing lengths, 2�, centered at z = 0. Our model only considers
the positive half of this domain x = 0 to 240 Å with the GAG
brush occupying x = 0 to � Å. With zero-gradient boundary
conditions at 0 and �, we model the interface between an
infinite brush and infinite salt layer. The conditions relating
quantities far from the interface represent so-called jump con-
ditions that are analogous to the Rankine-Hugoniot conditions
that are imposed across shock wave interfaces.

In the results from [14], total concentrations are used in-
stead of those of the unbound charged ions, and a cation
binding energy term is introduced. Rewriting Eqs. (27)–(29)
to incorporate the binding energy and use total concentrations
(instead of unbound concentrations):

−d2y

dx̂2
= c̃

εG

{
exp

(
−y − ûc

[
1

εG
− 1

εS

]
− �μ

kBT

)

− exp

(
y − ûa

[
1

εG
− 1

εS

])}
− ḡ

εG
. (48)

When y = yD,

ḡ = c̃

{
exp

(
−yD − ûc

[
1

εG
− 1

εS

]
− �μ

kBT

)

− exp

(
yD − ûa

[
1

εG
− 1

εS

])}
. (49)

To find a relationship between the binding energy and the
dissociation constant, substitute this into (27) with y = yD and
solve for K̃1:

K̃1 = c̃{e(−yD−ûc[ 1
εG

− 1
εS

]) − e(yD−ûa[ 1
εG

− 1
εS

])}
e(− �μ

kBT ) − 1
. (50)

The above relationships are only valid at the Donnan po-
tential, to compute the binding energy for any potential, set

the right-hand sides of (27) and (48) equal and solve for
exp ( − �μ/(kBT )):

exp

(
− �μ

kBT

)
= 1 + ḡ

K̃1 + c̃ exp
( − y − ûc

[
1
εG

− 1
εS

]) .

(51)

Similarly, using Eq. (32) instead of (27), and noting that
ε1(x̂) = εG deep in the brush where the Donnan potential
occurs, we find the relationships to be

K̃1 = c̄ exp
( − yD − ûc

εG

) − ā exp
(
yD − ûa

εG

)
exp

( − �μ

kBT

) − 1
, (52)

or

exp

(
− �μ

kBT

)
= 1 + ḡ

K̃1 + c̄ exp
( − y − ûc

ε1(x̂)

) . (53)

This can be used to compute the total cation concentration in
addition to the unbound concentration.

C. Summary and comparison of results

Table III summarizes the parameters needed from [14] to
generate the input parameters to the model (32)–(35). The
input parameters are listed in Table IV. Based on the literature,
we expected the Born radius for chloride to be 2.26 Å [18].
However, by using this value in our model, we found that chlo-
ride would not be excluded from the brush as in the molecular
simulation results. This lead to a negative concentration of
unbound GAG ions, a negative dissociation constant, and/or
the inability to match the Donnan potential. By reducing the
Born radius for chloride by a factor of ten, our model was able
to overcome these issues. Table IV shows the values of ûa, K̃1,
and ā based on the actual value of 0.226 Å used in our model.

The value of α to control the transition length of the permit-
tivity and total GAG concentration functions was qualitatively
varied until the results in Table V and the total charge density
curves in Fig. 6(c) were in agreement with the corresponding
data in [14].

As seen in Table V, our model predictions are well within
the standard deviations from the molecular simulation results.
All of our predicted energy values are within 0.014 of the
average values obtained from the molecular simulations.

The electrostatic coupling parameter, �, can be calcu-
lated by � = 2πz3λ2

B|σ | [12]. The valency of the cation is
z, which is equal to one for all four scenarios we used,
λB = e2/(4πεrε0kBT ) is the Bjerrum length, and −σe is the
effective net surface charge density at the interface between
the GAG and salt regions. This surface charge density is
computed by integrating the net volumetric charge density
across the entire GAG region which is approximately 60 Å

TABLE III. Parameters from [14].

GAG Salt Bulk salt conc. (M) GAG conc. (M) Polymer length (Å) εb εo T (K)

Hyaluronan NaCl 0.28 0.51 129.7 50.7 60.4 310.15
KCl 0.28 0.49 135.8 51.2 61.8 310.15

Heparin NaCl 0.27 2.78 119.3 37.5 59.1 310.15
KCl 0.26 2.93 113.2 37.9 60.5 310.15

024416-6



MATHEMATICAL MODELING OF MICROSCALE BIOLOGY: … PHYSICAL REVIEW E 107, 024416 (2023)

TABLE IV. Input parameters to smoothly varying permittivity and total GAG concentration model.

Hyaluronan Hyaluronan Heparin Heparin
Parameter Notes NaCl KCl NaCl KCl

εr Dilute water, εw 78.155 78.155 78.155 78.155
ε1(L̂) = εS εo/εr 0.773 0.791 0.756 0.774
ε1(0) = εG εb/εr 0.649 0.655 0.480 0.485
�̂ Polymer length/2/λD 7.838 8.206 7.079 6.592
L̂ 240 Å/λD 29.007 29.007 28.484 27.951
rc (Å) [18] 1.62 1.95 1.62 1.95
ûc Based on rc 2.128 1.768 2.128 1.768
ra (Å) Sec. IV C 0.226 0.226 0.226 0.226
ûa Based on used ra 15.251 15.251 15.251 15.251
C0 Salt concentration 0.28 0.28 0.27 0.26
K̃1 Eq. (52) 0.172 0.114 1.337 × 10−2 8.735 × 10−4

c̃ Salt concentration/C0 1 1 1 1
c̄ c̃ exp(ûc/εS ) 15.692 9.350 16.671 9.810
ā c̄ exp[(ûa − ûc )/εS] 3.721 × 108 2.380 × 108 5.744 × 108 3.602 × 108

g0 GAG concentration/C0 1.821 1.75 10.297 11.269
σ̂1 0 0 0 0
σ̂2 0 0 0 0
α Used value 0.1 0.1 0.1 0.1

wide. Table VI shows the calculated values of λB, σ, and �

based on the molecular simulation and our model results. For
all four scenarios � < 1, indicating that for our systems of
interest, we are in the weak coupling regime, thus justifying
the mean-field approach.

Plots of the predicted dimensionless potential, unbound
charge density and total charge density curves can be found
in Figs. 3–6. For Figs. 4 and 6, representing brushes with
a potassium cation, the net charge density curves exhibit a
double-double layer of negative charge just outside of the
brush edge and positive charge just inside of the brush edge.
Observing the electrostatic potential, we see the same trend
as expected in a dilute-limit where varying permittivity ef-
fects are negligible: a negative unbound charge density at
an x location corresponds to a positive second derivative in
the electrostatic potential, while a positive unbound charge
density corresponds to a negative second derivative in the
electrostatic potential. The molecular simulation data in [14]
exhibited the opposite trend, positive charge just outside of the
brush, and negative charge just inside of the brush. This is the
only substantial difference between our model predictions and
the molecular simulation data.

In contrast to the GAG brush results for the potassium
cation, the net charge density curves in Figs. 3 and 5 in the
presence of a sodium cation show more complex structure.
The brushes exhibit a negative charge inside the edge of the
brush, then a positive charge in the transition region, and a
negative charge on the outside edge of the brush. This cor-
responds to an electrostatic potential second-derivative that
is positive-negative-positive, meaning there is a substantial
overshoot of the potential rather than a smooth transition in
the potential curve.

Combining the Coulomb force, F = qE, with Eqs. (2) and
(4), we can define a dimensionless net Coulomb force density

f = −(c − a − g)
dy

dx
. (54)

From Fig. 7, we see that the net force density is zero ev-
erywhere except in a region near the boundary between the
GAG and salt regions. We see that for Heparin KCl [Fig 7(b)]
there is a pinching effect at the boundary where the force
in the GAG region at the boundary is toward the right (salt
region) and the force in the salt region at the boundary is
toward the left (GAG region). Such a force calculation is more

TABLE V. Dimensionless energy results molecular simulation vs model prediction.

Born Cation
Donnan hydration binding

GAG Salt potential energy energy

Hyaluronan NaCl Molecular simulation [14] 0.17 ± 0.06 0.53 ± 0.2 −1.32 ± 0.2
Model prediction 0.175 0.527 −1.316

Hyaluronan KCl Molecular simulation [14] 0.44 ± 0.03 0.46 ± 0.2 −1.46 ± 0.2
Model prediction 0.430 0.463 −1.469

Heparin NaCl Molecular simulation [14] −0.62 ± 0.27 1.62 ± 0.6 −3.35 ± 0.6
Model prediction −0.611 1.621 −3.342

Heparin KCl Molecular simulation [14] 0.96 ± 0.14 1.36 ± 0.5 −4.73 ± 0.5
Model prediction 0.946 1.362 −4.730

024416-7



CEELY, CHUGUNOVA, NADIM, AND STERLING PHYSICAL REVIEW E 107, 024416 (2023)

TABLE VI. Electrostatic coupling parameter.

Hyaluronan Hyaluronan Heparin Heparin
Parameter NaCl KCl NaCl KCl

Bjerrum length, λB (Å) 6.894 6.894 6.894 6.894
Equivalent net surface charge density, σ (m−2) 1.693 × 1016 2.437 × 1016 1.548 × 1016 4.223 × 1016

Electrostatic coupling parameter, � (dimensionless) 0.051 0.073 0.046 0.126

complicated when there is an overshoot in potential as seen
in Figs. 3 and 5 for GAG brushes with a sodium cation. In
these cases, the Coulombic force traversing the brush edge is
right-left-right-left [Fig 7(a)] and Born hydration forces along
with polymer elastic forces also need to be considered in the
force balance.

V. TWO CATION PARTITIONING

The model as derived above focused on a monovalent salt
solution consisting of one cation and one anion. This can be
expanded to incorporate a second cation by modifying Eq. (6)
to be

− d

dx

(
ε

dφ

dx

)
= NAe([C+

1 ] + [C+
2 ] − [A−] − [G−]), in �,

(55)

where [C+
1 ] represents the cation one concentration and [C+

2 ]
represents the cation two concentration. There are now two
ion pairs, which leads to the modified equation (8) as

[GC1] = [C+
1 ]

K1
[G−], [GC2] = [C+

2 ]

K2
[G−], (56)

where K1 and K2 are the dissociation constants for cations one
and two, respectively.

The total GAG concentration, [G−]0, is now the sum of the
unbound GAG concentration, [G−], and the concentrations
of the two bound ion pairs, [GC1] and [GC2], i.e., [G−]0 =

[G−] + [GC1] + [GC2]. From this, we infer that

[G−] = [G−]0

1 + [C+
1 ]/K1 + [C+

2 ]/K2
. (57)

For more than two cations, this generalizes to [G−] =
[G−]0

1+∑
i [C+

i ]/Ki
. If desired, pH can be incorporated into this for-

mulation by considering hydronium as one type of cation.

A. Smooth model

Following the same procedure and definitions from
Sec. II B, we arrive at the modified smooth model ODE

−ε1(x̂)
d2y

dx̂2
− dε1(x̂)

dx̂

dy

dx̂
= c1+c2−a− ḡ(x̂)

1+ c1

K̃1
+ c2

K̃2

, in �,

(58)

where

c1 = c̄1 exp

(
−y − ûc1

ε1(x̂)

)
, (59)

c2 = c̄2 exp

(
−y − ûc2

ε1(x̂)

)
, (60)

a = ā exp

(
y − ûa

ε1(x̂)

)
, (61)

ā = c̄1 exp

(
ûa − ûc1

εS

)
+ c̄2 exp

(
ûa − ûc2

εS

)
. (62)

FIG. 3. Hyaluronan NaCl results. (a) Dimensionless potential, (b) unbound charge density (M), and (c) total charge density (M) using
parameters from Table IV. In (b) and (c), the dotted blue curve represents Na, the dashed green curve represents Cl, the dashed dot red curve
represents Hyaluronan, and the solid black curve represents the net charge density. All curves continue flat from 160 to 240 Å. Shaded region
represents the GAG region.
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FIG. 4. Hyaluronan KCl results. (a) Dimensionless potential, (b) unbound charge density (M), and (c) total charge density (M) using
parameters from Table IV. In (b) and (c), the dotted blue curve represents K, the dashed green curve represents Cl, the dashed dot red curve
represents Hyaluronan, and the solid black curve represents the net charge density. All curves continue flat from 160 to 240 Å. Shaded region
represents the GAG region.

FIG. 5. Heparin NaCl results. (a) Dimensionless potential, (b) unbound charge density (M), and (c) total charge density (M) using
parameters from Table IV. In (b) and (c), the dotted blue curve represents Na, the dashed green curve represents Cl, the dashed dot red
curve represents Heparin, and the solid black curve represents the net charge density. All curves continue flat from 160 to 240 Å. Shaded
region represents the GAG region.

FIG. 6. Heparin KCl results. (a) Dimensionless potential, (b) unbound charge density (M), and (c) total charge density (M) using parameters
from Table IV. In (b) and (c), the dashed blue curve represents K, the dotted green curve represents Cl, the dashed dot red curve represents
Heparin, and the solid black curve represents the net charge density. All curves continue flat from 160 to 240 Å. Shaded region represents the
GAG region.
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FIG. 7. Dimensionless force density for (a) Heparin NaCl and
(b) Heparin KCl.

The boundary conditions remain unchanged from Eqs. (35a)–
(35b).

The piecewise constant model can be obtained as before by
letting α → 0.

B. Sample result for sodium and potassium

To produce some sample results for the extended model
with two cations, input parameters were generated by aver-
aging the parameters from Tables III and IV for the Heparin
NaCl and Heparin KCl scenarios. However, the salt side con-
centrations were chosen such that the total number of sodium
ions and potassium ions in the whole domain are equal in
order to demonstrate how they differentially partition into the
brush based on their respective Born radii and dissociation
constants. The values used are captured in Table VII where c1

represents sodium and c2 represents potassium.
The sample results are captured in Figs. 8 and 9. For

the given input parameters, it is seen that in the brush side,
there is almost no unbound potassium. Essentially all of the
potassium ions in the brush side are bound with the GAG
brush. Sodium, on the other hand, exists in the brush as both
bound and unbound ions, but the total sodium concentration is
just more than half of the total potassium concentration. This

TABLE VII. Input parameters for sample two cation scenario.

Parameter Notes Value

εr Dilute water, εw 78.155
ε1(L̂) = εS εo/εr 0.765
ε1(0) = εG εb/εr 0.482
�̂ Polymer length/2/λD 6.834
L̂ 240 Å/λD 28.219
rc1 (Å) [18] 1.62
ûc1 Based on rc1 2.128
rc2 (Å) [18] 1.95
ûc2 Based on rc2 1.768
ra (Å) Sec. IV C 0.226
ûa Based on used ra 15.251
C0 Salt concentration 0.265
K̃1 Table IV 1.362 × 10−2

c̃1 Na concentration/C0 0.923
c̄1 c̃ exp(ûc/εS ) 14.890
K̃2 Table IV 8.571 × 10−4

c̃2 K concentration/C0 0.077
c̄2 c̃ exp(ûc/εS ) 0.775
ā c̄ exp[(ûa − ûc )/εS] 4.536 × 108

g0 GAG concentration/C0 10.774
σ̂1 0
σ̂2 0
T (K) 310.15
α Used value 0.1

was expected since the dissociation constant for potassium is
much smaller than the dissociation constant for sodium and
the outward Born force is lower for potassium. On the salt
side, it is seen that sodium is the dominant cation with 12
times the concentration of potassium. The potential shows the
same overshoot seen in Figs. 3 and 5 due to sodium. Similarly,
the force density traverses the brush edge right-left-right-left
as seen in Fig. 7(a).

FIG. 8. Two cation sample results. (a) Dimensionless potential, (b) Unbound charge density (M), and (c) Total charge density (M) using
parameters from Table VII. In (b) and (c) the dashed blue curve represents Na, the dashed dot dot magenta curve represents K, the dotted
green curve represents Cl, the dashed dot red curve represents Heparin, and the solid black curve represents the net charge density. All curves
continue flat from 160 to 240 Å. Shaded region represents the GAG region.
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FIG. 9. Dimensionless force density for two cations.

VI. CONCLUSION

We have developed steady-state equilibrium mean-field
models for GAG brushes that capture ion partitioning, ion
pairing, and varying permittivity effects in GAG brushes.
Our models build upon previous Poisson-Boltzmann models
[13,19] and generate the same predicted performance when
applying our model in the appropriate limits. We have also
shown that our model predictions agree well with the molecu-
lar simulation data [14], however our model requires the anion

Born radius to be much smaller than typical values found in
the literature [18]. The requirement that this unrealistic, non-
physical ion hydration radius be used to match experimental
or molecular dynamics simulation data appears to be a known
challenge for Poisson-Boltzmann based models [20]. Further-
more, there is evidence from neutron diffraction experiments
on concentrated salt solutions that the chloride ion disrupts
the hydrogen-bond network of bulk water much less than the
cations; effects that are not captured using the Born hydration
formulation implemented herein [21]. Another explanation is
that there are additional energy terms such as GAG dipole
effects that our model is neglecting. Further research is needed
in this area.

While we have presented a model where the permittivity is
a simple function of x, others have proposed a dependence of
the permittivity on ion concentrations (dielectric decrement)
[17,22,23]. Future work will entail exploring the appropriate
relationship between permittivity and local environment (in-
cluding dielectric decrement and biopolymer contributions)
and incorporating such a constitutive relationship into our
model.

The models presented here offer biophysical detail of
biological environments that have anionic beds of macro-
molecules that attain electroneutrality via atomic cations
and cationic residues of proteins. The extent to which such
biophysical detail can be used to develop new diagnostics,
drug-delivery platforms, or therapeutics remains to be seen.
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