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Interplay between biochemical processes and network properties generates neuronal
up and down states at the tripartite synapse
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Neuronal up and down states have long been known to exist both in vitro and in vivo. A variety of functions
and mechanisms have been proposed for their generation, but there has not been a clear connection between the
functions and mechanisms. We explore the potential contribution of cellular-level biochemistry to the network-
level mechanisms thought to underlie the generation of up and down states. We develop a neurochemical model
of a single tripartite synapse, assumed to be within a network of similar tripartite synapses, to investigate possible
function-mechanism links for the appearance of up and down states. We characterize the behavior of our model
in different regions of parameter space and show that resource limitation at the tripartite synapse affects its
ability to faithfully transmit input signals, leading to extinction—down states. Recovery of resources allows
for “reignition” into up states. The tripartite synapse exhibits distinctive “regimes” of operation depending on
whether ATP, neurotransmitter (glutamate), both, or neither, is limiting. Our model qualitatively matches the
behavior of six disparate experimental systems, including both in vitro and in vivo models, without changing
any model parameters except those related to the experimental conditions. We also explore the effects of varying
different critical parameters within the model. Here we show that availability of energy, represented by ATP,
and glutamate for neurotransmission at the cellular level are intimately related, and are capable of promoting
state transitions at the network level as ignition and extinction phenomena. Our model is complementary to
existing models of neuronal up and down states in that it focuses on cellular-level dynamics while still retaining
essential network-level processes. Our model predicts the existence of a “final common pathway” of behavior at
the tripartite synapse arising from scarcity of resources and may explain use dependence in the phenomenon of
“local sleep.” Ultimately, sleeplike behavior may be a fundamental property of networks of tripartite synapses.
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I. INTRODUCTION

A. What are up and down states?

Up states, consisting of tonic neuronal firing with relatively
depolarized resting membrane potentials, and down states,
consisting of neuronal quiescence with relatively hyperpolar-
ized membrane potentials, have long been described in both
in vitro cortical preparations and in vivo, in both anesthetized
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and behaving animals [1–3]. A variety of functions have been
suggested for these oscillations, including synaptic plasticity,
memory consolidation, cellular maintenance activities, and
recovery of “fatigue variables” due to prolonged fast neuronal
firing, and it may be that several or all of these functions
occur simultaneously [1,4,5]. The mechanism for the tran-
sitions between up and down states is not clearly known,
but it is generally accepted that the oscillations are due to
the network properties of collections of neurons. These net-
work effects appear to be primarily mediated by glutamatergic
and GABAergic (GABA is gamma-aminobutyric acid) neuro-
transmission since the transitions are significantly diminished
by glutamate receptor antagonists, and abolished by glutamate
and GABA receptor antagonists, although there is evidence
that other neurotransmitters such as dopamine may also play
a role [6,7].

B. Existing models of up and down states

Computational models of the up and down phenomenon
often rely on networks with recurrent excitation, and tran-
sitions between states are either driven by slow negative
feedback processes such as firing rate adaptation or short-term
synaptic depression, or are due to stochastic external noise in
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neuronal populations [1,6,8,9]. Most computational studies
take one of two approaches to studying up and down states:
(1) models with networks of integrate-and-fire neurons based
on an electrical formalism to more closely replicate observed
phenomena, and (2) population-level models that simulate
large scale dynamics while abstracting individual neuronal-
level processes, for example, [1,6,8–11]. Other models of the
tripartite synapse will also briefly be reviewed.

1. Integrate-and-fire neuron network models
for up and down states

The first class of models includes those which are based
on networks of integrate-and-fire neurons. These are all phe-
nomenological models: the modeled neuron generates a spike
when its membrane potential passes a predetermined value.
Membrane potentials are calculated based on solving systems
of differential equations involving conductances and currents
affecting each model neuron [12,13]. The integrate-and-fire
neurons are then linked into networks with weights repre-
senting neuronal connectivity. These networks require some
mechanism to drive the transitions between up and down
states, and the mechanisms differ by specific model. Some of
the mechanisms utilized to generate transitions between states
include a nonlinear membrane current, an adaptation current,
firing rate adaptation (including spike frequency adaptation),
short-term depression, and network connectivity combined
with noise [8,9,14,15]. There are various models which have
attempted to utilize more “realistic,” physiologically based
model neurons (such as [16–18]). The key features these mod-
els share are the inclusion of Hodgkin-Huxley dynamics (see
[19,20]) instead of simple integrate-and-fire kinetics and the
presence of multiple layers of connected neurons.

There was a single study, by Ching et al., which at-
tempted to more directly connect metabolic considerations
to the Hodgkin-Huxley formalism by introducing an ATP
(adenosine triphosphate) -gated current mediated by the KATP

channel, and including the ATP-active Na+/K+ ATPase
pump. These authors modeled a network of “reciprocally cou-
pled interneurons and pyramidal cells” [21] and found that
the model was able to generate a pattern of bursts of activity
with intervening periods of quiescence at the level of local
field potentials, suggestive of neuronal up and down states.
They likened these fluctuations to cortical “burst suppression,”
which may be seen on EEG during general anesthesia.

Integrate-and-fire network models, and their Hodgkin-
Huxley-based counterparts, are successfully able to generate
states resembling neuronal up and down states, and have
several advantages, including that they are capable of
representing relatively complicated network connectivity ef-
fects, while still being relatively computationally tractable.
They may include named or known synaptic currents,
including excitatory AMPA (α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid) and NMDA (N-methyl-D-aspartic
acid) receptor-mediated glutamatergic currents, and inhibitory
GABA currents, or may simply consider the sum total of all
synaptic currents without assigning them to specific channels.
However, these models do not include any of the underlying
biochemistry for the electrical effects they model. They thus
cannot shed any light on why state transitions occur at any

specific time, nor what the function of the up and down
states may be. They are also unable to explain how the same
network can produce bistable state dynamics, and “stable
asynchronous irregular dynamics” [8]. The single study which
includes a connection to energy metabolism simply adds the
KATP channel and sodium-potassium pump as additional cur-
rents, and modulates the ATP availability as an independent
variable [21]. It is able to generate high and low levels of
simulated activity based on energy scarcity, but still does
not yield a mechanism for why the energy supply would be
depleted in the first place, nor how the alteration of active and
quiescent periods may ameliorate the low-energy state.

2. Mean-field models for up and down states

It has been noted that there are approximately 101.5×1010

possible configurations of neurons with binary (either acti-
vated or quiescent) states in the human brain. Because of
the massive scale of calculating such configurations, and also
because of the presence of “randomness” in both the con-
nectivity and the neural activity in neuronal networks, such
systems can be well approximated using statistical methods
[10]. Models derived from these methods achieve dimen-
sionality reduction by abstracting the dynamics of individual
neurons, and making statistical assumptions about the be-
havior of entire neuronal populations, and are thus more
computationally tractable. Such models are called mean-field
models, and the Wilson-Cowan model and its extensions are
the best-known members of this class [11,22]. The original
Wilson-Cowan model was based on population dynamics of
neurons using continuous time, and as such, inputs were con-
sidered to be [mean] spike frequencies, rather than individual
spikes [11]. Later treatments have extended the mean-field
method in various ways [10,22–25]. Other mean field models
also exist, such as that found in Holcman and Tsodyks, which
includes a population of excitatory neurons and a “depression
parameter” [6].

The primary advantages of mean-field models are their
significantly decreased computational burden—the original
Wilson-Cowan model had only two differential equations—
and their ability to capture large-scale behavior, even to the
level of whole-brain networks [11,22]. In addition they can
model “balanced” networks—a special case wherein random
fluctuations can cause an irregular firing rate, rather than just
creating two stable states [25]. However, mean-field models
suffer from the same limitations as the integrate-and-fire net-
work models described above. In fact, they have even less
explanatory power at the neuronal level, since single-neuron-
level dynamics are subsumed in the statistical treatment of
the neuronal population. These models cannot explain, for
instance, Li, Poo, and Dan’s important findings that stimu-
lating single neurons through a patch clamp technique could
switch the entire local network from an up and down bistable
mode to a low amplitude, high frequency mode they named
“persistent-up,” and vice versa, or similar findings by Fu-
jisawa, Matsuki, and Ikegaya [26,27]. However, there was
a study which examined how single-neuron properties dis-
tributed over the mean field could affect the firing of the whole
network [28].
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3. Electrical and diffusion-based models of the tripartite synapse

Many studies have looked at models of the tripartite
synapse, and have been classified based on the primary focus
of the model: those focusing on voltage-gated calcium chan-
nels, potassium dynamics, gliotransmission, learning, and
electrical descriptions [29]. A large group of models treats
with the ionic interactions between neurons and astrocytes,
including calcium currents and potassium dynamics. Several
of these models are based on a combination of the Hodgkin-
Huxley formalism with the similarly formulated Li-Rinzel
model for astrocytic calcium dynamics [29–32]. Other mod-
els investigate the impact of astrocytes on neuronal firing
based on diffusion of small molecules—glutamate and “glio-
transmitters” [29]. Models of astrocytic uptake of glutamate
were based on diffusion, and did not include representa-
tions of ionic processes (for instance, see [33,34]). Models
treating with gliotransmission did investigate ionic currents,
particularly including calcium currents, and again used a
combination of the Hodgkin-Huxley formalism and Li-Rinzel
model, including [35,36], as did a model investigating the
astrocytic contribution to learning [37]. The models with elec-
trical descriptions were also based on the Li-Rinzel model
[29].

These models of the tripartite synapse successfully model
neuron-astrocyte interactions. They may include named or
known synaptic currents, including excitatory AMPA and
NMDA currents and inhibitory GABA currents, or may sim-
ply consider the sum total of all synaptic currents without
assigning them to specific channels. However, the above-
described models also do not include any of the underlying
biochemistry for the electrical effects they model. Because
of this, and that they do not specifically address neuronal up
and down states, they are also unable to make any connection
between a function and a mechanism of up and down states.

4. Neurochemical models of the tripartite synapse

There are only a few studies that investigate models which
include the biochemical reactions taking place in different
parts of the tripartite synapse, which we term “neurochemical
models.” Jolivet et al. proposed a biophysical model including
a neuronal compartment, astrocytic compartment, extracel-
lular compartment, and a vascular compartment [38]. They
extended prior work and generated a set of 33 differential
equations, with compartmentalization between cytosolic and
mitochondrial compartments in the neuron and the astrocyte,
the inclusion of a Hodgkin-Huxley-type electrical model of
synaptic firing, the provision of explicit glutamatergic in-
put, and explicit calculation of sodium transport. Kinetics
related to Michaelis-Menten kinetics was utilized to represent
some enzyme-driven processes. Using this model, they were
able to reproduce the evoked responses of various parame-
ters seen in rat and human in vivo experiments. Patel et al.
examined the relationship between glutamatergic neurotrans-
mission and neuronal glucose oxidation in a seizure model
using 13C nuclear magnetic resonance (NMR) [39]. As part
of their study, they established a metabolic model to calcu-
late 13C fluxes in the neuron and astrocyte, based partly on
Michaelis-Menten kinetics. They found that neuronal activity,
neurotransmitter cycling, and glucose oxidation were linearly

coupled over much of the range of neuronal activity. Sev-
eral models investigate the metabolic fluxes between neurons
(both glutamatergic and GABAergic) and astrocytes, but do
not appear to (at least explicitly) include vesicular loading
of neurotransmitter, nor synaptic release and reuptake, nor
neurotransmission at all. Notably, they are also steady-state
models, which cannot be readily applied to dynamically firing
neurons [40–43]. We are not aware of any other models other
than that by Jolivet et al. which try to connect the neurotrans-
mission of neurons with their metabolic processes [38].

The model by Jolivet et al. does accommodate both neu-
rotransmission and metabolic processes, and impressively,
is able to match empirical measurements of metabolic pro-
cesses in vivo, including in humans [38]. However, it utilizes
Michaelis-Menten kinetics, which assumes at least a quasi-
steady state, and may not be realistic for dynamically firing
neurons. It also does not include vesicular loading and re-
lease or the contribution of glutamate to energy metabolism
in neurons or astrocytes [38,44,45]. The former processes are
essential for neurotransmission, and the latter processes are
very likely to affect the metabolic state of the neuron, and also
serve as competing processes for vesicular loading.

C. The need for an alternative model for up and down dynamics

The above models successfully reproduce certain aspects
of up and down state dynamics. However, there is a dis-
connect between the proposed functions of neuronal up and
down states (such as synaptic plasticity, memory consolida-
tion, cellular maintenance activities, and recovery of scarce
resources), and the network mechanisms underlying the com-
putational models generating these states. While these models
do include the excitatory and inhibitory processes implied
by the necessity of glutamate and GABA in experimental
systems, they do not have any clear connection to plasticity,
cellular maintenance, or cellular energetics. We propose that
an examination of the biochemical properties of single tripar-
tite synapses in a network can reveal the link between the
function and mechanism of cortical bistability, and electrical
properties of the synapse can be derived from basic physical
and chemical principles.

We hypothesize that neuronal up and down states could
be generated in part due to depletion and restoration
of intracellular resources such as energy stores (ATP)
and/or neurotransmitter (specifically, readily releasable
neurotransmitter-containing vesicles) after prolonged neu-
ronal firing. We thus developed a parametric “neurochemi-
cal” model of an astrocyte-presynaptic-terminal-postsynaptic-
terminal-vasculature-extracellular-fluid unit, to elucidate the
contribution of subcellular dynamics at the level of the tri-
partite synapse to the generation of up and down states. This
model is complementary to existing models in that the pri-
mary focus is the determination of the role of biochemical
processes; network processes are nevertheless absolutely es-
sential to the development of up and down states, and are
represented in the model as well. Our model is neither a
phenomenological model (like the integrate-and-fire models
and the models based on the Hodgkin-Huxley formalism) nor
a mean-field model, and it represents a unique class of models.
In this work, we demonstrate that periods of rapid firing with a
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relatively depolarized resting membrane potential resembling
up states in single neurons, and periods of quiescence with
a relatively hyperpolarized membrane potential resembling
down states in single neurons, appear due to use depen-
dence of both ATP and releasable neurotransmitter-containing
vesicles. The model reveals an intimate relationship between
cellular energetics and neurotransmission at the tripartite
synapse, and this interaction is shown to modulate transitions
at the network level. Consideration of the interplay between
cellular energetics, neurotransmission, and other processes at
the cellular level may prove to be the link that connects the
function and mechanism of generation of the ubiquitous up
and down states.

D. Organization of the paper

The paper is organized in the following way: in Sec. II
we give an overview of our neurochemical model. Section III
demonstrates the regimes of operation of the model and how
resource limitations generate the different regimes. Section IV
reviews the effects of various “critical” parameters on up and
down state dynamics in the model. In Sec. V we discuss the
implications of resource limitation for the tripartite synapse,
and we conclude with Sec. VI.

II. OVERVIEW OF THE MODEL

The model was developed from elementary principles of
chemical reactions in the SimBio environment of MATLAB
R2018b (Mathworks, Natick, MA). Because we explicitly
considered nonnegligible quantities of enzyme-bound sub-
strate, Michaelis-Menten kinetics was inappropriate. Chem-
ical kinetic equations were written using the principle of mass
balance, assuming first order in each species. Diffusion of
the neurotransmitter in the synaptic cleft was approximated
by including an additional compartment which functioned
as a buffer for neurotransmitter molecules. Membrane po-
tentials were calculated using elementary electrochemical
principles. The model was implemented as a system of
143 ordinary differential equations representing the included
chemical reactions, with a number of “rules” and “events” rep-
resenting decision logic within the system (see “specification
of model,” “equations,” “tables of parameters,” “rules,” and
“events” in the Supplemental Material [46], which includes
Refs. [6,8,9,21,44,47–71]). The model was run on a Dell
5820 workstation (Dell Computers, Round Rock, TX). The
equations were solved using the ode15s solver in MATLAB,
with a maximum step size of 2 ms.

We implemented a transient (time-accurate, non-steady-
state) model incorporating the presynaptic terminal, postsy-
naptic terminal, and astrocytic component of an excitatory
tripartite synapse. The primary processes modeled are de-
picted in Fig. 1. Processes related to neurotransmission
included generation and reuptake of neurotransmitter, loading
into synaptic vesicles, and transient binding at the postsy-
naptic terminal for signaling. Processes related to synaptic
energetics included the major chemical reactions involved in
the generation and utilization of ATP, the primary energy-
carrying molecule used by cells. Network processes were
modeled using decision logic.

FIG. 1. Schematic of the tripartite synapse. The open arrows
show significant named biochemical pathways, while thin line arrows
show other reaction pathways. The “inner synapse” compartment is
represented by the dotted circle, while the “outer synapse” compart-
ment includes the rest of the synaptic cleft volume. The thick black
arrows show input from and output to the rest of the neuronal net-
work. The processes occurring in the neuronal network—summation
in other neurons, ignition of the network, and extinction of the
network—are modeled using decision logic. The input into the presy-
naptic terminal includes the summation of all signals arriving at the
presynaptic neuron, and is represented by finput . PDC: pyruvate de-
hydrogenase complex; TCA cycle: tricarboxylic acid cycle; αKGA:
α-ketoglutarate.

The complete specification of the model, including as-
sumptions, determination of parameters, implementation of
ignition, and modeling of inhibition, is found in the Sup-
plemental Material (“specification of model”) [46]. In brief,
ordinary differential equations were used to calculate the
concentrations of chemical species within the modeled com-
partments as a function of time. Kinetic rate constant
parameters, which appear in the differential equations, were
selected to yield close-to-physiologic values, and were not
changed during simulations once determined, except in sim-
ulations specifically testing variation in one parameter. This
selection of parameters was not the only possible set of pa-
rameters that could yield close-to-physiologic results.

Several “critical” parameters represent important aspects
of the network in the model. These include the variable
component of the input firing frequency (ν), the extinction
parameter (ζ ), the threshold number of filled vesicles for
ignition (Ncritical ), and the threshold concentration of ATP for
extinction (Ecritical ). Two additional “critical parameters,” the
constant component of the “network” input firing frequency
(ε) and the synaptic integration time constant (τsynapse ), repre-
sent properties intrinsic to the tripartite synapse. All of these
parameters appear only in the decision logic of the model.
Simulations varying ν, ζ , and ε were performed to investigate
the dynamics of the model. Ncritical, Ecritical, and τsynapse were
held constant through all of the simulations.

Decision logic was used to determine input firing fre-
quency from the network, and whether or not there was a
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“firing” event (release of a synaptic vesicle) in the presynap-
tic terminal. Several “firing frequencies” were defined in the
model. The quantity finput represents the instantaneous input
firing frequency arriving from the network (via summation at
the axon hillock and transmission down the axon) at the presy-
naptic terminal. The quantity fMAO (“moving average output
frequency”) represents the effective output firing frequency
of the presynaptic terminal, as calculated based on release of
synaptic vesicles. It was calculated as a moving average over
the last three firing events in order to smooth out instanta-
neous fluctuations related to coincidental spontaneous vesicle
release. The quantity fmax = ε + ν (constant component of
the “network” input firing frequency + variable component
of the network input firing frequency) represents the maxi-
mum input firing frequency arriving from the network at the
presynaptic terminal. The quantity ε (constant component of
the “network” input firing frequency) represents the minimum
input firing frequency caused by spontaneous vesicle release
[72]; this is treated the same as a “network input” although
strictly speaking, as noted above, the value of ε is intrinsic
to the presynaptic terminal. A synaptic terminal “firing” event
(release of a synaptic vesicle) was triggered if a “virtual action
potential”—calculated using finput—occurred inside the time
window determined by τsynapse, and the presynaptic terminal
had at least one synaptic vesicle, and the presynaptic terminal
had at least Ecritical concentration of ATP.

Because of the conditions of firing in the synaptic “firing”
event—specifically the requirements for sufficient filled neu-
rotransmitter vesicles and ATP— fMAO serves as an indicator
for the status of neurotransmitter and energy resources for the
presynaptic terminal, and it will decrease if the presynaptic
terminal is unable to fire because of lack of either neurotrans-
mitter or ATP. The presynaptic terminal in the control volume
is representative of the other presynaptic terminals in the net-
work, and this is the basis for the decision logic determining
extinction and ignition of the network. We defined a quantity
ϕ = fMAO/ fmax, where ϕ < 1 indicates decreased firing due
to lack of resources in the presynaptic terminal. If ϕ drops
below the extinction parameter ζ , this serves as a surrogate for
the condition that enough synapses within the network also
have insufficient resources so that the network extinguishes.
Network extinction causes finput to drop to finput = ε. Reig-
nition of the network is also determined by decision logic.
Initially, the network is in the quiescent (extinguished) state.
If the presynaptic terminal in the control volume replenishes
sufficient resources such that its number of vesicles is greater
than Ncritical, and its ATP concentration is greater than Ecritical,
this is a surrogate for enough synapses in the network re-
plenishing sufficient resources for the network to ignite. The
network ignites with the next firing event. This leads to the
input frequency finput increasing back to fmax = ε + ν.

Extinction:

ϕ < ζ → finput = ε

Ignition:

Nvesicle > Ncritical AND AT Ppresynaptic terminal

> Ecritical AND f iring event occurs → finput

= ε + ν.

FIG. 2. Operability map revealing different operating regimes
distinguished by availability of resources. Regime A shows the re-
gion wherein there are both sufficient stores of vesicles and sufficient
ATP concentration for the tripartite synapse to faithfully transmit the
input signal at all times. Regime B depicts the region where there
is an insufficient number of vesicles for the tripartite synapse to
successfully transmit the input signal continuously; however, in this
regime, the system does not fulfil the criteria for the entire network to
drop into the quiescent down state. Regime C shows the region where
there is an insufficient number of vesicles for the tripartite synapse
to successfully transmit the input signal continuously; in addition,
the representative synapse’s output firing rate drops sufficiently be-
low the input frequency such that the entire network drops into the
down state, enabling the number of vesicles to recover. Regime D
represents the region in which there is both an insufficient number of
vesicles and a superimposed insufficient ATP concentration, which
prevent the tripartite synapse from transmitting the input signal con-
tinuously. Finally, Regime E demarcates the region in which there is
insufficient ATP for the tripartite synapse to continuously transmit
the input signal. Regimes C, D, and E demonstrate up and down
states, whereas Regimes A and B do not.

The dynamics of the model was investigated by exercising
the model over a range of values for ε, ν, and ζ . As noted
above, the other “critical” parameters, as well as the kinetic
rate constant parameters, were kept constant during these sim-
ulations. Blood glucose concentrations and the rate constant
for non-neurotransmission-related ATP use (“vegetative” use)
were varied for specific experiments for comparison to animal
models (see Appendix B); in these simulations, all of the
“critical” parameters, as well as the other kinetic rate constant
parameters, were held constant.

III. REGIMES OF OPERATION
AND RESOURCE LIMITATION

A. Partitioning of the phase space

The firing pattern of the tripartite synapse at different
frequencies demonstrates that there are different regions of
operation (“regimes”). The phase space is mapped as a func-
tion of the variable component of the input frequency (ν) and
the network extinction parameter (ζ ) in Fig. 2. All of the
other parameters are kept constant; the boundaries between
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FIG. 3. Operation of the tripartite synapse without discrete up or down states. Top trace: number of filled vesicles vs time. Second
trace: presynaptic ATP vs time. The dashed line represents the ATP threshold value (Ecritical). Third trace: presynaptic membrane potential
vs time. Fourth trace: postsynaptic membrane potential vs time. Fifth trace: finput vs time. Sixth trace: fMAO vs time. (a) Regime A: sufficient
neurotransmitter and ATP at all times. ε = 0.3 Hz, ν = 1.7 Hz, ζ = 0.5. In the presence of sufficient neurotransmitter and ATP, the tripartite
synapse faithfully transmits the incoming input signal. (b) Regime B: limited neurotransmitter, but system does not extinguish. ε = 0.3 Hz,
ν = 3 Hz, ζ = 0.5. Although there is insufficient available neurotransmitter, the system is unable to extinguish. This results in an output firing
rate intermediate between fmax = ε + ν and ε.

regimes are expected to move depending on the specific values
of those parameters. Five distinct regions appear in the phase
space and are distinguished by distinct patterns of dynamic
behavior of the tripartite synapse, caused by differing levels
of neurotransmitter and energy availability.

B. The presence of up and down states reflects depletion of
energy and neurotransmitter resources across different regimes

We explore the connection between resource limitation and
dynamics of the tripartite synapse, as a function of ν. In a
representative simulation of a lower ν [Regime A, Fig. 3(a)],
it can be seen that neither number of vesicles (top trace) nor
presynaptic ATP (second trace) is significantly depleted. Be-
cause there are ample energy and neurotransmitter resources,
the system never switches into a low-activity “rest” state,
and there are no discrete up or down states (third and fourth
traces). We describe this state as “input-limited” because fMAO

never takes any value other than finput (fifth and sixth traces).

The behavior of the system significantly changes with
higher input frequencies. With somewhat higher variable com-
ponent of input frequency, the tripartite synapse transitions
into Regime B [Fig. 3(b)]. In this mode, the tripartite synapse
is vesicle-limited, in that the presynaptic terminal repeatedly
runs out of vesicles (top trace). There is ample presynaptic
ATP (second trace). However, although vesicles are depleted,
the system cannot meet the criterion for extinction, and there
are no discrete up or down states (third and fourth traces).
Nevertheless, due to the shortage of vesicles, the output fre-
quency fMAO (sixth trace) does not equal the input frequency
finput = fmax (fifth trace).

As is seen in Fig. 4(a) (Regime C up state) and Fig. 4(b)
(Regime C down state), with an intermediate high variable
component of input frequency ν, the tripartite synapse enters
Regime C, and the presynaptic vesicle number oscillating
between one and near 100 indicates that the system is again
vesicle-limited (top traces). Although ATP shows significant
shifts in concentration, those shifts do not impact fMAO
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FIG. 4. Operation of the tripartite synapse with insufficient neurotransmitter, with generation of discrete up and down states: Regime C.
ε = 0.3 Hz, ν = 4 Hz, ζ = 0.5. Top trace: number of filled vesicles vs time. Second trace: presynaptic ATP vs time. The dashed line represents
the ATP threshold value (Ecritical). Third trace: presynaptic membrane potential vs time. Fourth trace: postsynaptic membrane potential vs time.
Fifth trace: finput vs time. Sixth trace: fMAO vs time. (a) Up state: the tripartite synapse faithfully transmits the incoming input signal, such that
fMAO = finput = fmax. (b) Down state: after vesicles are depleted, the output firing frequency drops sufficiently for the network to extinguish.
The presynaptic terminal firing rate remains at the basal “spontaneous” rate of ε.

[Figs. 4(a) and 4(b); second trace and sixth trace]. During
the downward phase of vesicle number [Fig. 4(a); top trace],
the presynaptic membrane potential is more depolarized, in-
dicating an up state (third trace). The postsynaptic membrane
potential is also more depolarized (fourth trace). During the
upward phase of the vesicle number [Fig. 4(b); top trace], al-
though there is an oscillation of ATP concentration [Fig. 4(b);
second trace], overall both ATP and filled vesicles are being
replenished. The presynaptic membrane potential is more hy-
perpolarized, indicating a down state [Fig. 4(b); third trace],
and the postsynaptic terminal is quiescent [though not com-
pletely silent; Fig. 4(b); fourth trace]. While the presynaptic
terminal demonstrates continued spontaneous firing, most of
these signals are not transmitted to the postsynaptic terminal
due to a threshold effect at the postsynaptic receptors. Because
of network “extinction,” the system periodically switches into
a low-activity rest mode (down state), during which time both
finput and fMAO take low values [the spontaneous frequency ε;
Fig. 4(b), fifth and sixth traces], and the presynaptic terminal

is able to recover some of its resources. After this recovery
occurs, the presynaptic terminal is able to shift back into
a high-activity mode for some time before switching back
[Fig. 4(a); fifth and sixth traces]. Appendix A shows a rep-
resentative longer term time evolution for Regime C.

In Fig. 5(a) (Regime D up state) and Fig. 5(b) (Regime
D down state), the variable component of input frequency ν

is increased further, and the system enters Regime D. Again,
the presynaptic vesicle number oscillating between one and
near 100 indicates that the system is vesicle-limited [Figs. 5(a)
and 5(b); top trace]. However, there is a superimposed ATP
limitation during the up state—the ATP concentration oscil-
lates around the critical value [Fig. 5(a); second trace; Ecritical,
dashed line], so that the output frequency fMAO [Fig. 5(a);
sixth trace] does not always match the input frequency finput

[Fig. 5(a); fifth trace]. During the downward phase of vesi-
cle number [Fig. 5(a); top trace], the presynaptic membrane
potential is more depolarized, indicating an up state [Fig. 5(a);
third trace]. The postsynaptic membrane potential is also more
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FIG. 5. Operation of the tripartite synapse with insufficient neurotransmitter and superimposed insufficient ATP, with generation of discrete
up and down states: Regime D. ε = 0.3 Hz, ν = 8 Hz, ζ = 0.5. Top trace: number of filled vesicles vs time. Second trace: presynaptic ATP
vs time. The dashed line represents the ATP threshold value (Ecritical). Third trace: presynaptic membrane potential vs time. Fourth trace:
postsynaptic membrane potential vs time. Fifth trace: finput vs time. Sixth trace: fMAO vs time. (a) Up state: the tripartite synapse initially
faithfully transmits the incoming input signal. However, there is the appearance of a superimposed ATP limitation—leading to repetitive
“misfires” of the tripartite synapse (skipping of vesicle release events). This leads to a repetitive drop in fMAO to an intermediate frequency.
The input frequency finput does not change until the network extinguishes, which occurs when the filled vesicles are depleted, and as a result
ϕ = fMAO/ fmax finally drops below ζ . (b) Down state: after vesicles are depleted, the output firing frequency drops sufficiently for the network
to extinguish. The presynaptic terminal firing rate remains at the basal “spontaneous” rate of ε.

depolarized [Fig. 5(a); fourth trace]. During the upward phase
of the vesicle number [Fig. 5(b); top trace], there is an oscilla-
tion of ATP [Fig. 5(b); second trace], but both ATP and filled
vesicles are being replenished. The presynaptic membrane
potential is more hyperpolarized, indicating a down state
[Fig. 5(b); third trace], and the postsynaptic terminal is qui-
escent [though not completely silent; Fig. 5(b); fourth trace].
Similar to Regime C, the presynaptic terminal demonstrates
continued spontaneous firing; however, most of these signals
are not transmitted to the postsynaptic terminal. Because of
network “extinction,” the system periodically switches into a
low-activity rest mode (down state), during which time both
finput and fMAO take low values [the spontaneous frequency ε;
Fig. 5(b), fifth and sixth traces], and the presynaptic terminal
is able to recover some of its resources. After this recovery
occurs, the presynaptic terminal is able to shift back into

a high-activity mode for some time before switching back
[Fig. 5(a); fifth and sixth traces].

Finally, Fig. 6 shows the results of increasing the input
frequency even further, and the system enters Regime E. In
this scenario, the availability of ATP becomes limiting—the
tripartite synapse shows an ATP-limited mode. Although vesi-
cle number oscillates (Fig. 6; top trace), it never drops to one.
ATP is both generated and depleted rapidly (Fig. 6; second
trace), leading to rapid fluctuations between depolarized up
states and hyperpolarized down states in the presynaptic ter-
minal, settling into a bursting pattern (Fig. 6; third trace).
This, in turn, leads to rapid oscillations in the postsynaptic
terminal membrane potential (Fig. 6; fourth trace). The output
frequency fMAO (Fig. 6; sixth trace) is able only to match
the input frequency finput (Fig. 6; fifth trace) for brief periods
before the network drops into a down state.
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FIG. 6. Operation of the tripartite synapse with insufficient ATP,
generating rapidly transitioning discrete up and down states: Regime
E. ε = 0.3 Hz, ν = 14 Hz, ζ = 0.5. Top trace: number of filled vesi-
cles vs time. Second trace: presynaptic ATP vs time. The dashed line
represents the ATP threshold value (Ecritical). Third trace: presynaptic
membrane potential vs time. Fourth trace: postsynaptic membrane
potential vs time. Fifth trace: finput vs time. Sixth trace: fMAO vs
time. During the up state, the tripartite synapse initially faithfully
transmits the incoming input signal. However, it is only briefly able
to sustain this rapid firing rate, prior to extinguishing. This leads
to a rapid drop in the input firing frequency to the spontaneous
rate (ε), and transition into a down state. Averaging of the output
frequency ( fMAO) during these rapid transitions sometimes leads to
the appearance of an intermediate frequency. Both the presynaptic
terminal and the postsynaptic terminal take on the appearance of
burst firing.

C. Invitro and in vivo findings can be explained by fluctuations
of energy and neurotransmitter resources

Because we developed our model without referring to a
specific model system, we next investigated how well it tallied
with empirical results from multiple in vitro and in vivo experi-
mental systems. See Appendix B for methods of comparisons
to experimental systems and detailed results. A summary of

FIG. 7. Increasing the variable component of the input frequency
ν causes transitions in regimes defined by insufficient resources,
leading to changes in the durations of up and down states. ε = 0.3
Hz, ζ = 0.5. Regimes A and B do not have separate up and down
states. For Regimes C–E, the limit cycle durations are calculated
based on the stationary state (excluding the initial transient) of
the model. As ν is increased, the tripartite synapse transitions into
Regime C, where as previously shown, the output frequency is
limited by the availability of neurotransmitter-filled vesicles. With
further increase of ν, the tripartite synapse transitions into Regime
D, where signal transmission is limited by both neurotransmitter
availability and ATP concentration. Finally, when ν is sufficiently
increased, the tripartite synapse transitions into Regime E, where
signal transmission is limited by ATP availability.

the key results is found in Table I. We demonstrate that the
model is capable of qualitatively matching results from six
disparate experimental systems.

IV. FREQUENCY EFFECTS ON UP/DOWN DYNAMICS

A. Durations of up and down states decrease with increasing ν

We examined the durations of the up and down states in our
model as a function of the variable component of the input fre-
quency (ν), maintaining all of the other parameters the same
(Fig. 7). This is equivalent to “traveling” on a vertical line
of constant ζ on the operability map (Fig. 2), while varying ν.
We performed the analysis at ζ = 0.5 to investigate the behav-
ior of the system in all five regimes. At the lowest frequencies
ν, lying within Regime A, neither neurotransmitter-filled vesi-
cles nor ATP is limiting. With somewhat higher frequencies
ν, in Regime B, although filled vesicles are limiting, the sys-
tem never reaches criteria for extinction. As a result, neither
regime shows discrete up or down states. When ν is increased
further, discrete up and down states appear. The down state
duration minimally changes in Regimes C and D. This occurs
because the down state duration in these regimes is deter-
mined by the rate of net accumulation of vesicles, which
depends on vesicle filling rate and vesicle use for sponta-
neous firing (ε), and not on ν. In Regime E, at high ν, the
duration of the down state suddenly precipitously drops, and
then remains approximately stable. This is dependent on the
net rate of ATP regeneration; vesicles are not significantly
depleted. In contrast, there is a nearly inverse relationship
between the up state duration and ν in Regime C, following
from the fact that the rate of resource depletion increases as
ν increases. In Regime D, up state duration remains roughly
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TABLE I. Comparison of experimental results with model predictions.

Authors Model Location

Experimental
system parameter

change
Experimental

system outcome

Corresponding
neurochemical

model parameter
change

Neurochemical
model outcome

Skrempou
[73]

Mouse slice In vitro Low Mg2+ Monotonic
decrease in up state
duration over time

Increase variable
component of input
frequency, ν

Monotonic
decrease in up state
duration with
increasing
frequency

Mann, Kohl,
and Paulsen
[74]

Rat entorhinal
cortex slice

In vitro Application of
GABAA receptor
antagonist,
gabazine

Decreasing up state
duration with
increased
antagonist

Increase variable
component of input
frequency, ν

Decreasing up state
duration with
increased frequency

Chen et al.
[75]

Cat cortical slab In vivo Application of
GABAA receptor
antagonist,
bicuculline

4.7−7× reduction
in up state duration
with addition of
antagonist

Increase variable
component of input
frequency, ν

11× reduction in
up state duration
with increased
frequency

Huo et al.
[76]

APPa knockout
transgenic mouse

In vivo Knockout of
synaptic APP

Increased up state
duration with
decreased
frequency relative
to control

Decrease variable
component of input
frequency, ν

Increased up state
duration with
decreased
frequency within
Regime C

Cunningham
et al. [77]

Rat entorhinal
cortex slice

In vitro Decrease glucose in
artificial
extracellular fluid

Down state
duration increased
with reduced
glucose; marginal
or no change in up
state duration

Decrease glucose
concentration in the
blood vessel
compartment

Down state
duration increased
with reduced
glucose;
marginal/no change
in up state duration

Castano-Prat
et al. [78]

APPSwe/PS1
M146V/tauP301L
(3xTg) mouse
model

In vivo Increased age of
transgenic mice,
leading to increased
pathological
protein

Both up and down
state durations
increased with age

Increased kVeg (rate
constant for
vegetative use of
ATP)

Both up and down
state durations
increased with
increased kVeg

aAmyloid precursor protein.

constant with increasing ν—although ν continues to increase,
fMAO is capped by superimposed ATP limitation (which
however does not cause extinction). There is a precipitous
drop in the up state duration in Regime E, when ATP con-
centration becomes limiting, after which it remains roughly
stable. The transitions between regimes with increasing in-
put frequency occur due to evolving patterns of insufficient
cellular energy stores and neurotransmitter in the tripartite
synapse.

B. Durations of the up state and down state change
differentially with increasing ε

We next investigated the effect of increasing the sponta-
neous component of the input frequency (ε) on the durations
of the up and down states in our model, maintaining all of the
other parameters the same (Fig. 8). We found that the duration
of the up state decreases monotonically with increasing ε

and constant ν, although it appears to stabilize as ε contin-
ues to increase. This occurs because both neurotransmitter
(filled vesicles) and energy (ATP) resources are depleted more

rapidly when the spontaneous firing rate, and thus the total in-
put firing frequency in the up state ( finput = ε + ν), is higher.
In contrast, the duration of the down state initially decreases
with increasing ε, prior to rising again. The duration of the
down state initially decreases with increasing ε because a
faster spontaneous firing frequency leads to ignition earlier.
As ε continues to increase, this effect is opposed and even-
tually overwhelmed by depletion of neurotransmitter (filled
vesicles) and energy (ATP) resources caused by the sponta-
neous firing events themselves. The more rapid depletion of
these resources slows down the presynaptic terminal’s ability
to reach the conditions for ignition, which leads to the duration
of the down state rising again with higher ε. There appears
to be a minimum in the down state duration somewhere be-
tween ε = 0.1 Hz and ε = 0.3 Hz. Another interesting finding
was that the cycle-to-cycle variability in the duration of up
and down states (represented by the error bars in Fig. 8)
significantly increases with decreasing ε, due to increased
variability in the number of filled vesicles generated in the
presynaptic terminal prior to the network switching back into
the up state. This occurs because the presynaptic terminal has
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FIG. 8. Increasing the spontaneous component of the input fre-
quency ε causes differential changes in the durations of the up and
down states, due to differential effects on resource availability. ν = 6
Hz, ζ = 0.5. The system operates in Regime C for all chosen values
of ε. The error bars show the sample standard deviation of cycle du-
ration at each ε. The duration of the up state decreases monotonically
with increasing ε and constant ν, appearing to stabilize as ε continues
to increase. The duration of the down state initially decreases with
increasing ε, prior to rising again.

more time to accumulate filled vesicles prior to the system
reigniting into an up state with the next spontaneous firing
event.

V. DISCUSSION

A. Synaptic up and down states, neuronal up and down states,
and local field potentials

Our model demonstrates the existence of up and down
states at the single synapse level, caused by network-level
processes. We are not aware of any work that has directly
recorded up and down states at the synaptic level; however,
these have clearly been recorded at the single neuronal level,
and these correlate with up and down states at both the level
of local field potentials (LFPs) and slow oscillations during
slow wave sleep on electroencephalography (EEG) [5]. Be-
cause an individual neuron’s synapses are all connected to
that neuron through the axon, we expect that synaptic up and
down states should correspond very closely to the up and
down states recorded from single neurons. LFPs are recorded
extracellularly, and multiple current sources, including synap-
tic activity, action potentials, calcium spikes, other currents,
afterhyperpolarizations, gap junctions, and ephaptic effects
(electrical field effects caused by the presence of conductive
extracellular medium) contribute to the signal through electri-
cal superposition [79]. In addition, geometrical considerations
and temporal summation determine the actual form of LFP
recordings [79]. Nevertheless, summation of synaptic activity,
as demonstrated in our model, contributes to the generation
of both single neuronal recordings and LFPs. This implies
that LFPs can serve as a reasonable surrogate for activity at
the single neuronal and single synaptic level (and vice versa),
and results obtained from analysis of LFPs, single neuronal
intracellular recordings, and our theoretical results for single
synapses are comparable.

B. Neurotransmission and energy status are intimately related

In our model, we have focused on a glutamatergic synapse
because approximately 80% of neocortical neurons use glu-
tamate as their neurotransmitter, and approximately 85% of
neocortical synapses are excitatory. The supply of glutamate
for neurotransmission is thus essential for the functioning of
the brain [44,80]. For a signal to be processed at a glutamater-
gic synapse, previously released glutamate must be removed
efficiently from the synaptic cleft, and neurons must replenish
their supplies of glutamate. Astrocytes, as participants in the
tripartite synapse, are intimately involved in the recycling
of glutamate through the glutamate-glutamine cycle: the re-
leased glutamate is mostly reuptaken by astrocytes, converted
into glutamine, exported back to neurons, and then converted
back to glutamate for further neurotransmission [44]. No-
tably, similar considerations apply to GABAergic synapses
as well, although the pathway is somewhat different. In the
resting human brain, the glutamate-glutamine cycle consti-
tutes a major metabolic flux, accounting for approximately
80% of glucose oxidation [45]. Neurons are themselves
also very metabolically active due to significant energy ex-
pended for maintaining and resetting the resting membrane
potential for signaling [52,81]. Glutamatergic signaling thus
represents a major energy expenditure for both neurons and
astrocytes.

The universal energy currency for all cells is ATP. In brain
tissue, ATP is produced locally through glycolysis, oxida-
tive metabolism using acetyl coenzyme A (acetyl CoA) in
the mitochondria, or through nonlocal transport of lactate
produced via glycolysis in the astrocytes. This lactate is subse-
quently oxidized in glutamatergic terminals [82,83]. Notably,
however, in addition to being the major excitatory neurotrans-
mitter in the brain, glutamate is also used as a substrate for
production of ATP [44,45]. This allows it to be a metabolic
linkage between neurotransmission and energy availability in
the tripartite synapse.

Functionally, then, there is competition for glutamate to be
used as substrate for energy generation versus for neurotrans-
mission. This competition becomes the biochemically based
trigger for network-level changes, which in turn drive the
transitions between up and down states. The lack of glutamate
for either neurotransmission, or energy generation, or both,
during prolonged neuronal firing provides a potential function
for the state transitions: neurotransmitter and ATP stores are
regenerated during down states, and up states represent brief
wake-like states, similar to the concept proposed by Destexhe
et al. [5]. It has been posited that up states switch to down
states due to a fatigue mechanism such as spike frequency
adaptation currents or synaptic short-term depression, and this
fatigue mechanism recovers until the network switches back
into the up state [1]. Either the number of vesicles, or the
concentration of ATP, is inversely correlated with this “fa-
tigue variable,” depending on the regime [84]. Interestingly,
depletion of readily releasable neurotransmitter-filled vesicles
is one of the proposed mechanisms of short-term depression
[85]. Our model exhibits the phenomenon of short-term de-
pression due to shortage of vesicles, and even demonstrates
a high-pass filtering characteristic, as shown by Rosenbaum,
Rubin, and Doiron [86].
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C. Invivo modes of operation

The existence of multiple modes of operation begs the
question “Which regime do neurons operate in in vivo?” This
is a difficult question to answer, and it is likely that neurons
in different parts of the brain operate in different regimes at
different times, depending on the computational demands of
that region of the brain. What likely occurs is that synapses
function in one of the above regimes until they can no longer
be supplied sufficient raw resources (i.e., glutamine, glucose,
and other nutrients necessary for function), then they drop
into a further low state of function until they can recover
those resources. This adds another layer of use-dependence,
which has been seen in vivo (for example, see Vyzovskiy
et al. [3]). One intriguing possibility is that neurons function
in one of the regimes that allow brief bursts of extremely high-
frequency activity (Regime D or E), as an adaptive mechanism
for organisms to quickly respond to rapidly changing stimuli
in the environment (such as the appearance of a predator).
Since this sort of stimulus that needs to be rapidly processed
is relatively uncommon, the organism can “afford” to use up
all of its neuronal resources briefly in order to survive the
situation and recovers those resources by local and global
(behavioral) sleep.

D. Physiological insights from experimental systems:
A final common pathway?

We compared the predictions of our model regarding dura-
tions of the up and down states to six disparate experimental
models, and found that our results qualitatively matched the
results of those studies without changing any parameters
other than those that were varied in the experimental models.
Furthermore, we found that transition to Regime E was the
final common pathway for resource failure in several different
pathological states. Our model thus leads us to the following
testable hypotheses:

(1) Mechanisms leading to increased firing rate, such
as increased concentrations of glutamate receptor agonists,
GABAA receptor antagonists, or even high-frequency electri-
cal stimulation, will lead to operation of the tripartite synapse
in Regime E.

(2) Severely decreased flux through the TCA cycle will
lead to operation of the tripartite synapse in Regime E.

(3) Increased non-neurotransmission-related use of ATP,
such as in the context of severe proteinopathy, will lead to
operation of the tripartite synapse in Regime E.

(4) More speculatively, mitochondrial toxins, such as poi-
sons affecting the electron transport chain, or toxins causing
disruption of the proton gradient, will lead to operation of the
tripartite synapse in Regime E.

Synthesizing our findings, we speculate that severe enough
energy deprivation can lead to rapid cycling of up and down
states, regardless of initial cause, and this may be a single-
synapse neurochemical correlate of seizures. Furthermore,
this occurs even without the presence of glutamatergic ex-
citotoxicity, which would be expected to make the situation
worse. Notably, however, it may be that cell death occurs
prior to the appearance of this final common pathway, in some
circumstances.

E. Up and down states and “local sleep”

Sleep was previously viewed as an “all-or-none” phe-
nomenon: either an organism was asleep, or it was not [87].
However, this view has more recently been challenged by
multiple findings suggesting that sleep phenomena, such as
slow wave oscillations of sleep and their underlying neu-
ronal up and down states, occur locally and may occur even
during non-slow-wave-sleep states—a phenomenon that has
been called “local sleep.” It has been proposed that such
“local sleep” is use-dependent: specifically, that sleep serves
a function in synaptic plasticity, and since plasticity is a
local process, so too is (local) sleep [88]. Several studies,
including [89–91], have shown that slow wave sleep can
be altered in a use-dependent fashion in humans, and other
studies such as [92] have correlated local slow wave sleep
with underlying local up and down state oscillations. It was
subsequently shown that such local changes in slow wave
sleep can occur in a use-dependent fashion and correlate with
the development of neuronal up and down states in rats [3].
A different line of evidence shows that brain metabolism, as
measured by the cerebral metabolic rate of oxygen (CMRO2),
significantly decreases during slow wave sleep [93,94]. Thus,
there may be a correlation between use-dependent increases
in slow wave sleep and decreased brain metabolism in the
same regions. This is an intriguing association, and suggests
that further studies could investigate the changes in brain
metabolism that occur during use-dependent local sleep. Our
model directly demonstrates use-dependent state transitions
that are driven by utilization of cellular resources, and are
caused by network-level processes. It suggests that two major
classes of theories of sleep—that sleep is to maintain synaptic
connectivity (a network-level explanation), and that sleep is to
restore cellular resources (a cellular-level explanation) could
be unified through this biochemical-network interaction. It
has been pointed out that these two classes of theories are
not mutually exclusive and that “sleep could be a cellular
property precisely because the cell’s biochemistry, including
its metabolism, is driven by network activity” [95].

F. Limitations

Our model does present some limitations. We have mod-
eled network processes using a small set of parameters: ν,
ζ , Ecritical, and Ncritical. One limitation is that these param-
eters may not always be straightforward to determine. The
variable component of the input frequency ν is relatively
easy to conceptualize, but hides the rich interaction of den-
dritic inputs required to create the effective firing frequency.
This limitation could be ameliorated by including the other
compartments of the presynaptic neuron: dendrite, soma, and
axon. The network extinction parameter ζ encapsulates mul-
tiple network features, and is dependent on multiple factors
including network-level factors such as the structural and ef-
fective connectivity of the network, as well as cellular-level
factors such as the metabolic characteristics of the individual
neurons in the network (which are generally inhomogeneous
populations). The relationship between ζ and these factors is
unclear, and at least initially, the value of ζ for a particular
network would likely have to be empirically determined by the
behavior of the network. The biochemical parameters Ecritical
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and Ncritical are threshold values in the presynaptic terminal of
interest, which determine the behavior of the network. These
both are also dependent in unclear ways on the network-level
and cellular-level factors listed above, and similarly would
likely be empirically determined for real neuronal networks.

Another related limitation is the use of decision logic for
whether the presynaptic terminal fires or not, and whether
network firing “ignites” or “extinguishes” in our model. There
is no module inside a presynaptic terminal which “decides”
whether or not to fire by evaluating whether there are enough
resources available to it, nor does the network as a whole
“decide” whether to fire at a low or high rate. Rather, these are
determined purely by biochemical thermodynamic processes
and reaction kinetics. While it is theoretically possible to
represent all of these processes with differential equations,
there are an overwhelming number of reactions occurring in
real cells, and modeling all of these reactions is likely beyond
the capability of current computers. In addition, because the
extra competing reactions are not modeled in reduced realistic
models, the kinetic parameters that would result in realistic
model behavior are very likely not going to be the same
as those which would be measured in the real system. This
limits the ability to reproduce realistic results in the model
using empirically derived kinetic parameters—a problem
which is not encountered in more abstract phenomenological
models.

VI. CONCLUSIONS

We have demonstrated a model of the tripartite synapse
based on biochemistry, which encompasses the presynaptic
terminal, postsynaptic terminal, astrocytic process, and blood
vessel, derived entirely from elementary principles. Electrical
properties, specifically the calculation of the membrane po-
tential, are also based purely on first principles. The model
focuses on the biochemical processes occurring in the tripar-
tite synapse, including synaptic vesicle loading and release,
while still modeling essential network processes, making it
complementary to existing network integrate-and-fire models
and models based on the mean field formulation. Our model
connects neurotransmission and energy generation through
the competing uses of glutamate as substrate for each process,
and unlike other models, includes energy-utilizing processes
that are not directly related to neurotransmission (“vegetative”
processes). It qualitatively matches six disparate experimental
systems, including the alteration of up and down states in
the presence of low magnesium, in the presence of GABAA

receptor antagonist (leading to increased excitation; two mod-
els), with decreased firing rate due to changes in synaptic
protein expression, with varying amounts of glucose, and
with increased load of vegetative processes, without requiring
changes to the parameters utilized, other than those associated
with each experimental condition. It establishes a likely mech-
anism for the concept of “fatigue variables” leading to state
transitions, and also demonstrates a possible explanation (an
ignition phenomenon) for the findings that the states of single
neurons can determine the state of a network. With this model,
we demonstrate that biochemical processes within neuronal
networks can directly affect the network-level behavior of the
system, and provide a possible mechanism-function link for

the generation of neuronal up and down states. The interac-
tions between these biochemical processes may underlie the
phenomenon of “local sleep.” Resource limitation may lead
to a final common pathway of synaptic firing patterns. Ulti-
mately, sleep-like behavior may be a fundamental property of
networks of tripartite synapses.

The data that support the findings of this study are available
upon reasonable request from the authors.
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APPENDIX A: REPRESENTATIVE TIME
EVOLUTION OF A REGIME

The time evolution of a representative simulation is shown
in this section. Each simulation run had a “starting transient”
which lasted up to approximately 50 sec, which was not
included in the analysis. After this starting transient, each
regime showed steady behavior. In the representative simu-
lation, in which the system is in Regime C, distinct up and
down states are seen, as indicated by clearly distinct resting
membrane potentials (Fig. 9). Regime C is also a “vesicle-
limited” mode, and in this regime, the output frequency of
the representative synapse does drop sufficiently (due to lack
of available vesicles) to cause the network to “extinguish.”
Network signal “extinction” leads to a down state in the
representative tripartite synapse, allowing it to replenish its
stores of both releasable vesicles and ATP. When the amounts
of both resources surpass a specific threshold, the network
“ignites” again to go into an up state. In this regime, the
tripartite synapse is able to faithfully transmit signal (i.e.,
match the input frequency) for the entire up state. This al-
ternation of up and down states persists to the end of the
simulation.

APPENDIX B: COMPARISON TO
EXPERIMENTAL SYSTEMS

1. Considerations for a computational neurochemical model

The presence of a large number of degrees of freedom in
realistic biophysical models, such as ours, has been noted
previously by Bhalla and Bower [96]. These authors also
noted that for well-described systems (in their case, mitral
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FIG. 9. Time evolution of Regime C demonstrates cyclical alter-
nation between up and down states. ε = 0.3 Hz, ν = 4 Hz, ζ = 0.5.
Top trace: number of filled vesicles vs time. Second trace: presy-
naptic ATP vs time. Third trace: presynaptic membrane potential vs
time. Fourth trace: postsynaptic membrane potential vs time. Fifth
trace: finput vs time. Sixth trace: fMAO vs time. During an up state,
the vesicle number rapidly drops, and the representative tripartite
synapse reaches the criterion for “extinction” (ϕ = fMAO/ fmax < ζ ).
This signals the network to drop into a low-activity state— finput = ε.
When this occurs, the representative tripartite synapse drops into a
low-activity mode—the down state—and because of the low firing
activity, the vesicle pool and ATP concentrations are allowed to
replenish. After meeting ignition criteria, the network is imputed
to have sufficient resources for spontaneous firing of component
synapses to “reignite” the network, leading to the high-activity
state—the up state. The cycle then repeats.

cells of the olfactory bulb), even realistic models with many
parameters can be constrained by experimental data, and
only one set of parameters in the parameter space may fit
that data. On the other hand, for less-well-known systems
(granule cells of the olfactory bulb in their work), there
may be several regions within the parameter space that can
successfully reproduce the experimental data. In this situa-
tion, they stated both that experimental data are necessary
to constrain model parameters, and that there is utility in

“careful studies of parameter space [from the model] as
a guide to future experimental work” [96]. Of note, most
current models are designed to match one specific dataset,
whereas we are qualitatively matching multiple disparate ex-
perimental datasets with one model. The parameters in our
model may be adjusted to more closely match an individual
dataset.

However, there are several caveats to note. One important
consideration is that even with a complex model such as ours,
not all of the processes in the real cell are modeled—for
instance, we excluded reaction pathways such as the pentose
phosphate pathway, and fatty acid synthesis and oxidation.
These pathways do exist in real cells, and even if kinetic
parameters are measured empirically, they may be different
than what is needed for the model to closely replicate the
empirical data, because there is competition for substrate with
the additional unmodeled pathways. Another caveat is that the
kinetic parameters likely vary between species, and may vary
within species, or even within a specific individual (based
on the region assessed, the time assessed, or the state of the
organism). Finally, the experimental procedures themselves
may alter the measurement of the model parameters. If, for
instance, an inhibitor is used to block a competing pathway
in order to measure a kinetic rate constant, there is no way to
know whether that inhibitor also has off-target effects. These
issues make fitting empirical data to a simplified but realistic
model an approximate art at best.

2. Increasing input frequency leads to resource limitation,
causing significant decreases in the durations of up states,

similar to those seen in two invitro cortical slice experiments

In an in vitro slice model from young and adult mice,
Skrempou [73] examined differences in seizure threshold
from neocortical and hippocampal (CA3) tissue. It was
demonstrated that in the presence of low magnesium, the
duration of up states in the slices progressively decreases over
time. It is hypothesized that epileptiform activity develops
in low magnesium conditions due to the gradual release of
the Mg2+ blockade of the excitatory N-methyl-D-aspartate
(NMDA) glutamate receptor. This release of excitation cor-
responds to an increased firing frequency in our model. We
found that the up state durations in Regimes C, D, and E
corresponded well with Skrempou’s [73] “control” condition
(normal magnesium), and “early” and “intermediate” peri-
ods after applying low magnesium conditions, respectively
(Fig. 10). Skrempou did not investigate the effects of low
magnesium on the duration of down states [73].

Mann, Kohl, and Paulsen [74] evaluated the roles of
GABAA receptors in persistent cortical activity in another
in vitro slice model from young rat entorhinal cortex. They
showed that the up state duration monotonically decreased
with increasing concentration of the GABAA receptor an-
tagonist gabazine. An increasing concentration of GABAA

receptor antagonist corresponds with an increase of the firing
frequency in our model, and we also found a monotonically
decreasing up state duration with increasing firing frequency
in the transition from Regime D to Regime E (Fig. 11). Mann,
Kohl, and Paulsen did not investigate the effects of gabazine
on the duration of down states [74].
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FIG. 10. Up state duration decreases with increasing firing fre-
quency (due to release of blockade of excitation) in an experimental
system, as predicted by our model. The normalized duration of the
up state decreased progressively with time in the experimental model
by Skrempou [73] after the removal of magnesium ions from the
extracellular medium, which was thought to be due to facilitation of
excitation by releasing the Mg2+ blockade of NMDA receptors. This
leads to an increased neuronal firing rate. Our model demonstrates
a similar significant decrease in the duration of the up state with a
transition from Regime C, to Regime D, to Regime E. We chose a
representative frequency (ν = 4 Hz) from the lower end of Regime
C, a representative frequency (ν = 6.5 Hz) within Regime C near the
border with Regime D, and a frequency at the lower end of Regime
E (ν = 13 Hz), to demonstrate this result.

3. Increasing input frequency leads to resource limitation,
causing significant decreases in the durations of up states,
similar to those seen in an invivo cortical slab experiment

Chen et al. [75] investigated the “network dynamics in
the extreme case of a complete blockage of inhibition” in a
cortical slab model in cats. To examine this, they applied a
different GABAA receptor antagonist, bicuculline, to the slab
preparations. Although they did not evaluate concentration-
dependent differences, they did show a significant drop in
duration of the “active state” by 4.7–7 fold with application
of bicuculline. Our model also demonstrated a large decrease
in up state duration by approximately 11 fold with transition
from Regime C (intermediate ν) to Regime E (high ν). Chen
et al. did not investigate the effects of bicuculline on the
duration of down states [75].

4. Decreasing input frequency leads to increased resource
availability, causing prolonged up states and down states
of unchanged duration, similar to those seen in an invivo

experiment

Huo et al. [76] noted that amyloid precursor protein (APP)
is present in both presynaptic and postsynaptic terminals,
and is critical for synaptic plasticity. They observed that
while much attention has focused on the pathological signif-
icance of APP, much less is known about the physiological
function of the protein. As such, they examined how pres-
ence or absence of APP could alter network activity, as
assessed by changes in up and down state oscillations. In
an in vivo mouse model, they demonstrated that in APP
knockout mice (APP−/− mice), the duration of up states

FIG. 11. Up state duration decreases with increasing firing fre-
quency (due to blockade of inhibition) in an experimental system,
as predicted by our model. The normalized duration of the up state
decreases significantly in the experimental model by Mann, Kohl,
and Paulsen [74] with the addition of a high concentration of GABAA

receptor antagonist, which increases the excitability of the system
by decreasing the inhibition. This, in turn, leads to an increased
neuronal firing rate. Our model demonstrates a similar significant
decrease in the duration of the up state with a transition from Regime
C or Regime D to Regime E. We chose a representative frequency
(ν = 12 Hz) at the higher end of Regime D, and a frequency at the
lower end of Regime E (ν = 13 Hz), to demonstrate this result.

increased significantly compared to their wildtype littermates.
In addition, the number of action potentials per up state
decreased in APP knockout mice compared to wildtype (al-
though not reaching statistical significance). In contrast, the
down state duration was nearly identical in the two condi-
tions. Our model qualitatively replicates these findings, with
the average number of action potentials per active up state
from Huo et al. corresponding to the firing frequency in our
model. In Fig. 12(a), we show a decrease in the normalized
firing frequency comparable to that in Huo et al.’s exper-
imental condition (APP knockout mice). With the specific
decrease in firing frequency chosen (from 6.5 Hz to 5 Hz),
our model shows a prolongation in the up state duration com-
parable to that seen in Huo et al.’s work [Fig. 12(b)]. The
down state duration did not appreciably change in our model
(see also Fig. 7).

5. The duration of the down state, but not the up state, increases
with decreasing concentrations of glucose, similar to an invitro

cortical slice experiment

We next examined the effect of changes in the bound-
ary condition of the concentration of glucose present in the
blood vessel in our model, maintaining all of the other pa-
rameters the same. Although the concentration of glucose
in the blood vessel was held constant (see Assumptions in
“specification of model,” Supplemental Material [46]), us-
ing a different value of blood glucose concentration changed
the time evolution of the model, because the modeled re-
actions utilized first-order kinetics with mass balance. We
found that as the boundary condition concentration of glu-
cose, which supplies substrate for both ATP generation and
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FIG. 12. Up state duration increases with decreasing firing fre-
quency in an experimental system, as predicted by our model. (a) The
normalized frequency in the up state decreases in the experimental
system of Huo et al. [76] in the active state (APP knockout mouse,
APP−/−) compared to the control (wild-type, WT). Based on the data
depicted in Fig. 7, we chose a frequency (6.5 Hz) within Regime C
(near the border with Regime D) to represent the control state, and
another frequency (5 Hz) within Regime C to represent the active
state, such that the fold change in frequency is similar to that seen
in the experimental system. (b) The normalized duration of the up
state increases in the experimental system in the active state (APP
knockout mouse) compared to the control (WT). In our model, using
the same frequencies as in (a), the normalized duration of the up state
increases in the active condition compared to control, similar to the
experimental model.

neurotransmitter synthesis, was decreased, initially the up
state duration remained roughly constant, but the down state
duration significantly increased (Fig. 13). Cunningham et al.
[77] studied an in vitro model using rat entorhinal cortical
slices and found that slow-wave oscillations in the slices
were dependent on their metabolic states. More specifically,
they found that the down state durations were significantly
longer at lower glucose concentrations, with roughly sta-
ble up state durations, just as was seen in our model. We
compared normalized values of glucose concentration ver-
sus normalized down state duration, and found a similar
increase in normalized down state duration with decreasing
normalized glucose concentration in both the empirical sys-
tem and our model (Fig. 14). When we further decreased
the glucose concentration in our model, we found that there
was a sudden drop in both the up and down state durations
(Fig. 13).

FIG. 13. Concentration of blood glucose, which serves as sub-
strate for both energy generation and neurotransmitter synthesis,
affects the duration of up and down states. ε = 0.3 Hz, ν = 7 Hz,
ζ = 0.5. Glucose supplies both the substrate for neurotransmitter
(glutamate) and energy (ATP) generation in the tripartite synapse.
As the availability of glucose decreases, the availability of both
neurotransmitter and ATP decreases. This initially causes an increase
in the durations of the down state; the duration of the up state stays
roughly constant. As the glucose concentration continues to drop,
the durations of the up and down states suddenly drop, indicating
transition into Regime E with ATP limiting signal transmission in
the tripartite synapse.

6. The durations of both the up and down states increase with
increasing “vegetative” use of ATP, representing an additional

sink for energy resources, similar to an invivo model
of neurodegeneration

As noted in “specification of model” in the Supplemen-
tal Material [46], “vegetative” functions in the cell include
transcription, protein synthesis, and other “housekeeping”
processes not directly related to neurotransmission or en-
ergy generation. In neurons, one such set of ATP-dependent
cellular processes is the refolding or disposal of misfolded
proteins, mediated by heat-shock proteins, the ubiquitin pro-
teasome machinery, and autophagy [97–100]. These systems
are upregulated, and likely overwhelmed, in a variety of neu-
rodegenerative diseases such as Alzheimer’s disease, due to
increased loads of misfolded proteins, leading these diseases
to be classified as “proteinopathies” [101]. As such, neu-
rodegenerative diseases are appropriate models for systems
where the “vegetative” use of ATP is increased, representing
an additional sink for energy resources. In an anesthetized
triple transgenic mouse model of Alzheimer’s disease (APP-
Swe/PS1M146V/tauP301L, called a 3xTg mouse model),
Castano-Prat et al. [78] found that the down state duration
increased and the up state duration showed a trend to increase
in only the transgenic mice at 20 months of age, but not con-
trol mice. Importantly, while younger transgenic animals (7
months) did have intracellular Aβ immunoreactivity, the older
mice (20 months) had significantly worse pathology with
presence of Aβ plaques and neurofibrillary tangles throughout
the neocortex, suggesting a significantly worse load of mis-
folded proteins.
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FIG. 14. Down state duration increases with decreasing glucose
concentration in an experimental system, as predicted by our model.
The normalized duration of the down state increases significantly in
the experimental model by Cunningham et al. [77] with decreasing
glucose concentration in the artificial cerebrospinal fluid (aCSF).
This is replicated in our model with decreasing glucose concentra-
tion (using the same change in glucose concentration as depicted in
Fig. 13).

We explored the effects of an increased “vegetative” use
of neuronal ATP in our model by increasing the rate constant
for neuronal vegetative processes in the presynaptic terminal,
with all other parameters held constant. When the “vegetative”
use of neuronal ATP was increased moderately, we found
that both the up state and down state durations increased,
although the down state duration increased more compared to
the up state duration (Fig. 15). This is similar to the findings
of Castano-Prat et al. [78] for both the up state duration
[Fig. 16(a)] and the down state duration [Fig. 16(b)]. When
the “vegetative” use of neuronal ATP was increased further in
our model, again the up and down state durations significantly
decreased (Fig. 15).

7. Methods for comparison to experimental systems

a. Comparison of our model vs Skrempou [73]

Figure 2 from Skrempou [73] was evaluated. Values for
the durations of the up state from adult and young mice in the
control condition (normal concentration of magnesium) were
obtained from the text. Data from the primary somatosensory
cortex of the whiskers in adult mice were selected for further
analysis (Fig. 2C, left panel, from Skrempou [73]), as trends
were similar in both primary somatosensory cortex and pri-
mary motor cortex in both adult and young mice. Data points
for up duration (s) in the primary somatosensory cortex of the
whiskers from adult mice were measured using the measuring
tool in Adobe Acrobat DC (Adobe, San Jose, California), and
the depicted data points were measured with a precision of
0.01 inches. These values were then scaled by the measured
distances between the labeled marks on the figure axes to
obtain numerical values for up state durations. The up state
durations were normalized by the up state duration of the
control condition.

FIG. 15. Increasing non-neurotransmission-related ATP uses,
representing additional sinks of energy resources, affect duration
of up and down states. ε = 0.3 Hz, ν = 7 Hz, ζ = 0.5. Non-
neurotransmission-related ATP uses encompass numerous processes
such as transcription, translation, cellular signaling, cellular mainte-
nance, and cellular recovery/repair processes. These are collectively
represented as “vegetative” processes. As ATP use in “vegetative”
processes increased, initially the durations of both the up and down
states increased. With further increase, the durations of the up and
down states suddenly dropped significantly, representing a transition
into Regime E, where signal transmission is limited by the absence
of sufficient ATP.

We then obtained equivalent data from our model. We com-
pared simulations with the following critical parameters kept
constant: ε = 0.3 Hz, ζ = 0.5, τsynapse = 25 ms, glucose =
0.02 M. The variable component of input frequency was set at
ν = 4 Hz as a representative value at the lower end of Regime
C; ν = 6.5 Hz as a representative value within Regime C near
the border with Regime D; and ν = 13 Hz as a representative
value at the lower end of Regime E. The up state durations
were then normalized by the up state duration at ν = 4 Hz.
These results were then plotted against those obtained from
Skrempou [73].

b. Comparison of our model vs Mann, Kohl, and Paulsen [74]

Figure 2 from Mann, Kohl, and Paulsen [74] was evaluated.
The duration and mean interspike interval during up states
with differing concentrations of GABAA receptor antagonist
were obtained from the text. These were associated to obtain
duration of up state as a function of mean interspike interval.
The duration of up states was normalized by the duration of
the up state with no GABAA receptor antagonist.

We then obtained equivalent data from our model. We
compared a simulation within Regime D (ν = 12 Hz)
and a simulation within Regime E (ν = 13 Hz). Because
τsynapse limits the maximum frequency the model can run
at (1/τsynapse = νmax; with τsynapse = 25 ms, νmax = 40 Hz),
testing a frequency of ν = 98 Hz would be outside of the valid
bounds for the model; our model shows that there was not
much difference in up state duration beyond ν = 13 Hz (data
not shown). We calculated the normalized up state duration for
Regime E (ν = 13 Hz, ε = 0.3 Hz, ζ = 0.5, τsynapse = 25 ms,
[glucose] = 0.02M), taking Regime D (ν = 12 Hz, ε = 0.3
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FIG. 16. Both up and down state durations increase with in-
creasing “vegetative” use of ATP (due to increased protein load)
in an experimental system, as predicted by our model. (a) The
normalized duration of the up state increased in the experimen-
tal model by Castano-Prat et al. [78]. Increasing age in the 3xTg
mouse model has been associated with increased burden of Aβ

plaques and neurofibrillary tangles, the presence of which implies
upregulation of ATP-requiring processes to attempt to degrade the
misfolded proteins. This finding is replicated in our model with
increasing “vegetative” use of ATP, indicated by the rate constant
for “vegetative” processes (kVeg). The value of kVeg was set at 0.2
for the “low” protein load, and 0.5 for the “high” protein load. (b)
Similarly, the normalized duration of the down state increased in both
the experimental model by Castano-Prat et al. [78] and our model.

Hz, ζ = 0.5, τsynapse = 25 ms, [glucose] = 0.02 M) as “con-
trol.” These values were then plotted against those obtained
by Mann, Kohl, and Paulsen [74].

c. Comparison of our model vs Chen et al. [75]

Figure 2 from Chen et al. [75] was evaluated. The mean du-
ration of the active state in control cortical slabs was obtained
from the text. The authors quoted a range for the duration
of the active states in the cortical slabs with the application
of bicuculline. A range of fold decrease in duration of active
state with application of bicuculline was calculated, with the
assumption that the durations of active states were normally
distributed. This was compared against the fold decrease in up
state duration derived from our model (ε = 0.3 Hz, ζ = 0.5,
τsynapse = 25 ms, [glucose] = 0.02 M) within Regime C near
the border with Regime D (ν = 6.5 Hz) to the lower end of
Regime E (ν = 13 Hz).

d. Comparison of our model vs Huo et al. [76]

Figure 1 from Huo et al. [76] was evaluated. The mean
duration of up states and the average number of action po-
tentials per active up state were both obtained from the text.
The mean duration of up states was normalized by the mean
duration of up states in the control condition, and the average
number of action potentials per active up state was also nor-
malized by the average number of action potentials per active
up state in the control condition. These were then compared
with results from our model. The variable components of input
frequencies were chosen within Regime C (from Fig. 7) to
approximate the fold change in the average number of action
potentials per active up state in Huo et al. [76] experimental
condition. The model was run with ε = 0.3 Hz, ζ = 0.5,
τsynapse = 25 ms, [glucose] = 0.02 M and ν = 6.5 Hz (equiv-
alent to control) and ν = 5 Hz (equivalent to experimental
condition). The firing frequencies and up state durations were
normalized to their respective values for the equivalent control
condition.

e. Comparison of our model vs Cunningham et al. [77]

Figure 1 from Cunningham et al. [77] was evaluated. The
durations of the down-phase periods as a function of the
glucose concentration were obtained from the text. The down
state durations were normalized by the down state durations
at 10 mM glucose.

We then obtained equivalent data from our model. We
compared simulations with the following critical parameters
kept constant: ν = 7 Hz, ε = 0.3 Hz, ζ = 0.5, τsynapse = 25
ms. Glucose concentration was set at 0.03M and 0.015M,
and the down state durations for these two simulations were
calculated. The down state durations were then normalized by
the down state durations at a [glucose] of 0.03M. These results
were then plotted against those obtained from Cunningham
et al. [77].

f. Comparison of our model vs Castano-Prat et al. [78]

Figure 2 from Castano-Prat et al. [78] was evaluated. Data
points for up duration (s) versus age of mouse (3xTg mu-
tant mouse only) (Fig. 2F from Castano-Prat et al. [78]) and
down duration (s) versus age of mouse (3xTg mutant only)
(Fig. 2C from Castano-Prat et al. [78]) were measured using
the measuring tool in Adobe Acrobat DC (Adobe, San Jose,
California), and the depicted data points were measured with
a precision of 0.01 inches. These values were then scaled
by the measured distances between the labeled marks on the
figure axes to obtain numerical values for up and down state
durations. The up and down state durations were normalized
by the up and down state durations of the young 3xTg mutant
mice, respectively. Durations of up and down states for the
cortical areas (prelimbic cortex, primary motor cortex, pri-
mary somatosensory cortex, and primary visual cortex) were
pooled by Castano-Prat et al.

We then obtained equivalent data from our model. We
compared simulations with the following critical parameters
kept constant: ν = 7 Hz, ε = 0.3 Hz, ζ = 0.5, τsynapse = 25
ms, [glucose] = 0.02 M. The reaction rate parameter (kVeg)
value for the “vegetative” use of ATP was set at 0.2 and 0.5,
and the up and down state durations for these two simulations
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FIG. 17. Poisoning the mitochondrial electron transport chain
process for energy generation alters the duration of up and down
states. ε = 0.3 Hz, v = 7 Hz, ζ = 0.5. The mitochondria supply the
vast majority of ATP to all three components of the tripartite synapse.
The complex 5 k f is the effective forward rate reaction constant
for complex 5 generating ATP. As the k f decreases, the efficiency
of ATP generation decreases, and there is initially an increase in
the durations of both the up state and the down state, although
the increase in the down state is much more prominent than that
in the up state. Eventually, when mitochondrial ATP generation is
sufficiently impaired, the duration of the up and down states suddenly
drops, indicating transition into Regime E with ATP limiting signal
transmission in the tripartite synapse. The complex 5 k f was simulta-
neously varied in the presynaptic terminal, postsynaptic terminal, and
astrocytic compartments, to replicate the presence of a mitochondrial
toxin.

were calculated. The up and down state durations were then
normalized by the up and down state durations at a kVeg of 0.2.
These results were then plotted against those obtained from
Castano-Prat et al. [78].

8. Predictions for a different experimental system

Our model allows for evaluation of mitochondrial dys-
function, and its effects on the functioning of the tripartite
synapse. We evaluated the effects of decreasing the efficiency
of the mitochondrial electron transport chain, specifically at
mitochondrial complex 5, a procedure which simulates the
introduction of a mitochondrial complex 5 toxin (Fig. 17).
We found that, like with increasing vegetative ATP use, “poi-
soning” mitochondrial complex 5 initially led to increased
durations for both the up and the down states, prior to a
transition into Regime E. In combination with the results of
the simulations with decreased glucose, and increased “vege-
tative” ATP use, this suggests that energy shortage, regardless
of cause (decreased substrate causing decreased generation,
increased use, or direct decreased generation) leads to mani-
festation of Regime E.

9. Analysis of experimental systems and rationale for hypotheses

Here we present our hypotheses generated by the results
of our model, and analyze how the hypotheses are applied

to the experimental systems evaluated, in addition to other
pathological conditions.

a. Hypothesis 1: Mechanisms leading to increased firing rate
will lead to operation of the tripartite synapse in Regime E

The experimental systems by Skrempou; Mann, Kohl, and
Paulsen; Chen et al.; and Huo et al. each exhibits changes in
up and down state durations due to altered firing rates [73–76].
Skrempou’s work actually showed evolution of up state du-
rations over time, similar to transitions in our model from
Regime C to (Regime D to) Regime E with increasing variable
component of input firing frequency (ν). The transitions in
Skrempou’s model system were attributed to progressively
increased excitability caused by a gradual release of NMDA
receptor blockade [73]. Kovac et al. [102] has shown that the
increased activity in a low-magnesium model is dependent on
vesicular glutamate release and on activation of the NMDA
receptor, supporting the concept of increased firing rate as the
mechanism for excitation. They also observed that neuronal
ATP appeared to be depleted in an activity-dependent fashion
in their model. Interestingly, Shindo et al. [103] demonstrated
that glutamatergic excitotoxicity leads to extrusion of mag-
nesium from neurons, and inhibitors of that extrusion both
attenuated cell death and attenuated the decrease in intracellu-
lar ATP caused by excitotoxicity. This suggests that a lack of
ATP may also contribute to the transition into Regime E-like
behavior seen in the low-magnesium model. The exact mech-
anism of ATP depletion in low-magnesium states is unclear,
as magnesium plays important roles in numerous cellular
reactions, both related to energy metabolism and otherwise
[104]. Indeed, the role of magnesium is complex even in the
functioning of a single enzyme complex, the mitochondrial
ATP synthase [105].

Rather than increasing excitation, both Mann, Kohl, and
Paulsen and Chen et al. [74,75] blocked inhibition by applying
a GABAA receptor antagonist. This blockade of inhibition
led to increasing firing frequencies and consequently signif-
icantly decreased up state durations. This corresponds with
transitions from Regime C or Regime D into Regime E with
increased ν in our model. Thus, increasing input firing fre-
quency, whether by increasing excitation (low-magnesium
model) or by decreasing inhibition (inhibition of GABAergic
neurotransmission), leads to operation of the tripartite synapse
in Regime E.

Finally, although Huo et al. [76] concluded that knocking
out APP led to hyperexcitability of neural network activity
(due to prolonged up state durations), they actually demon-
strated that this alteration led to both a prolongation of up
state duration and a decrease in the firing frequency (average
number of action potentials per active up state) of the neurons.
This suggests that the network was actually becoming less
excitable, and corresponds to moving along the curve toward
the left (lower ν) in Fig. 7. The only regime in which the
up duration changes and the down duration stays constant,
as found by Huo et al. [76], is Regime C. While this model
did not show a transition into Regime E, the behavior of the
system with decreasing firing frequency is consistent with the
results of our model.
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b. Hypothesis 2: Severely decreased flux through the TCA cycle
will lead to operation of the tripartite synapse in Regime E

Cunningham et al. found that the up state duration re-
mained approximately constant while the down state duration
increased, with decreasing glucose [77], in line with our find-
ings. However, they did not investigate the durations of the
up and down states with even lower glucose concentrations;
we are not aware of any groups that have directly exam-
ined up and down states in severely hypoglycemic neurons
to test hypothesis (2). However, it is well known that se-
vere hypoglycemia can lead to seizures [106], and it may
be that the seizure-like activity is related to a similar tran-
sition into a Regime E-like firing pattern in vivo, caused
by insufficient ATP. Intriguingly, focal seizures can also be
seen in another condition, hyperosmolar hyperglycemic state
(HHS; also called nonketotic hyperglycemia). Various pos-
sible mechanisms have been suggested for this, including
metabolic derangements (hyperosmolarity, dehydration, or
hyponatremia), increased metabolism of GABA for energy,
inhibition of the Krebs (TCA) cycle, and focal cerebral is-
chemia [107–109]. Increased metabolism of GABA, the major
inhibitory neurotransmitter in the brain, would lead to in-
creased firing rate, resulting in a Regime E-like firing pattern.
Inhibition of the TCA cycle and focal cerebral ischemia both
suggest the absence of adequate energy stores, again leading
to a Regime E-like firing pattern. It has also been noted that
the focal seizures may be reflex seizures (seizures caused by
sensory input), posture-induced seizures (seizures caused by
“active or passive movement or posturing of a body part”
[109]), or occipital lobe seizures (involving the visual cortex,
the part of the brain that processes vision) [107]. Metabolic
abnormalities typically induce generalized seizures [107]. We
speculate that focal seizures occur in HHS when those focal
areas tip over into Regime E from additional, use-dependent,
neuronal activity (from processing sensory information or
performing motor actions).

c. Hypothesis 3: Increased non-neurotransmission-related use of
ATP will lead to operation of the tripartite synapse in Regime E

As described previously, proteinopathies such as
Alzheimer’s disease represent good models for increased
non-neurotransmission-related use of ATP. Castano-Prat

et al. found that elderly mice with increased brain pathology
had longer durations of down states (and a trend toward
longer duration in up states) [78]. We modeled the increased
pathological protein load as an increase in the “vegetative”
use of neuronal ATP, and found that initially both up and
down state durations increased with increasing “vegetative”
ATP use, as in the experimental model. However, when
this “vegetative” ATP use was increased further, the up
and down state durations significantly decreased, with the
model transitioning into Regime E. We are not aware of
any experiments evaluating up and down state durations
in even more severe models of proteinopathy, to test
hypothesis (3). However, it has been found that both
“network hyperexcitability” and seizures can occur during
even the early stages of Alzheimer’s disease [110]. In
multiple sclerosis, a neuroinflammatory disorder with later
neurodegenerative features, it is known that neuronal-glial
metabolic interactions are disrupted, and it has been noted
that there is increased synaptic transmission of pain signals,
as well as a loss of interneurons [111]. Seizures also occur in
multiple sclerosis, and it has been speculated that this may
be due in part to loss of GABAergic neurons, or possibly due
to dysregulated glutamate processing by astrocytes [112]. We
wonder whether seizures occur in multiple sclerosis due to
a loss of sufficient energy resources from the combination
of disruption of normal neuronal-glial metabolic processes,
increased non-neurotransmission-related energy expenditure,
and loss of inhibitory interneurons (leading to increased firing
rate), and it would be interesting to evaluate the changes in up
and down state durations that may occur in this pathology.

d. Hypothesis 4: Mitochondrial toxins will lead to operation of the
tripartite synapse in Regime E

Regarding hypothesis (4), we are not aware of any investi-
gation into the duration of up and down states in mitochondrial
dysfunction, either genetic or due to toxins, although there
has recently been the development of a model of mitochon-
drial epilepsy which could investigate this scenario [113]. Of
note, however, in living systems, mitochondrial dysfunction
may lead to premature cell death prior to the development of
Regime E. We hope that the hypotheses generated through
analysis of our model will spur further experimental explo-
ration using this and other systems.
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