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Many cellular processes such as endocytosis, exocytosis, and vesicle trafficking involve membrane deforma-
tions, which can be analyzed in the framework of the elastic theories of lipid membranes. These models operate
with phenomenological elastic parameters. A connection between these parameters and the internal structure of
lipid membranes can be provided by three-dimensional (3D) elastic theories. Considering a membrane as a 3D
layer, Campelo et al. [F. Campelo et al., Adv. Colloid Interface Sci. 208, 25 (2014)] developed a theoretical basis
for the calculation of elastic parameters. In this work we generalize and improve this approach by considering
a more general condition of global incompressibility instead of local incompressibility. Crucially, we find an
important correction to the theory of Campelo et al., which if not taken into account leads to a significant mis-
calculation of elastic parameters. With the total volume conservation taken into account, we derive an expression
for the local Poisson’s ratio, which determines how the local volume changes upon stretching and permits a
more precise determination of elastic parameters. Also, we substantially simplify the procedure by calculating
the derivatives of the moments of the local tension with respect to stretching instead of calculating the local
stretching modulus. We obtain a relation between the Gaussian curvature modulus as a function of stretching and
the bending modulus, showing that these two elastic parameters are not independent, as was previously assumed.
The proposed algorithm is applied to membranes composed of pure dipalmitoylphosphatidylcholine (DPPC),
dioleoylphosphatidylcholine (DOPC), and their mixture. The following elastic parameters of these systems are
obtained: the monolayer bending and stretching moduli, spontaneous curvature, neutral surface position, and
local Poisson’s ratio. It is shown that the bending modulus of the DPPC/DOPC mixture follows a more complex
trend than predicted by the classical Reuss averaging, which is often employed in theoretical frameworks.
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I. INTRODUCTION

The shape of lipid membranes of living cells changes dur-
ing a variety of cell processes: exo- and endocytosis, vesicle
trafficking, assembly of viruses, embedding of proteins, etc.
[1]. Membrane reshaping is controlled by the energetic cost
of involved deformations, for which the theory of elastic-
ity is often employed [2–12]. The Helfrich model, one of
the most influential continuous theories in the field of lipid
membranes, considers a lipid membrane as a structureless
thin fluid film. Mathematically, this film can be modeled as
a two-dimensional (2D) surface S, the deformations of which
are described by the elastic energy functional [13]

w =
∫

S

(
k

2
(K − K0)2 + k̄KG

)
dS, (1)

where
∫

S dS is the integration over S, K is the extrinsic cur-
vature, KG is the Gaussian curvature, K0 is the spontaneous
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curvature, k is the bending modulus, and k̄ is the Gaussian
curvature modulus.

The scope of the Helfrich model is limited by macroscopic
length scales that are much larger than the thickness of lipid
bilayers. More elaborate theories are used to take into ac-
count more microscopic deformations [4,11,12,14–17]. These
models take into account the inner structure of lipid bilayers,
omitted in the Helfrich model. Detailed 2D elasticity models
extend their application to each lipid monolayer and introduce
an additional internal degree of freedom, the so-called tilt
deformation. This deformation describes the deviation of lipid
tails from the normal to a monolayer surface. Consideration
of a lipid membrane at a microscale not only is of funda-
mental interest per se but also provides tools for describing
the processes occurring at the microscale: stalk formation
during membrane fusion [2,6], fission [3,18], pore formation
[9,10], membrane-mediated interaction between membrane
inclusions (membrane proteins, antimicrobial peptides, and
regulatory lipids) [12,17,19–25], or structure of the interface
boundary between different membrane phases [4,26]. An al-
ternative approach to taking into account the internal structure
of lipid membranes is to use the classical theory of elasticity
and describe lipid bilayers as elastic plates of finite thickness.
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These models enable a detailed description of lipid-protein
interactions [27–29]. Microscopic theories are also used to de-
velop and refine the corresponding 2D models: For example,
the model of Hamm and Kozlov [14] is based on the classical
3D theory of elasticity. Recently, the classical 3D theory of
elasticity shed light on the nature of the tilt-curvature coupling
in lipid membranes [15–17]; the importance of the curvature
gradient contribution to the elastic energy was also empha-
sized [17]. It was also shown that the Gaussian curvature term
in the elastic energy leads to membrane instability when the
tilt degree of freedom is taken into account [17].

Another advantage of considering lipid membranes as a 3D
elastic medium is that it permits the calculation of elastic pa-
rameters for phenomenological models. A major set of elastic
parameters, such as membrane stretching modulus, bending
modulus, spontaneous curvature, and position of the neutral
surface, can be calculated from the local stretching modu-
lus E (z) [14,15,17,30], where z is the coordinate along the
membrane thickness. In this work we show that an important
mechanical property, the local Poisson’s ratio ν(z), can be
obtained using the microscopic elastic theory. Both E (z) and
ν(z) can be characterized by the response of local stresses
distributed inside a lipid membrane to changes in external
pressure. While the local stretching modulus can be derived
from the stress profiles (pressure profile with a negative sign)
obtained under different surface tensions [31], we show in
this work that the local Poisson’s ratio can be derived as a
response of the stress profile to a change in isotropic ambient
pressure. Since the stress profile calculation is a routine task
in molecular-dynamics (MD) simulations, the microscopic
theory provides a straightforward way of calculating elastic
parameters in silico.

Despite the presence of the theoretical basis for calculating
elastic parameters from the stress profiles, only one elastic
parameter is determined this way, the monolayer spontaneous
curvature. The method is based on the calculation of the
first moment of the stress profile, which gives the product
of the bending modulus and spontaneous curvature of a lipid
monolayer. Therefore, to measure the spontaneous curvature,
it is necessary to know the value of the bending modulus,
which is usually obtained from simulations or experiments
in some other way [32–35]. One of the most popular in sil-
ico methods for the measurement of the bending modulus is
the spectral analysis of membrane undulations. This method
relies on monitoring fluctuations [15,16,34,36–43] of either
a membrane surface or the orientation of individual lipids,
called directors. Although this method is quite accurate and
requires the simulation of systems of moderate size [41,42],
it has mainly been applied to single-component systems. The
consideration of lipid mixtures demands assumptions, the va-
lidity of which is rather vague, such as an analog of the Reuss
averaging employed in Ref. [36] for the bending modulus.
In addition, a recent comprehensive study [43] shows that
ambiguity in the definitions of membrane surfaces and di-
rectors leads to substantial systematic errors that can reach
40% (according to row 2 of Fig. 5 in Ref. [43]). Another
popular method for determining the bending modulus is based
on membrane buckling [44,45]. Although this approach has
the advantage of not assuming any microscopic underpin-
ning of the Helfrich Hamiltonian, the composition-curvature

coupling effect [46,47] makes this method inapplicable to
multicomponent lipid membranes. All existing methods for
the determination of membrane elastic parameters usually
focus on only one elastic parameter. Therefore, a complete
analysis of the mechanical properties of lipid membranes re-
quires several different analyses and simulations. Contrary to
this, the stress profile approach provides all the major elastic
parameters in one method, thereby significantly simplifying
the procedure.

Here we propose an in silico method for the determination
of membrane elastic parameters based on the calculation of
the lateral stress profiles of planar bilayers obtained at various
external pressures. This method relies on a fundamental phys-
ical characteristic of membrane material, the local stress, and
lacks the ambiguity of the fluctuations-based methods. Also,
the planar configuration ensures that the curvature and lipid
composition are not coupled as in approaches using nonpla-
nar configurations such as the buckling procedure. The only
requirement for the proposed method is a proper sampling of
local stresses, which is usually easy to achieve in MD sim-
ulations. It enables studying not only lipid mixtures but also
potentially other lipid systems, such as monolayers in contact
with water and oil, membranes with embedded proteins, or
other adsorbed molecules.

The first attempt to relate the elastic parameters to the stress
profile was made in Ref. [31]. Although the authors provided a
basic theoretical framework for determining membrane elastic
moduli, neither error analysis nor explicit values of the elastic
parameters were provided. Here we revise and generalize the
approach of Campelo et al. [31]. We provide an important
correction to the expression for the local stretching modulus
E (z) derived in Ref. [31]. We show that with this correction
the method provides values of the elastic moduli that co-
incide with the experimental values, which otherwise deviate
significantly. We consider a more general condition of global
incompressibility, which is supported by both experiments
[48–51] and MD simulations [52]. Taking into account global
incompressibility, we derive the stress-strain relation of planar
bilayer membranes by performing the variation of the most
general classical elastic energy functional. From this stress-
strain relation, we derive an expression for the local Poisson’s
ratio of lipid membranes, providing a method for calculating
the local Poisson’s ratio solely from a stress profile.

Based on the revised microscopic elastic theory, we
establish a computational protocol for the calculation of
lipid bilayer elastic parameters. We greatly simplify the
approach presented in Ref. [31] by calculating monolayer
elastic parameters as derivatives of the moments of the lo-
cal tension profile with respect to stretching, instead of
using the local stretching modulus. We apply this protocol
to Martini dioleoylphosphatidylcholine (DOPC), dipalmi-
toylphosphatidylcholine (DPPC), and their mixture to obtain
the following elastic parameters of these systems: the mono-
layer bending and stretching moduli, spontaneous curvature,
neutral surface position, and local Poisson’s ratio.

The paper is organized as follows. In Sec. II we introduce
basic theoretical assumptions. In Sec. III theoretical results are
presented. In the next two sections we focus on the application
of the theoretical results to the determination of lipid mem-
brane elastic parameters from MD simulations. In Sec. IV we
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describe the proposed methodology. In Sec. V the results of
MD simulations are presented. In Sec. VI we summarize and
discuss the results of the paper.

II. THEORY

A. Basic assumptions

We consider the monolayers of a lipid membrane as a
continuous elastic medium. Our aim is to examine the forces
arising in this medium due to deformations and relate them to
the mechanical work required for stretching and bending, thus
inferring the corresponding elastic parameters. We make the
following assumptions about each monolayer: (i) lateral flu-
idity, (ii) transverse isotropy, (iii) positivity of the isothermal
local volumetric compressibility, and (iv) volumetric incom-
pressibility. The first two assumptions are a consequence of
the fact that in a planar lipid membrane lipids can freely
diffuse in the lateral direction, which leads to the isotropy
of the monolayers in each plane lying parallel to the mem-
brane, i.e., the monolayers are symmetric around the axis
perpendicular to these planes. Note that lipid membranes can
exist in different phases [53]. In this work we consider only
the lamellar liquid crystalline phase Lα , which is biologically
most relevant [54] and for which the first two assumptions
hold. In other phases, such as the gel phase, both lateral
fluidity and transverse isotropy can be absent due to lipid tilt
[53,55]. The third assumption concerns the classicality of the
material under consideration, since materials with negative
compressibility, the volume of which expands in response to
increasing pressure, are rare and do not include lipid mem-
branes [56]. The fourth assumption follows from experiments
[48–51] and simulations [57,58], showing that the global bulk
modulus of lipid membranes is close to that of water, which
is 2.2 GPa at 25 ◦C and 0 bar [59]. This is a quite large value
in comparison with other elastic moduli of lipid membranes,
scaled to the appropriate units. Let us consider, for example,
the stretching deformation mode, at which the area per lipid
increases by 1 + α. The energetic cost of this deformation
is equal to wA = 1

2 kA,mα2A, where A is the surface area of
the considered monolayer patch and kA,m is the monolayer
stretching modulus. If we suppose that this deformation is re-
alized due to a volume change, the energy cost would be wV =
1
2 kV α2

V V , where V is the volume of the monolayer patch and
αV indicates the increase in volume by 1 + αV . If the mono-
layer thickness remains constant, then αV = α and we can
write wV

wA
= kV V

kA,mA = kV h
kA,m

, where h is the monolayer thickness

and V = hA. For kV = 2.2 GPa ≈ 530 kBT nm–3 (kB is the
Boltzmann constant and T = 300 K), kA,m ≈ 30 kBT nm−2

[60], and h ≈ 2 nm [60], we obtain wV
wA

≈ 35 � 1, implying
that the elastic energy of the volume change is negligible
upon stretching. It is of note that two types of volumetric
incompressibility can be considered: local incompressibility
and global incompressibility. Local incompressibility implies
that every local volume element does not change during de-
formations. Although local incompressibility implies global
incompressibility, the converse, in general, is not true. In
experiments [48–51], due to precision restraints, it is difficult
to measure the local bulk modulus, and therefore only the
global bulk modulus is known. In Ref. [48], for instance, the

volume of 70:30 dimyristoylphosphatidylcholine/cholesterol
multilayers was investigated at high pressures. To do this, the
average area per lipid and monolayer thickness were mea-
sured by neutron diffraction. From these data, only the total
volume per lipid could be calculated, from which the global
isothermal compressibility (inverse of the bulk modulus) was
determined to be (0.1–0.6) × 10–4 bar–1. Thus, in this work,
we will assume global incompressibility, which is a more gen-
eral condition than local incompressibility and is supported by
experiments.

Let us consider the elastic energy of lipid monolayers. We
will analyze only deformations of stretching and pure bending
whereby lipid molecules do not tilt. From the lateral fluidity
and transverse isotropy, it follows that planar monolayers have
only two variables, which describe deformations: (i) lateral
stretching ε, i.e., the relative increase in the local area per
lipid ε ≡ A1−A0

A0
, where A0 is the initial surface area and A1

is the surface area of the deformed state, and (ii) longitudi-
nal stretching ε⊥ along the axis perpendicular to the plane
of isotropy, given as ε⊥ = ∇zζ (z) − 1, where ζ (z) is a z-
dependent thickness of a deformed state with z the coordinate
along the longitudinal direction. Note, however, that since we
also have the assumptions of global incompressibility and pos-
itivity of the local bulk modulus, ε and ε⊥ are not independent.
Indeed, let us consider a lipid monolayer under some uniform
stretching ε. In this case, the thickness of the monolayer is
completely determined by ε due to global incompressibility.
Now let us fix this thickness and start to apply higher pres-
sure to the sides of the monolayer. Suppose that during this
procedure longitudinal stretching ε̃⊥, counted relative to the
state before applying the higher pressure, becomes nonzero.
This would imply that at some point ε̃⊥ > 0, as the total
thickness is fixed. This in turn implies that at this point the
local volume would increase in response to an increase in the
external pressure, which, however, contradicts the assumption
of the positivity of the bulk modulus. Therefore, ε⊥ is a
definite function at every ε. Note that this is true for uniform
stretching, but might not be valid for bending. However, any
deviations from the flat-state relation between ε⊥ and ε can
be assumed to be small and neglected in accordance with the
classical theory of elastic plates [61].

B. Elastic energy and parameters

Since ε and ε⊥ are not independent, the elastic energy
density W of a lipid monolayer can be written as a function
of only ε. We attribute this density to the initial state, in
which the monolayer is flat, writing the total elastic energy
as

∫
V0

W dV , where V0 is the initial volume occupied by the
monolayer. Let us introduce a Cartesian coordinate system
xyz, the z axis of which coincides with the axis of symmetry
and points from the hydrophilic to the hydrophobic part of
the monolayer. Using this coordinate system, we can write the
Taylor series of the elastic energy

W (ε(z), z) = σ0(z)ε(z) + 1
2 E (z)ε(z)2 + · · · , (2)

where the elastic parameters σ0 and E depend only on z due
to the lateral symmetry of the monolayer. It should be noted
that both σ0 and E correspond to the quantities averaged over
a sufficiently long time, for at any instant of time σ0 and E
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can depend on x and y, as the configuration of lipid molecules
along the xy plane can be different. In general, the local
stretching ε may also depend on x and y, but in the following
we will be interested only in the deformations with constant
ε along the x and y axes. The function E (z), responsible for
the quadratic contribution in ε, is the local stretching modulus,
while σ0(z) corresponds to the preexisting stress at ε = 0.

For each deformation, it is necessary to consider the com-
pressibility condition

β(ε, z) ≡ (1 + ε(z))(1 + εz(ε, z)), (3)

where β(ε), which we will call the volume factor, is the ratio
of the deformed local volume to the initial local volume. Since
β(ε, z) → 1 as ε → 0, we can employ the results for the elas-
tic constants, previously obtained under the incompressibility
assumption in Refs. [14,15,17],

kA,m =
∫

m0

E (z)dz, (4a)

z0 = 1

kA

∫
m0

E (z)z dz, (4b)

km =
∫

m0

E (z)(z − z0)2dz, (4c)

K0,m = 1

km

∫
m0

σ0(z)z dz, (4d)

where ∫m0
denotes integration over the thickness of the mono-

layer in the initial state, kA,m is the monolayer stretching
modulus, z0 is the location of the neutral surface, km is the
monolayer bending modulus relative to the neutral surface,
and K0,m is the monolayer spontaneous curvature. Note that
in Eqs. (4a)–(4d) the limits of integration range over not
only the lipid material but also the adjacent layer of water
molecules, which are involved in the structure of a lipid
bilayer. Therefore, lipid-water interactions are taken into ac-
count in Eqs. (4a)–(4d). In general, the monolayer bending
modulus relative to an arbitrary plane parallel to the mono-
layer is given by the expression k̃m = ∫

E (z)(z−z̃)2 dz, where
z̃ is the coordinate of the chosen plane [14,17]. A plane,
relative to which the bending modulus is minimal, is called the
neutral surface. The location of the neutral surface, given in
Eq. (4b), follows from the equation ∂ k̃m/∂ z̃ = 0. The bending
modulus relative to the neutral surface is of the highest interest
since bending relative to this plane corresponds to the easiest
way to bend the monolayer.

III. THEORETICAL RESULTS

A. Local tension

In this section we provide a theoretical framework for the
determination of the elastic parameters given in Eqs. (4a)–
(4d). To calculate the integrals in Eqs. (4a)–(4d), we suggest
the following consideration. From Eq. (2) it follows that
E (z) = ∂2W (ε,z)

∂ε2 |
ε=0

. The latter equality can be rewritten

as E (z) = ∂σ (ε,z)
∂ε

|
ε=0

, where σ (ε, z) ≡ ∂W (ε,z)
∂ε

. The quantity
σL(ε) ≡ ∫

m0
σ (ε, z)dz is the lateral tension at stretching ε

[62], for σL(ε) and A0ε represent the conjugate pair for the
elastic energy A0

∫
W (ε, z)dz, where A0 is the surface area

of the reference state. It is therefore natural to call σ (ε, z) an
ε-dependent local tension or tension profile. Inserting the rela-
tion E (z) = ∂σ (ε,z)

∂ε
|
ε=0

into Eqs. (4a)–(4d) and interchanging
the derivative and integral signs, we obtain

kA,m = d

dε

∫
m0

σ (ε, z)dz

∣∣∣∣
ε=0

, (5a)

z0 = 1

kA,m

d

dε

∫
m0

σ (ε, z)zdz

∣∣∣∣
ε=0

, (5b)

km = d

dε

∫
m0

σ (ε, z)(z − z0)2dz

∣∣∣∣
ε=0

, (5c)

K0,m = 1

km

∫
m0

σ (0, z)z dz. (5d)

To find the expression for σ (ε, z), we perform the variation
of the elastic energy with respect to ε (see Appendix A) and
obtain the expression for the stress tensor, Eq. (A5). Then
σ (ε, z) can be related to the lateral part of the stress tensor
as

σ (ε, z) = [S(ε, z, Pz ) + Pz]β(ε, z)

1 + ε
− Pz

∂β(ε, z)

∂ε
, (6)

where Pz is the external pressure, i.e., 1 bar under normal
conditions, and S(ε, z, Pz ) is the lateral local stress profile,
i.e., the lateral part of the stress tensor. The sign convention
we use in Eq. (6) is such that a negative value of S(ε, z, Pz )
means repulsion.

B. Scaling

In Eq. (6), the stress profile S(ε, z, Pz ) is given relative to
the reference state at ε = 0, i.e., S(ε, z(ζ ), Pz ) ≡ S̃(ε, ζ , Pz ),
where S̃(ε, ζ , Pz ) and ζ are the lateral stress and coordi-
nate along the axis of symmetry in a deformed state of the
monolayer, respectively. The relation between z and ζ can
be described by some scaling function z(ζ ), which maps the
points of the monolayer in the reference state to the corre-
sponding points in the stretched or compressed state of the
monolayer. Here z and ζ are not equal since the membrane
thickness changes upon uniform stretching or compression. In
the case of the local incompressibility assumption, the relation
between z and ζ is ζ = (1 + ε)−1z, which we will call uniform
scaling. In a more general case of global incompressibility,
the scaling function can be found from the compressibility
condition (1 + ε)∇zζ (ε, z) = β(ε, z),

ζ (ε, z) = (1 + ε)−1
∫ z

0
β(ε, t )dt , (7)

which we refer to as exact scaling. To determine β(ε, z), we
set ε = 0 and take the derivative of Eq. (6) with respect to Pz

at Pz = 1 bar and define

γ (z) ≡ ∂β(ε, z)

∂ε

∣∣∣∣
ε=0

= ∂S(0, z, Pz )

∂Pz
+ 1. (8)

Thus, the derivative of β(ε, z) is determined by the
response of the lateral stress profile to changes in ambi-
ent pressure. Direct calculations from MD data show that
β(ε, z) can be approximated linearly, β(ε, z) = 1 + γ (z)ε,
and higher-order terms in ε are negligibly small (see Sec. IV B
and Appendix B).
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C. Poisson’s ratio

The γ (z) also permits the determination of the local
Poisson’s ratio, an important parameter characterizing the de-
viation of material from local incompressibility. It is defined
as ν(z) ≡ − 1

2 limε→0
ε

εz (z) and is equal to 0.5 in the case of
local incompressibility. Inserting εz(z) from Eq. (3) into the
definition of ν(z), we get

ν(z) = 1

2[1 − γ (z)]
. (9)

Thus γ (z), given in Eq. (8) and which can be directly mea-
sured in MD simulations, provides information about both the
local volume factor and the local Poisson’s ratio. From Eq. (9)
it follows that in the case of local incompressibility γ (z) = 0,
which implies, according to Eq. (8), that changes in ambient
pressure are evenly spread over the lateral stress profile. In
general, however, γ (z) might be different from zero, which
would imply the deviation from local incompressibility.

D. Integral relations

Let us now consider what integral relations follow from
Eqs. (5a) and (5c) for the stretching and bending moduli.
It is convenient to introduce a local tension relative to the
state corresponding to stretching ε, σε(ε̃, ζ ) ≡ ∂W̃ (ε̃,ζ )

∂ε̃
, where

W̃ (ε̃, ζ ) ≡ W (ε(ε̃),z(ζ ))
β(ε(ε̃),z(ζ )) and ε̃ are the elastic energy density

and stretching written relative to the stretched state, respec-
tively. Then, using the equality σ (ε, z)dz = σε(0, ζ )dζ , from
Eq. (5a) we get the classical relation kA,m = d

dε
σ (ε)|

ε=0
be-

tween the stretching modulus and lateral tension at stretching
ε, σ (ε) ≡ ∫

mε
σε(0, ζ )dζ . If we consider Eq. (5c) for the

bending modulus, it can be rewritten as

km = d

dε

∫
mε

σε(0, ζ )[z(ζ ) − z0]2dζ

∣∣∣∣
ε=0

. (10)

The integral on the right-hand side resembles the Gaussian
curvature modulus [14,63,64] corresponding to finite stretch-
ing ε, k̄m(ε) = ∫

mε
σε(0, ζ )(ζ − ζ0)2dζ . The difference is that

in Eq. (10) the distance from the neutral surface is taken
relative to the reference state at ε = 0, z(ζ ) − z0 instead of
ζ − ζ0, where ζ0 is the neutral surface position at stretching
ε. In the case of local incompressibility and quadratic energy
law, z(ζ ) − z0 = (1 + ε)(ζ − ζ0), which turns Eq. (10) into

km = 2k̄m(0) + d

dε
k̄m(ε)

∣∣∣∣
ε=0

. (11)

Thus, the dependence of the Gaussian curvature modulus
on stretching contains information about the bending modu-
lus. Below, among other things, we will test the validity of
Eq. (9) and its assumptions in MD simulations.

IV. METHODS

To obtain stress profiles, we performed a coarse-grained
(CG) MD simulation. We used the Martini 3 [65] force field
to represent lipid bilayers. Each system consisted of 256 lipids
and 11 water beads per lipid. Since in the Martini force
field one water bead corresponds to four water molecules,
the virtual number of water molecules per lipid is thus 44,

which is about twice the number of water molecules per
lipid involved in the structure of a lipid bilayer as reported
both by experiments (25) [66] and MD simulations (17) [67].
The MD simulations were run with GROMACS 2020 [68,69]
program package. The long-range electrostatics was treated
by the reaction field method and relative dielectric constant
ε = 15 [32]. The cutoff for the Lennard-Jones and Coulomb
interactions was set to 1.2 nm. The temperature was controlled
with the velocity-rescale thermostat, which produces a correct
canonical ensemble [70]. For the solvent and bilayers, two
separate temperature coupling groups were introduced and
the coupling constant was set to τT = 1 ps. To control the
constant surface tension, the Berendsen barostat [71] with the
surface-tension coupling was employed with a time constant
of 3 ps and isothermal compressibility of 3 × 10–5 Pa. For
all simulations, a 20-fs time step was used. The systems
were built and equilibrated using the CHARMM-GUI web server
[72–74].

A. Resampling stress and grid data

Each system at each tension was simulated for 1 μs after
equilibration for 100 ns. Every 5 ps a trajectory frame was
saved for subsequent analysis of the local stress. The MD sim-
ulations were performed at surface tensions of −100, −50, 0,
75, and 150 bar nm. For the statistical analysis, we divided the
simulation time into 20 blocks of 50 ns each. Each block was
then analyzed with GROMACS-LS [75–78] using the covariant
central force decomposition (cCFD). The lateral stress was
determined as an average between xx and yy components of
the obtained local stress. Before the local stress calculation,
the simulation box was centered with respect to the membrane
center of mass. The grid step for the local stress was set to 0.05
nm. One additional point was added after the last grid point to
make the lateral stress periodic. Then each stress profile was
centered by subtracting the coordinate of the last grid point
divided by 2 from the grid coordinates. Thus, the midplane
of the membrane was at z = 0. After that, the stress profile
of each block was symmetrized by adding the stress profile
in reverse order to the initial stress profile and dividing by 2.
Then, from the 20 obtained stress profiles, 20 stress profiles
were randomly sampled with repetition and averaged. The
latter was repeated 200 times and thus 200 stress profiles were
obtained. The grid data in GROMACS-LS represent the average
grid over the simulation time. Therefore, along with 200 pro-
files, 200 grids were obtained by averaging the corresponding
grid data. To determine stretching ε, at each tension σ the
lateral size of the simulation box L(σ ) was determined as the
average of the lengths of the simulation box along the x axis
(the instantaneous lengths along the x and y axes were equal)
over the entire simulation time of 1 μs. Then stretching was
determined as ε = L(σ )2/L(0)2−1.

B. Scaling

In the case of the uniform scaling, all 200 grids of the
stress profiles were divided by 1 + εz(σ ), where εz(σ ) =
Lz(σ )/Lz(0) − 1, with Lz(σ ) the longitudinal size of the box,
which was determined as the average size of the 200 ob-
tained grids. The exact scaling, given by Eq. (7), requires
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FIG. 1. Illustration of the proposed method using the example of
the determination of the monolayer bending modulus of DPPC at
325 K. The horizontal axis represents stretching ε, i.e., the relative
change in the surface area. The vertical axis shows the values of the
second moment of the local tension

∫
m0

σ (ε, z)(z − z0)2dz, where
σ (ε, z) is the local tension and z0 is the neutral surface position.
The value of

∫
m0

σ (0, z)(z − z0)2dz is by definition equal to the
Gaussian curvature modulus, and the slope of the tangent at ε = 0
is equal to the monolayer bending modulus according to Eq. (5c).
The two depicted lipid bilayers correspond to the tensionless and
stretched states. The stretching of the upper bilayer is exaggerated
for illustrative purposes. The corresponding calculated lateral stress
profiles are shown to the right of the bilayers.

the calculation of β(ε, z). For this, a linear approximation
β(ε, z) = 1 + γ (z)ε was employed, as it can be shown that
the second derivative ∂2β(ε,z)

∂ε2 |
ε=0

is negligibly small (see Ap-
pendix B). To determine γ (z), given in Eq. (8), it is necessary
to apply the isotropic pressure to a membrane. To achieve
this, we set the surface tension to zero and varied Pz, set-
ting the following pressures: −50, −25, 1, 25, and 50 bar.
At each Pz, the simulations were performed with the same
protocol as described above. We note that, despite the global
incompressibility assumption, the longitudinal size of the box
may slightly change when the isotropic pressure is applied.
This change, however, is rather small and in the case of, for
instance, DPPC membrane does not exceed 0.2%. Neverthe-
less, to make the grid sizes match each other, we perform the
uniform scaling in the same way as described above for the
cases of nonzero tensions. Then ∂S(0,z,Pz )

∂Pz
+ 1 was calculated

at Pz = 1 bar by a linear least-squares estimator. The latter
was performed 200 times for all 200 stress profiles at different
Pz. Thus, 200 random values of γ (z) were obtained. Then the
Poisson’s ratio and exact scaling map were found by inserting
the values of γ (z) and β(ε, z) = 1 + γ (z)ε into Eqs. (9) and
(7), respectively. After that, the obtained scaling maps were
applied to grid data and 200 local tensions at each stretching
were determined according to Eq. (6).

C. Elastic parameters

Once the local tension σ (ε, z) is determined, we can use
Eqs. (5a)–(5d) to find the elastic parameters by calculating
the moments of σ (ε, z). For this, at each ε one random local
tension was selected out of 200 available. Then the stretching

FIG. 2. Local Poisson’s ratio of DPPC at 325 K as a function
of distance from the center of the bilayer. The black curve and
gray shading represent the mean value of the Poisson’s ratio and
95% confidence band, respectively. The purple line corresponds to
local incompressibility, in which case the Poisson’s ratio is constant
and equal to 0.5. The zero-tension stress profile, adjusted to the
magnitude of the Poisson’s ratio, is given in arbitrary units by the
cyan curve. The dashed vertical line shows the mean coordinate of
the first glycerol bead, approximately equal to –1.75 nm, indicating
the boundary between the hydrophobic and hydrophilic parts of the
monolayer.

modulus, location of the neutral surface, bending modulus,
and spontaneous curvature were determined consequently ac-
cording to Eqs. (5a)–(5d). To find the derivatives with respect
to ε, a quadratic least-squares regression was performed.
This procedure was repeated multiple times to get sufficient
sampling statistics. The proposed method in the case of the
determination of the bending modulus is illustrated in Fig. 1.

V. SIMULATION RESULTS

In this section we present the results of the MD simu-
lations. We start with DPPC, a widely used lipid in MD
simulations. First, we find the Poisson’s ratio ν(z) (Fig. 2),
calculating the response γ (z) of the lateral stress profile to
the external isotropic pressure Pz according to Eq. (8) and
inserting it into Eq. (9). A linear least-squares fit is used to
find γ (z), for at each z a linear function agrees well with the
data within the error limits.

Figure 2 shows that at many coordinate points the Poisson’s
ratio differs from 0.5, i.e., from the incompressibility condi-
tion. We observe a correlation between the stress profile and
Poisson’s ratio: In the headgroup region, where the stress is
repulsive, the Poisson’s ratio is less than 0.5, implying that the
magnitude of the longitudinal stretching is larger than that of
the lateral stretching during deformations. By contrast, in the
glycerol region (z ≈ –1.75 nm), where the attraction occurs,
the ratio is greater than 0.5 and reaches a maximum deviation
from 0.5: ν = 0.62 ± 0.01. In the repulsive headgroup region,
the Poisson’s ratio is again smaller than 0.5.
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FIG. 3. (a) Zeroth moment
∫

m0
σ (ε, z) dz, (b) first moment

∫
m0

σ (ε, z)(z − z0) dz, and (c) second moment
∫

m0
σ (ε, z)(z − z0)2 dz of the

local tension σ (ε, z), where z0 is the position of the neutral surface, as functions of stretching ε. According to Eqs. (5a)–(5c), the tangent at
ε = 0 is equal to (a) kA,m, (b) kA,mz0, and (c) km, where kA,m is the monolayer stretching modulus and km is the monolayer bending modulus.
The cyan curves are the best-fit quadratic polynomials. The error bars in (c) indicate the standard deviation. In (a) and (b) the error bars are too
small to be shown.

After the Poisson’s ratio is found, we can determine the
volume factor β(ε, z) ≡ 1 + γ (z)ε and the exact scaling func-
tion (7). We employ the linear approximation of β(ε, z)
because our direct calculations show that the difference be-
tween the Taylor series of β(ε, z) up to the first and second
orders in ε is less than approximately 0.3% within the range
of ε values considered. The moments of ∂2β(ε,z)

∂ε2 |
ε=0

are also
negligibly small; the details of the calculations are given in
Appendix B. This allows us to use the linear approximation
for β(ε, z) in the expression for the local tension (6).

To obtain the values of the local tension at different
stretching, we apply the following tensions: −100, −50,
75, and 150 bar nm. The absolute values of the negative
tensions are chosen to be smaller, as high values might
lead to a large compression of the membrane with the
formation of a gel phase. The latter may occur at some
critical value of compression, depending on a lipid sys-
tem and temperature. Dilauroylphosphatidylcholine at 300 K,
for example, transitions into a gel phase at approximately
3.8% [79]. In our simulations, the largest compression was
3.2% and we did not observe any discontinuities in the
obtained data.

The stress profiles at different tensions have different end
points, as the membrane thickness changes in response to
uniform stretching or compression due to volumetric incom-
pressibility. Using β(ε, z), we can determine the exact scaling
function, given in Eq. (7), to map the points of the deformed
membranes to the points of the initial state at zero tension.
Applying this scaling map to the stress profiles, we determine
the local tensions at different stretching and then find the
elastic parameters as given in Eqs. (5a)–(5c). The results are
shown in Fig. 3.

For each datum, to find the derivative at ε = 0 we use
least squares to approximate the data by a quadratic poly-
nomial, as fitting with higher-order polynomials does not
change the mean value within the error limits. We find

the following values for the monolayer elastic parameters:
kA,m = 33.0 ± 0.2 kBT nm–1, z0 = –1.19 ± 0.01 nm, K0,m =
–0.17 ± 0.01 nm–1, and km = 15.3 ± 0.6 kBT for the mono-
layer stretching modulus, location of the neutral surface,
spontaneous curvature, and bending modulus, respectively;
the errors indicate the standard deviation. As seen in Fig. 3, the
quadratic fit well describes the data; the reduced χ2 is 2.23,
1.86, and 1.02 for the zeroth, first, and second moments, re-
spectively. Note that, since σ (0, z) coincides with the tension
profile at zero stretching, in Figs. 3(b) and 3(c), the values at
ε= 0 are equal to kmK0,m and the Gaussian curvature modulus,
respectively.

Next we proceed by changing the scaling map from
exact to uniform to find the corrections to the elastic
parameters resulting from the deviation from local in-
compressibility. The results are kA,m = 32.1 ± 0.1 kBT nm–2,
z0 = –1.16 ± 0.01 nm, K0,m = –0.18 ± 0.01 nm−1, and km =
14.8 ± 0.6 kBT for the stretching modulus, position of the
neutral surface, spontaneous curvature, and bending modulus,
respectively. There is a slight shift in the mean values in
comparison with the exact scaling. Although the discrepancy
does not fall within the error limits for the stretching mod-
ulus and neutral surface, the relative deviation is less than
approximately 3%. The same observation has been made for
other lipid systems (DOPC and DPPC/DOPC mixture) and
temperatures (see Table I).

Employing the same method, we next consider the 50:50
DPPC/DOPC lipid mixture and pure DOPC at 325 K. The
results are presented in Fig. 4 and Table I. The mono-
layer stretching and bending moduli show opposite trends
as functions of the concentration of the unsaturated lipid,
DOPC: While the stretching modulus and spontaneous cur-
vature increase with increasing DOPC concentration, the
bending modulus decreases. The neutral surface position z0

shifts towards the midplane of the membrane and varies al-
most linearly at the concentrations of DOPC considered. The
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TABLE I. Values of the obtained monolayer elastic parameters: stretching modulus kA,m, location of the neutral surface z0, spontaneous
curvature K0,m, bending modulus km, and the deviation of the local Poisson’s ratio from the incompressibility condition |ν(z) − 0.5|max. The
kA,m, z0, K0,m, and km are determined using Eqs. (5a)–(5c) under the assumptions of local incompressibility (uniform scaling) and global
incompressibility (exact scaling). The sign convention for spontaneous curvature is the following: A positive value implies that the area of the
head region tends to be larger than the area of the tails. The errors indicate the standard deviation.

DPPC DPPC/DOPC 50:50 DOPC DOPC
T = 325 K T = 325 K T = 325 K T = 300 K

Uniform Exact Uniform Exact Uniform Exact Uniform Exact
Parameter scaling scaling scaling scaling scaling scaling scaling scaling

kA,m(kBT nm–2) 32.1 ± 0.1 33.0 ± 0.2 33.9 ± 0.2 35.1 ± 0.2 35.6 ± 0.1 36.5 ± 0.2 43.4 ± 0.2 44.6 ± 0.2
z0 (nm) –1.16 ± 0.01 –1.19 ± 0.01 –1.08 ± 0.01 –1.11 ± 0.01 –1.02 ± 0.01 –1.04 ± 0.01 –1.04 ± 0.01 –1.06 ± 0.01
K0,m (nm–1) –0.18 ± 0.01 –0.17 ± 0.01 –0.31 ± 0.02 –0.29 ± 0.01 –0.32 ± 0.02 –0.31 ± 0.02 –0.32 ± 0.02 –0.30 ± 0.02
km(kBT ) 14.8 ± 0.6 15.3 ± 0.6 8.2 ± 0.4 9.0 ± 0.4 8.3 ± 0.6 8.7 ± 0.6 10.1 ± 0.8 10.8 ± 0.8
(pN nm) (66.4 ± 2.7) (68.9 ± 2.7) (37.0 ± 2.0) (40.2 ± 1.9) (37.1 ± 2.5) (39.2 ± 2.5) (42.0 ± 3.2) (44.8 ± 3.2)
|ν(z) − 0.5|max 0.12 ± 0.01 0.09 ± 0.01 0.07 ± 0.01 0.08 ± 0.01
(unitless)

variations in the bending modulus and spontaneous curvature,
however, are highly nonlinear: The difference between pure
DPPC and the 50:50 mixture is much larger than the differ-
ence between the 50:50 mixture and pure DOPC. As should
be expected, the bending modulus of DOPC turns out to be

smaller than that of DPPC since DOPC is an unsaturated
lipid, unlike DPPC. The maximum values of the deviation
of the local Poisson’s ratio from the local incompressibility
condition |ν(z) − 0.5|max decrease from 0.12 ± 0.01 for pure
DPPC to 0.07 ± 0.01 for pure DOPC.

FIG. 4. Monolayer elastic parameters as functions of the DOPC concentration in the DPPC/DOPC mixture, measured using Eqs. (5a)–(5d)
and (9). The error bars indicate the standard deviation.
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We also simulated DOPC at 300 K to consider the de-
pendence of the elastic parameters on temperature and to see
whether the proposed method also works at smaller temper-
atures (Table I). The results show that as the temperature
decreases, the membrane becomes more rigid: The stretching
and bending moduli become larger. This is expected since
the membrane gets closer to the phase transition into the gel
phase as the temperature decreases. At the same time, the
position of the neutral surface, spontaneous curvature, and
|ν(z) − 0.5|max remain approximately constant.

In Sec. III it was shown that the bending and Gaussian
curvature moduli are related by Eq. (9) under the assumptions
of the quadratic energy and local incompressibility. Direct
calculations for DPPC yield that the Gaussian curvature mod-
ulus is –3.40 ± 0.05 kBT and its derivative is 14.8 ± 2.2 kBT ,
leading to 8.1 ± 2.2 kBT for the bending modulus, which is
far from the measured value 15.3 ± 0.6 kBT . This implies
that the assumptions of the quadratic energy law and local
incompressibility are not valid, which agrees with the obser-
vation that the local Poisson’s ratio deviates from the local
incompressibility condition (see Fig. 2). The energy deviation
from the quadratic law can also be seen from the dependence
of the monolayer tension on stretching, which is not linear [see
Fig. 3(a)] as it would be in the case of the quadratic energy
law. Thus, the quadratic incompressible model appears to be
oversimplified, at least for the CG DPPC.

VI. DISCUSSION

In this paper we revised and generalized the approach of
Campelo et al. [31], which relies on the measurement of the
local stretching modulus E (z) for the determination of elastic
parameters of lipid membranes. Introducing the local tension
σ (ε, z) ≡ ∂W (ε,z)

∂ε
, we showed that the approach of Campelo

et al. can be largely simplified, as σ (ε, z) permits the de-
termination of the elastic parameters with only one fit by a
quadratic function according to Eqs. (5a)–(5d) and (6) instead
of calculating E (z). In addition, a more general assumption of
global incompressibility of lipid monolayers was considered
rather than the local incompressibility condition. This allowed
us, after obtaining the stress-strain relation given in Eq. (A5),
to derive the expression for the local Poisson’s ratio, Eq. (9).
From ν(z) we found the volume factor β(ε, z), i.e., the relative
change in the local volume at position z upon stretching ε.
The volume factor β(ε, z) provided the exact scaling function
(7), which maps the points of stretched monolayers to the
points of unstretched monolayers and allows a more precise
determination of elastic parameters than the uniform scaling
function corresponding to the local incompressibility assump-
tion. We applied the theoretical results to the determination of
elastic parameters of lipid membranes in MD simulations by
considering CG DPPC, DOPC, and their equimolar mixture.

A. Poisson’s ratio

In this paper we considered lipid membranes as 3D elastic
media and obtained the expression for the stress-strain relation
(A5). Previously, lipid membranes were modeled as either
incompressible [12,14–17,31,34,80] or a material with inde-
pendent lateral and longitudinal stretching [52]. In our work

we instead employed the global incompressibility assumption,
supported by experiments [48–51], and showed that lateral
stretching and longitudinal stretching are not independent.
This allowed us to express the energy as being dependent
only on lateral stretching and obtain the expression for the
local Poisson’s ratio given in Eq. (9) that characterizes the
deviation from local incompressibility. Note that within the
proposed framework the Poisson’s ratio is fully determined
by the lateral stress profiles, i.e., without any reference to the
amount of material under consideration. It is however possible
to determine the Poisson’s ratio from the material perspective,
as was done by Terzi et al. [52]. The latter approach depends
on the definition of the amount of material, which may contain
some uncertainties with, for example, the additivity of compo-
nent volumes, while the local stress method relies only on the
lateral stress profile.

For all systems considered, we calculated the local Pois-
son’s ratio ν(z). Local incompressibility implies a constant
Poisson’s ratio of 0.5. Our calculations showed that the Pois-
son’s ratio of the considered systems is nonuniform: It may
be smaller or larger than 0.5, depending on the region con-
sidered (see Fig. 2). The maximum deviation |ν(z) − 0.5|max
lies within the range of 0.57–0.62, i.e., 14%–24% away from
0.5. The deviation of ν(z) from 0.5 implies that the local
volume at position z is not conserved upon membrane stretch-
ing or compression. The corresponding change of the local
volume at stretching ε is given by the volume factor β(ε, z) ≡
dV ′(ε,z)
dV0(z) = 1 + γ (z)ε, where dV0(z) is the initial local volume,

i.e., at ε = 0, while dV ′(ε, z) is the local volume at stretching
ε, and γ (z) can be expressed through ν(z) from Eq. (9), result-
ing in β(ε, z) = 1 + 2ν(z)−1

2ν(z) ε. We see that if ν(z) = 0.5, then
β(ε, z) = 1, i.e., the local volume is conserved. In the case of
DPPC (see Fig. 2), upon stretching the local volume strongly
increases [ν(z) > 0.5] in the glycerol region and decreases
[ν(z) < 0.5] in the headgroup region. Also, there is a slight
variability from the local incompressibility in the region of
the lipid tails.

Variations of the local volume in some membrane regions
due to the deviation of the local Poisson’s ratio from 0.5
may affect the properties of the lipid matrix in this position,
which can have biological consequences [52]. It is known
that cell membranes can contain transmembrane proteins, the
activity of which is regulated by mechanical stresses. Such a
regulation occurs, for example, in mechanosensitive channels
[81,82]. The change in the properties of the lipid matrix in the
proximity of the membrane proteins may impact the corre-
sponding lipid-protein interactions. Thus, the local Poisson’s
ratio may modulate lipid-protein interactions in response to
mechanical stresses, thereby regulating the activity of mem-
brane proteins.

B. Local tension

For the determination of the elastic parameters, we used the
local tension profile σ (ε, z) ≡ ∂W (ε,z)

∂ε
, introduced in Eq. (6),

where W (ε, z) is the elastic energy density. By definition,
σ (ε, z) represents the resulting effective lateral stress given in
the reference state, which does work during deformations. In
this regard,

∫
m0

σ (ε, z)dz is by definition equal to the lateral
tension at the state of stretching ε. The relations between
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elastic parameters and σ (ε, z) are given in Eqs. (5a)–(5d). The
bending modulus, for example, can be found as a derivative
with respect to ε at ε = 0 of the second moment of σ (ε, z)
relative to the neutral surface position. It should be noted
that there is also another way to determine elastic parameters.
The tension profile is directly related to the local stretching
modulus E (z): By definition, E (z) = ∂σ (ε,z)

∂ε
|
ε=0

. Thus, E (z)
could have been used, according to Eqs. (4a)–(4d), without the
use of σ (ε, z). It would require, however, the determination of
E (z) at some specified grid distributed throughout the thick-
ness of the monolayer. The finer the grid, the better the result
for the moments of E (z). As the grid step should be at least as
small as the grid used in the calculation of the stress profile,
which is 0.05 nm in our case, the number of grid points for the
4-nm-thick monolayer would be 80. This greatly complicates
the procedure and statistical analysis since at each point of
the grid it is necessary to perform data fitting to determine
the derivative of the local tension. We showed though that this
is a superfluous task, as the same goal can be achieved with
only one fit of the tension profile moments. Actually, E (z)
requires too much information to be calculated: Once E (z) is
determined, any moment of it can be found. This information,
however, is redundant for the determination of the key elastic
parameters such as stretching and bending moduli, requiring
only the zeroth, first, and second moments of E (z) to be
known [see Eqs. (4a)–(4c)]. Previously, E (z) was determined
by two independent methods. In Refs. [83,84] the authors
analyzed fluctuations of an area per material at position z to
infer E (z): From the equipartition theorem, it follows that the
larger the fluctuations of this area, the smaller the E (z). Also,
E (z), in the case of Martini DOPC, was found in Ref. [31] by
Campelo et al., where E (z) was equated with the derivative
of the stress profile with respect to stretching. However, as
follows from Eq. (6), even under the local incompressibility
assumption, the expression for E (z) is more complicated,

E (z) = ∂[S(ε, z) + Pz]

∂ε

∣∣∣∣
ε=0

− [S(0, z) + Pz], (12)

i.e., E (z) contains not only the derivative of the stress profile
∂[S(ε,z)+Pz]

∂ε
|
ε=0

, as was derived by Campelo et al. [31], but
also the stress itself −[S(0, z) + Pz], which is comparable in
magnitude to the stress derivative. This is a consequence of
the change of the membrane thickness due to the applied
lateral tension, which may lead to incorrect results if not taken
into account. For instance, according to our calculations, the
bending modulus of DPPC would be 11.3 ± 0.6 kBT instead
of 14.8 ± 0.6 kBT in the case of the uniform scaling, resulting
in a rather large systematic error of 24 ± 5%.

C. Elastic parameters

The method proposed in this work enables the determina-
tion of the following elastic parameters: the stretching modu-
lus, bending modulus, spontaneous curvature, neutral surface
position, and local Poisson’s ratio. This is a set of parameters
that can be determined from the planar configuration of lipid
bilayers using Eqs. (5a)–(5d). There are other elastic param-
eters of lipid membranes, which were not considered in this
work. An important example is the tilt modulus, which char-
acterizes the energy cost for the deviation of lipid directors
from the local normal to a lipid monolayer [11–14,85–87].

In general, the tilt deformation mode also couples with the ef-
fective extrinsic curvature and curvature gradient, which gives
rise to the corresponding elastic moduli [15–17]. Other major
examples include the tilt-stretching coupling modulus [17],
stretching-curvature coupling modulus [17], splay modulus
of individual lipid tails [88,89], and twist modulus [14]. In
some theoretical frameworks, also an in-plane nematic order-
ing is considered, described by the Frank Hamiltonian with
the corresponding elastic parameters [90–93]. This nematic
ordering may stem from the presence of chiral components
such as cardiolipin [91,92] in lipid membranes. In this work
we considered only those elastic parameters that can be deter-
mined from pure stretching of planar lipid bilayers. Although
the planar configuration of lipid membranes is quite simple,
it also appears to be highly informative, as it permits the
determination of the important set of elastic parameters, which
are frequently employed in both 2D and 3D formulations of
elastic theories of lipid membranes.

As CG systems were considered in this paper, we should
not anticipate a full coincidence of the obtained elastic pa-
rameters with experimental results. In the Martini model [65],
employed in this work, DPPC is represented by 12 beads,
whereas real DPPC molecules consist of 130 atoms. Another
simplification is the treatment of the long-range electrostatics,
for which the reaction field method is used with the relative
dielectric constant ε = 15, which is assumed to be spatially
uniform [32]. In general, however, ε can be a space-dependent
function [94,95]. Nevertheless, the parameters of the Martini
model as well as other CG models are carefully tuned to
ensure the correspondence between the physical properties
of simulated and real systems [32,65]. In turn, different ex-
perimental methods may also disagree with each other. The
analysis of thermal shape fluctuations of vesicles at 322 K, for
example, leads to 18.4 ± 1.1 kBT for the monolayer bending
modulus of DPPC [96], while the x-ray scattering at 323 K
yields 14.4 ± 2.3 kBT [97]. Nevertheless, the value obtained
in this work, 15.3 ± 0.6 kBT at 325 K, is quite close to these
experimental results. The same is also true for the obtained
values of the bending modulus of DOPC, 8.7 ± 0.6 kBT at
325 K and 10.8 ± 0.8 kBT at 300 K, and corresponding exper-
imental results [10.6 ± 1.2 kBT at 291 K [60], 7.5 ± 1.5 kBT
at 295 K [98], and 9.7 ± 0.4 kBT at 303 K [97]]. The val-
ues of the stretching moduli are also typical [99,100]. The
neutral surface of the considered systems is located at a
distance of approximately 1 nm from the midplane, i.e., ap-
proximately in the middle of the lipid tail region. This is in
agreement with previous simulations based on the analysis
of fluctuations [34]. What is noticeable is that the obtained
values of spontaneous curvature are large and negative (see
Table I). In contrast, the experimental values are 0.05 ± 0.05
and −0.04 ± 0.04 nm–1 for DPPC and DOPC, respectively
[101]. This might be an artifact of the Martini force field,
which leads to the large repulsion in the region of lipid tails
(see Fig. 2), while in all-atom (AA) systems this repulsion is
smaller [75]. The consequence of this may be an increase in
the line tension of the membrane edge and therefore a high
cost of pore formation, which is a known drawback of Martini
lipids [102].

Since the proposed method applies not only to single-
component membranes but also to multicomponent lipid
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membranes, we analyzed the dependence of elastic parame-
ters on the concentration of DPPC and DOPC. In general, the
bending deformation entails a redistribution of lipid molecules
due to the composition-curvature coupling effect [46,47]:
Lipids with nonzero spontaneous curvature K0,m would tend
to accumulate at membrane regions whose extrinsic curva-
ture K is close to the spontaneous curvature of these lipids,
relaxing the bending energy 1

2 km(K − K0,m)2. This redistribu-
tion of lipids leads to a position-dependent bending modulus
and spontaneous curvature km = km(r) and K0,m = K0,m(r),
respectively, where r is the position vector. At each r, there is a
specific lipid composition, and km(r) and K0,m(r) mean the in-
trinsic (with no redistribution of lipids) bending modulus and
spontaneous curvature, respectively. The method proposed in
the present work considers only planar bilayers and the redis-
tribution of lipids does not take place. Therefore, the bending
moduli and spontaneous curvatures obtained in this work for
lipid mixtures are intrinsic bending moduli and spontaneous
curvatures. The redistribution of lipids during bending can be
observed in experiments with lipid tubes [47]. In this case of
lipid redistribution, a system can be characterized by an ef-
fective bending modulus that is less than the intrinsic bending
modulus. Such a decrease in the bending modulus can be up
to approximately 30%, and there are theoretical models that
estimate this decrease from the properties of the reservoir and
concentration dependence of the intrinsic elastic parameters
of considered lipid mixtures [47].

In this work we considered the 50:50 DPPC/DOPC lipid
mixture. While the stretching modulus of this mixture turned
out to be somewhere in the between those of pure DPPC
and DOPC, the bending modulus and spontaneous curvature
are close to pure DOPC. Thus, the trend for the latter two
parameters is highly nonlinear. The spontaneous curvature is
usually assumed to be additive in experiments [101,103,104],
i.e., the spontaneous curvature cmix of a multicomponent lipid
monolayer is assumed to be cmix = ∑

i ϕici, where ϕi is the
mole fraction of lipids of type i and ci is the spontaneous cur-
vature of a single-component monolayer composed of lipids
of type i. In Ref. [105] the authors considered the first moment
of the stress profile, which is equal to kmK0,m, and showed that
the spontaneous curvature of sphingomyelin and cholesterol
is nonadditive. In our case, the first moment values are quite
similar: 2.65 ± 0.03 kBT nm–1, 2.59 ± 0.01 kBT nm–1, and
2.66 ± 0.01 kBT nm–1 for pure DPPC, 50:50 DPPC/DOPC,
and pure DOPC, respectively. Although there is a slight non-
linearity in these values, the direct concentration dependence
of the bending modulus and spontaneous curvature, given in
Fig. 4, cannot be obtained within the approach of Ref. [105],
as it considers only the product between the bending modulus
and spontaneous curvature. The inverse of the bending modu-
lus also does not abide by a linear trend, known as the Reuss
averaging [106], sometimes used in theoretical frameworks
[107,108]. According to this averaging, the bending modulus
kmix of a binary lipid mixture with the bending moduli k1

and k2 and areas per lipid a1 and a2 of the corresponding
single-component membranes can be expressed as

kmix = (a1N1 + a2N2)

(
a1N1

k1
+ a2N2

k2

)−1

, (13)

where N1 and N2 are the numbers of lipids in the mixture. Sub-
stituting into kmix the areas per lipid of pure DPPC and DOPC
membranes, 0.6 and 0.69 nm2, respectively, and the obtained
values of the bending moduli, we get 10.9 ± 0.5 kBT for the
bending modulus of the 50:50 DPPC/DOPC mixture, which
differs from the measured value, 9.0 ± 0.4 kBT , by 21 ±
8%. Thus, the concentration dependence of the monolayer
bending modulus of the considered DPPC/DOPC mixture is
more complex than the classical Reuss averaging predicts.
It is known that lipid membranes of living cells are usually
multicomponent [54,109]. Since elastic parameters of lipid
membranes determine important characteristics of various
phenomena associated with membrane deformations such as
energy barriers and characteristic times, the analysis of elastic
parameters of multicomponent lipid membranes is of partic-
ular interest from a biological point of view to understand
how living cells can regulate these phenomena by changing
the lipid composition of their membranes.

The expression obtained for the local tension (6) allowed
us to consider the relation between the bending modulus
and moments of the stress profile. This analysis is analo-
gous to the derivation of the classical relation between the
stretching modulus and lateral tension: kA = d

dε
σ (ε)|ε=0. We

showed that in the case of the quadratic energy law and lo-
cal incompressibility the bending modulus is associated with
the ε-dependent Gaussian curvature modulus according to
Eq. (11). This is a consequence of the fact that the expression
for the bending modulus (5c) contains the second moment of
the stress profile. Our analysis showed that Eq. (11) does not
hold for DPPC: km calculated from Eq. (11), 8.1 ± 2.2 kBT ,
is approximately half the actual value 15.3 ± 0.6 kBT . This
implies that the simplifying assumption of the quadratic en-
ergy law and local incompressibility does not apply to Martini
DPPC. It might seem striking that the two elastic moduli, the
bending modulus and the Gaussian curvature modulus as a
function of stretching, at least in the case of the quadratic
energy law and local incompressibility, are not independent
of each other. However, it was previously shown that the
second moment of the stress profile, which is usually associ-
ated with the Gaussian curvature modulus [14,63,64], should
not be considered a separate elastic modulus; rather, this
term is connected with the spontaneous Gaussian curvature
[17]. It should be noted that a reformulation of the Helfrich
Hamiltonian exists [110]. In Ref. [110] it was proposed that
it is more reasonable to replace the Gaussian curvature term
with the deviatoric bending, i.e., to replace KG = c1c2 by
kd
2 (|c1 − c2| − ϑ )2, where c1 and c2 are the principal curva-

tures, kd is the deviatoric curvature modulus and ϑ is the
spontaneous warp. This deviatoric energy contribution is writ-
ten in analogy to the first term of the Helfrich Hamiltonian,
k
2 (c1 + c2 − K0)2 [see Eq. (1)], where c1 + c2 = K by defini-
tion. Using the extrinsic curvature and the curvature deviator
instead of the extrinsic and Gaussian curvature in the expres-
sion for the elastic energy leads to a different understanding
of the membrane fusion and fission processes [111–113]. The
deviatoric bending is also employed for the description of
anisotropic membrane inclusions [114,115].

It should be mentioned that the second moment of the stress
profile may not be the only contribution to the Gaussian cur-
vature modulus. In Refs. [14,116] it was shown that the local
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lateral shear modulus λLS(z) also contributes to the Gaussian
curvature modulus [see also Eq. (11.6) of Ref. [61]]. As in the
lateral direction lipid membranes are fluid, in Ref. [14] two
kinds of lateral fluidity conditions were considered, λLS(z) =
0 and

∫
λLS(z)dz = 0, corresponding to the local fluidity

assumption and global fluidity assumption, respectively. In
Ref. [17] it was shown that local fluidity follows from global
fluidity due to the membrane stability requirements and thus
the two assumptions are equivalent. However, the analysis
of transverse fluctuations of lipid molecules shows that the
twist modulus, which according to the elastic theory equals
2

∫
λLS(z)z2dz, is nonzero [41], which contradicts the equality

λLS(z) = 0. On the other hand, the analysis of longitudinal
fluctuations of lipid molecules shows that the curvature gradi-
ent modulus is equal to zero, which contradicts the membrane
stability requirements and leads to unphysical results [17], im-
plying that the analysis of lipid fluctuations within the elastic
theory of lipid membranes is rather problematic.

It should be mentioned that there are other relations, differ-
ent from Eq. (11), between the bending modulus and Gaussian
curvature modulus, which were obtained in other theoretical
frameworks. The classical relation, valid for isotropic elastic
plates with the Poisson’s ratio ν, is [61]

k̄

k
= ν − 1. (14)

The applicability of Eq. (14) to lipid membranes is rather
vague. First, lipid membranes are transversely isotropic rather
than simply isotropic. Second, the consideration of the lateral
shear deformation, which is absent in lipid membranes due
to lateral fluidity, is important for deriving Eq. (14). Experi-
mental values of k̄

k lie in the range [–1, –0.7] [117], leading
to ν ∈ [0, 0.3], which contradicts volumetric incompress-
ibility of lipid membranes, implying ν ≈ 0.5. Apart from
Eq. (14), there are other relations between k and k̄. For exam-
ple, within the Helfrich Hamiltonian, the following relation
holds [118,119]:

ceq
1 = ceq

2 = kK0

2k + k̄
. (15)

Here ceq
1 and ceq

2 are the principal curvatures corresponding to
the local minimum of the Helfrich Hamiltonian (1). Another
relation that can be obtained from the Helfrich Hamiltonian
applied to constituent monolayers of a lipid bilayer is [120]

k̄b = 2(k̄m − 2z0kmK0,m), (16)

where k̄b is the bilayer Gaussian curvature modulus. In com-
parison with Eqs. (15) and (16), Eq. (11) obtained in this work
represents a distinct relation. Equation (11) contains only
the bending modulus and the Gaussian curvature modulus,
whereas Eqs. (15) and (16) contain other parameters such as
K0 in Eq. (15) and z0 in Eq. (16). Implicitly, there is also
stretching ε in Eq. (11), which enters through the derivative
d
dε

k̄m(ε)|
ε=0

. However, ε enters only locally, as the informa-
tion about k̄m(ε) in the vicinity of ε = 0 is enough to calculate
the derivate of k̄m(ε) with respect to ε at ε = 0. Because of this
derivative, Eq. (11) is not of the type k̄m

km
= const. Therefore,

it should not be read from Eq. (11) that the bending modulus
and Gaussian curvature modulus are not independent. Rather,

Eq. (11) shows that the bending modulus and the Gaussian
curvature modulus as a function of ε, k̄m(ε), are not indepen-
dent. If written as

km = d

dε
[(1 + ε)2k̄m(ε)]

∣∣∣∣
ε=0

, (17)

i.e., without expanding the brackets, Eq. (11) resembles kA =
d
dε

σ (ε)|ε=0, the classical relation between the stretching mod-
ulus and lateral tension, and also represents the derivative
of the stress-strain relation. It can be noted that, in the case
of the quadratic incompressible model, it does not matter at
what value of ε the derivative is taken in Eq. (17), since the
bending modulus as a function of ε, km(ε), equals km

1+ε
, and

d
dε

|
ε=ε1

= 1
1+ε1

d
d ε̃

|
ε̃=0

for 1 + ε = (1 + ε̃)(1 + ε1).

D. Advantages of the proposed method

Molecular-dynamics simulations provide complete and ac-
curate control of the state and composition of a system, which
is difficult to achieve in experiments. Despite great advances
in MD methods for the determination of elastic parameters of
lipid membranes, there are still difficulties in their application
[121]. In this section we briefly review the main approaches
which are used to measure elastic parameters of lipid mem-
branes, pointing out the advantages of the method proposed in
this work compared to other MD methods.

A large and important part of MD methods is based
on monitoring fluctuations [15,16,43,34,36–42] of either the
membrane surface or lipid directors, i.e., the average ori-
entations of lipid molecules. The fluctuation-based methods
employ the equipartition theorem, which states that the mean
energy per degree of freedom is equal to kBT/2. The elastic
energy of monolayer bending can be expressed either in terms
of the director field n as km

2 (∇ · n)2 or in terms of the intrinsic
curvature and tilt T as km

2 (K + ∇ · T)2. From the equipar-
tition theorem applied to the average values of the Fourier
amplitudes of either the membrane surface or lipid directors,
the bending modulus km can be determined. However, the
definition of the membrane surface and lipid directors is rather
ambiguous. For the definition of the membrane surface, a
reference atom should be chosen, which might be either in
the headgroup region or in the region of lipid tails. For the
lipid director, two reference atoms should be chosen to draw a
vector representing the director. The choice of these reference
atoms is quite arbitrary and not strictly justified. A recent com-
prehensive study shows that the ambiguities in the definitions
of lipid directors lead to substantial systematic errors in the
values of elastic parameters [43]. For example, according to
row 2 of Fig. 5 of Ref. [43], the error in the bending modulus
due to the ambiguity in the definition of the lipid director
can be as large as 40%. The method proposed in this work
employs neither the membrane surface nor lipid directors and
therefore there are no such complications with the definitions
of these quantities as in fluctuation-based methods.

In the case of lipid mixtures, averaged elastic parame-
ters are usually introduced in fluctuation-based methods. The
choice of a particular averaging is questionable. For exam-
ple, according to the Reuss model (12) [106], the inverse
bending moduli are averaged. In a different model, the Voigt
model [106], the bending moduli are averaged directly: kmix =

024414-12



DETERMINATION OF ELASTIC PARAMETERS OF LIPID … PHYSICAL REVIEW E 107, 024414 (2023)

ϕ1k1 + ϕ2k2, where ϕ1 and ϕ2 are the surface fractions of
lipids of types 1 and 2, respectively. In Ref. [36], for the
determination of the bending modulus of lipid mixtures from
fluctuations, a model analogous to the Reuss averaging was
employed. However, the validity of both the Reuss model and
the Voigt model is rather vague. In this work we showed that
none of these models holds for the DPPC/DOPC mixture.
In the stress profiles approach, there is no need to choose
an appropriate averaging, as the intrinsic bending moduli of
lipid mixtures are measured directly. The same is true for the
intrinsic spontaneous curvature of lipid mixtures. It should
also be pointed out that the bending moduli of lipid mixtures
determined by the fluctuation-based methods may correspond
to not the intrinsic but the effective bending moduli due to
the composition-curvature coupling [122]. Actually, the com-
parison of the bending modulus of lipid mixtures obtained
by monitoring surface undulations with the bending modulus
measured by simulating tethers showed that the former is
always smaller than the latter [123], which may be due to a
decrease in the bending modulus of undulating membranes
because of the composition-curvature coupling effect.

There is also an open theoretical question regarding
fluctuation-based methods. In particular, the theory predicts
that the spectrum of 〈|q · nq|2〉 is a decreasing function of
q ≡ |q| [17], where q is a wave vector and nq is the Fourier
amplitude of lipid directors, while in simulations 〈|q · nq|2〉
is always an increasing function [15–17,41,43]. In practice,
a divergent spectrum relation is employed [15,16,43], which,
however, contradicts the stability of lipid membranes, leading
to unphysical results [34].

Other in silico methods, the equilibrium force methods,
are based on applying external forces to lipid membranes and
measuring the magnitude of the corresponding deformations.
For example, the stretching modulus can be determined by
calculating the area per lipid at different lateral tensions,
i.e., forces applied to the membrane in the lateral direction
[124]. The determination of the bending modulus requires
a more complex procedure. One of the proposed methods
[44,45] is based on membrane buckling during lateral com-
pression: At a sufficiently high compressive force, membranes
lose their initial planar state and begin to bend out of the
plane. This approach requires a large lipid system to be
simulated and is therefore out of reach for AA simulations.
Currently, the theory for the buckling approach exists only
for single-component lipid membranes [44,45]. The prob-
lem with applying the buckling approach to lipid mixtures is
that in curved multicomponent membranes the lipid composi-
tion is no longer uniform due to the composition-curvature
coupling effect [46,47]. Therefore, the bending energy of
each monolayer in a buckled multicomponent membrane, or
any curved multicomponent membrane, would be given as∫

1
2 km(r)[K − K0,m(r)]2dS, where the integration is over the

monolayer surface, and km(r) and K0,m(r) are the bending
modulus and spontaneous curvature at position r, respectively.
Nevertheless, the theory of single-component buckled mem-
branes can be formally employed for the determination of
the bending modulus of lipid mixtures [125]. The bending
modulus obtained in this formal way represents the mean
bending modulus of this mixture. However, this mean value
of the bending modulus is specific to the buckling procedure,

as in general km(r) of membranes not bent in the same way
as in the buckling procedure may be different from that of
the buckled membranes and therefore the mean value of the
bending modulus may also be different. The same reasoning
applies to membranes curved by cylindrical repulsive walls
[126]. Thus, the curvature-composition coupling represents
a problem for the determination of intrinsic elastic parame-
ters of lipid membranes using the buckling method. Also, as
in the fluctuation-based methods, due to periodic boundary
conditions, the buckling method does not apply to the determi-
nation of the monolayer spontaneous curvature. In the stress
profile approach, lipid bilayers are always planar. Although
the redistribution of lipids may nevertheless take place due to
thermal undulations even in planar bilayers, on average the
distribution of lipids is uniform. As the stress profile approach
employs averaging over time, the local stress obtained in this
way corresponds to the uniform distribution of lipids. Also,
the influence of undulations on stress profiles is negligible for
systems of small size (see Sec. VI E). Therefore, the stress
profile protocol can be employed for the determination of
intrinsic bending moduli and spontaneous curvatures.

An alternative approach for the determination of the bend-
ing modulus involves simulating tethers, or membrane tubes
[127]. In this approach, a cylindrical membrane tube is cre-
ated. The axial tension in these tubes is equal to 2πk/R,
where R is the tube radius, which allows obtaining the bending
modulus k by measuring the axial tension and tube radius.
The application of this method to the determination of intrin-
sic elastic parameters of multicomponent lipid membranes is
complicated due to the difference in the curvature radii of the
inner and outer monolayers of a lipid tube, which leads to the
redistribution of lipids between the monolayers as a result of
the composition-curvature coupling [123]. Also, the method
of simulating tethers has two technical limitations related to
the requirement to balance the solvent pressure outside and
inside the tube, as well as to balance the area per lipid of
the two monolayers [45]. By contrast, in the stress profile ap-
proach there are no such problems due to the symmetry of the
flat bilayer state. Also, the method of simulating tethers does
not provide values of the monolayer spontaneous curvature,
unlike the method presented in this work.

Another equilibrium force method involves the analysis
of a half-cylinder relaxation to a flat state [128]. Since the
extrinsic curvature is not constant along the trajectory of this
relaxation, this method does not apply to the calculation of
intrinsic elastic parameters of lipid mixtures, as the redistri-
bution of lipids can occur due to the composition-curvature
coupling. Also, this method does not provide spontaneous
curvature values. In Ref. [128] it was shown that the bend-
ing modulus depends on the extrinsic curvature. We note,
however, that a thorough description of the membrane shape
obtained in Ref. [128], which applies the Helfrich energy
functional to each monolayer separately, restores the con-
stancy of the bending modulus as a function of the extrinsic
curvature [129].

E. Drawbacks and caveats concerning the proposed method

The method proposed in this work also has drawbacks. One
of the drawbacks of the method is that the local stress is not
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uniquely defined. The nonuniqueness of the local stress lies in
the requirement to decompose multibody forces into pairwise
forces. The cCFD that was employed in this work decomposes
multibody forces into pairwise central forces between inter-
acting particles [77]. The cCFD was introduced to overcome
the difficulties of the Goetz-Lipowsky decomposition [124],
which does not conserve the angular momentum of a system
[77], and the central force decomposition (CFD), which is not
unique for N-body potentials with N > 4 [77]. In Ref. [130],
however, it was shown that it is possible to construct a differ-
ent force decomposition for three-body potentials, the force
center decomposition (FCD), by considering a force center
of three interacting particles. Like the cCFD, the FCD also
conserves the angular momentum of a system. Although the
choice of the force decomposition does not influence the first
moment of the stress profile [131], the second moment can de-
pend on the choice of the decomposition [130]. For example,
the Gaussian curvature modulus, which is equal to the second
moment of the stress profile at zero stretching, of dissipative
particle dynamics membranes was found to be –3.1 ± 0.2 kBT
and –32.8 ± 0.1 kBT for the CFD and FCD, respectively
[130], which is a rather large difference. In this work we used
the second moment of the stress profile for the calculation of
the bending modulus via Eq. (5c). Thus, although the cCFD
currently represents the most natural choice for the force
decomposition, the ambiguity in the definition of the local
stress which is still present in the literature may lead to the
ambiguity in the bending modulus obtained by the method
presented in this paper. To circumvent the difficulties with the
ambiguity in the definition of the local stress, a method was
proposed in Refs. [131,132] that sidesteps the computation of
the local stress by applying virtual bending deformations to
lipid membranes and then measuring the corresponding free-
energy derivatives in fluctuating planar membranes. However,
in the latter approach an ambiguity remains with the choice of
the center of the in-plane deformations [131].

An important limitation of the proposed method includes
systems close to the phase transition. High compression of
such systems can lead to phase transition. In this work, to
ensure the absence of the phase transition, the compressive
tensions were chosen smaller than stretching tensions: −50
and −100 bar nm for compressive tensions and +75 and
+150 bar nm for stretching tensions. The maximum compres-
sion was thus 3.2%, realized in DPPC bilayers. In practice,
the phase transition can be observed by a large discontinuous
change in ε or stress profile data. In principle, the compression
can be avoided, and the derivative with respect to stretching at
ε = 0 can be calculated from the remaining data. However,
this would require more data at positive tension to stay within
the same error limits.

In real systems and simulations, lipid membranes undergo
fluctuations due to thermal motion, resulting in out-of-plane
undulations. The excess area, absorbed by these undulations,
may lead to corrections to the observed values of forces and
apparent stretching [100,121,133]. This is especially impor-
tant for large systems since the contribution of the excess
area is also large. However, for small systems the corrections
are minor. For example, for systems approximately equal to

45 × 7 nm2 in size used in the buckling method, the cor-
rections do not exceed 1% [45]. In our case, the considered
systems are even smaller, with the lateral size of the box being
approximately equal to 10 nm. Therefore, we did not include
the effect of thermal fluctuations in the analysis of the elastic
parameters.

Simulations with too small a system size can also be prob-
lematic due to the periodic boundary conditions since for too
small a simulation box the configurations of lipid molecules
can be correlated with their periodic images. To estimate
the smallest box size, beyond which these correlations be-
come important, let us consider the characteristic length l of
lipid monolayer deformations. According to Ref. [134], l =
h2

m

√
kt
km

, where hm, km, and kt are the monolayer hydrophobic

thickness, bending modulus, and tilt modulus, respectively.
The typical values of hm, km, and kt are 1.5 nm [35], 12 kBT
[100], and 12 kBT nm−2 [100], respectively, implying l ≈
2.25 nm. Thus, the smallest side length of the simulation box
can be estimated as Lmin = 2l = 4.5 nm. Since the typical
area per lipid is approximately equal to al = 0.6 nm2 [135],
the minimum number of lipids per leaflet can be estimated
as L2

min/al ≈ 34. A similar number of lipids, 36 per leaflet,
is frequently employed in MD simulations of lipid bilayers
[38,105].

In this work CG models were used; however, the pro-
posed method applies to any lipid system which allows the
calculation of the stress profile, including AA ones. The CG
models were chosen not only due to their speed but also
because the current version of GROMACS-LS does include the
particle-mesh Ewald method for the electrostatic calculation
needed for AA simulations, without which the calculation
is computationally expensive [75]. We note that going from
CG to AA systems would not necessarily involve using the
same 1-μs simulation time per tension as was used in this
work, which is quite a long time for AA simulations. All-
atom systems have a higher number of interacting particles
and therefore more statistics compared to CG systems. For
example, simulating 72 AA DPPC lipids for 139 ns at 323
K leads to the same error of 0.03 kBT nm–1 for the first
moment of the stress profile [105] as that obtained in this
work for 256 CG DPPC lipids simulated for 1 μs. To obtain
the exact scaling function, additional simulations at different
isotropic ambient pressures are required, which may lead
to the overall simulation time of 1390 ns, if five different
tensions and isotropic ambient pressures are considered as
in this work. Nevertheless, the overall complexity in terms
of ns × lipid is not much larger than that of, for example,
fluctuation-based methods. The smallest system reported in
the fluctuation-based approaches was 288 AA DPPC simu-
lated for 200 ns at 323 K [42], which resulted in the same
error of 0.6 kBT for the monolayer bending modulus as in this
work. The complexity of 288 AA DPPC simulated for 200 ns
is 200 ns × 288 lipids = 57 600 ns × lipid, which is approx-
imately 1.7 times less complex than 1390 ns × 72 lipids =
100 080 ns × lipid. However, one should also take into ac-
count the time required to obtain stress profiles, which in our
case was about 1/3 of the simulation time.

024414-14



DETERMINATION OF ELASTIC PARAMETERS OF LIPID … PHYSICAL REVIEW E 107, 024414 (2023)

VII. CONCLUSION

In this work, within the framework of the classical 3D
theory of elasticity, we considered the stress-strain relation of
planar lipid bilayers. We revised the theory of Campelo et al.
[31] and developed the method for the determination of the
following monolayer elastic parameters of lipid membranes:
bending and stretching moduli, spontaneous curvature, neu-
tral surface position, and local Poisson’s ratio. An important
correction to the expression for the local stretching modulus
was found [Eq. (12)], which if not taken into account can
lead to large systematic errors up to 24 ± 5% for the bending
moduli. Unlike previous considerations, we assumed a more
general condition of global incompressibility instead of local
incompressibility. This allowed us to derive the expression
(9) for the local Poisson’s ratio of lipid membranes ν(z),
which can be determined through the response of the local
lateral stress profile to the change of the isotropic ambient
pressure. Using ν(z), we determined the exact scaling map,
i.e., a function that determines how the thickness of lipid
monolayers changes locally upon stretching or compression,
necessary for finding the correspondence between the points
of the stress profiles obtained at different lateral tensions. By
introducing the local tension profile at different stretching,
we showed that the approach of Campelo et al. for the de-
termination of elastic parameters can be largely simplified:
Elastic parameters can be determined with one quadratic fit
of tension profile moments obtained at different stretching
according to Eqs. (5a)–(5c) instead of first calculating the
local stretching modulus and then using Eqs. (4a)–(4c). In the
case of a simplified assumption of the local incompressibil-
ity and quadratic energy law, a relation was found between
the bending modulus and Gaussian curvature modulus as a
function of stretching [Eq. (11)], which shows that these two
moduli are not completely independent, as was previously
assumed. The theoretical results were applied to the CG MD
simulations of DPPC, DOPC, and their 50:50 mixture. The
following elastic parameters were determined: the stretching
and bending moduli, neutral surface position, spontaneous
curvature, and local Poisson’s ratio. The local Poisson’s ratio
was determined from the local stress. The bending modu-
lus and spontaneous curvature of the DPPC/DOPC mixture
were interpreted as intrinsic parameters corresponding to no
composition-curvature coupling. It was shown that the depen-
dence of the intrinsic bending modulus of the DPPC/DOPC
mixture is more complex than predicted by the classical Reuss
averaging, which is often used in theoretical frameworks.
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APPENDIX A: VARIATION OF THE ELASTIC ENERGY

In this appendix we derive the expression for the local
tension, Eq. (6). The elastic energy function of the monolayer
is given by W (ε, z). To perform the variation with respect
to ε, we need to provide the geometrical structure that this
energy function describes. To do this, we follow the approach

suggested in Ref. [136], wherein the geometry is specified us-
ing Lagrange multipliers. Let us first introduce the coordinate
system (x1, x2, x3), the x3 axis of which is directed along the
lipid tails from the hydrophilic to the hydrophobic part of the
monolayer, and x1 and x2 describe the points of the transverse
planes at a given value of x3. Using this coordinate system,
we can describe the points of the initial and deformed states
of the monolayer using the vector functions R0(x1, x2, x3) and
R(x1, x2, x3), respectively. These functions define local bases
and metric tensors via e0a ≡ ∂aR0, ea ≡ ∂aR, g0ab ≡ e0a · e0b,
gab ≡ ea · eb, g0 ≡ det g0ab, g ≡ det gab (a, b = 1, 2, 3), and
the area densities of the transverse planes x1 and x2: ĝ =
det gab and ĝ0 = det g0ab (a, b = 1, 2). Now we can construct
the Hamiltonian

H =
∫

W (ε)dV0

+
∫ [

fa(ea − ∇aR) + fa
0 (e0a − ∇aR0)

]
dV

+
∫ [

λab(gab − ea · eb) + λab
0 (g0ab − e0a · e0b)

]
dV

+
∫ [

P

( √
g√
g0

− β(ε)

)]
dV

+
∫ [

λε

( √
ĝ√
ĝ0

− (1 + ε)

)]
dV , (A1)

where a, b = 1, 2, 3 and the summation over repeated indices
(one upper and one lower) is implied; dV0 = √

g0dx1dx2dx3;
dV = √

gdx1dx2dx3; and H is a function of ε, ea, e0a, R, R0,
gab, and g0ab, the definitions of which are captured by the
Lagrange multipliers fa, fa

0 , λab, λab
0 , P, and λε. For brevity,

the explicit dependence of β and W on x3 was omitted. The
Lagrange multiplier fa corresponds to the stress tensor �

via the relation � = −fa ⊗ ea, where ⊗ is the outer product
[117,137]. To find fa, we perform the variation of H with
respect to ε, ea, e0a, gab, and g0ab and obtain the system of
equations

−Pβ(ε)
∂β(ε)

∂ε
− β(ε)λε + ∂W (ε)

∂ε
= 0 for ε,

−2λab
0 e0b + fa

0 = 0 (a, b = 1, 2, 3) for e0a,

−2λabeb + fa = 0 (a, b = 1, 2, 3) for ea,

[−β(ε)2P + W (ε)]g03a

+ 2λ3a
0 β(ε) = 0 (a = 1, 2, 3) for g03a,

−β(ε)λε(1 + ε)g0ab + [−β(ε)2P + W (ε)]g0ab

+ 2λab
0 β(ε) = 0 (a, b = 1, 2) for g0ab,

Pβ(ε)g3a + 2λ3a = 0 (a = 1, 2, 3) for g3a,

λε(1 + ε)gab + Pβ(ε)gab

+ 2λab = 0 (a, b = 1, 2) for gab, (A2)

where each equation corresponds to the variation with respect
to the variable written on the right. To perform the variation
with respect to the components of the metric tensors, we
used the relations ∂g/∂gab = ggab and ∂g0/∂g0ab = g0gab

0 for
a, b = 1, 2, 3 and ∂ ĝ/∂gab = ĝgab and ∂ ĝ0/∂g0ab = ĝ0gab for
a, b = 1, 2. We omitted λa3 due to the symmetry of λab,
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a, b = 1, 2, 3. Note that, in general, ∂ ĝ/∂gab �= ĝgab, but in
our case ∂R/∂x3 is always perpendicular to ∂R/∂xa, a =
1, 2, as we do not consider tilt deformations. From Eqs. (A2)
we see that the variations with respect to the variables with
index 0 are decoupled from the rest.

The system of equations (A2) can be solved step by step as

λε =
∂W (ε)

∂ε
− Pβ(ε) ∂β(ε)

∂ε

β(ε)
,

λab = gab
(− ∂W (ε)

∂ε
(1 + ε) − Pβ(ε)2 + Pβ(ε)(1 + ε) ∂β(ε)

∂ε

)
2β(ε)

,

λ3a = −Pβ(ε)g3a

2
, a = 1, 2, 3,

fa = − ∂W (ε)
∂ε

(1 + ε) − Pβ(ε)2 + Pβ(ε)(1 + ε) ∂β(ε)
∂ε

β(ε)
ea,

f3 = −Pβ(ε)e3, (A3)

where ea ≡ gabeb, with a, b = 1, 2, 3. Recall that, for
brevity, we have so far omitted the explicit dependence of W
and β on x3. Now, choosing the previously introduced z axis
as the x3 axis, we can construct the local stress tensor

�(ε, z) ≡ −fa ⊗ ea

=
∂W (ε,z)

∂ε
(1+ε)+Pβ(ε, z)2 − Pβ(ε, z)(1+ε) ∂β

∂ε
(ε, z)

β(ε, z)

× (1 − N ⊗ N) + Pβ(ε, z)N ⊗ N, (A4)

where 1 is the unit matrix and N the unit normal along the
z axis. The � acts in the following way: An outward unit
normal to some region gives the force per unit area onto
this region. The terms multiplying 1 − N ⊗ N and N ⊗ N in
Eq. (A4) correspond to the lateral and normal parts of the
stress tensor. In equilibrium, the normal force is constant, i.e.,
Pβ(ε, z) = const = −Pz, where Pz is the value of the normal
pressure. Inserting Pβ(ε, z) = −Pz into Eq. (A4), we obtain

�(ε, z) ≡ −fa ⊗ ea

=
∂W (ε,z)

∂ε
(1 + ε) − Pzβ(ε, z) + Pz(1 + ε) ∂β

∂ε
(ε, z)

β(ε, z)

× (1 − N ⊗ N) − PzN ⊗ N. (A5)

FIG. 5. Plot of ∂2β(ε,z)
∂ε2 |

ε=0
as a function of the distance from the

membrane center. The black curve and gray shading are the mean
value and 95% confidence band, respectively.

The local tension is by definition equal to ∂W (ε,z)
∂ε

and we
can express it from � as

σ (ε, z) ≡ ∂W (ε, z)

∂ε
= [S(ε, z, Pz ) + Pz]β(ε, z)

1 + ε
− Pz

∂β(ε, z)

∂ε
,

(A6)
where S(ε, z, Pz ) is the lateral stress, i.e., the lateral part
of �.

APPENDIX B: SECOND DERIVATIVE OF β(ε, z)

In this appendix we provide an expression and a measured
value for ∂2β(ε,z)

∂ε2 |
ε=0

. Taking the derivative of Eq. (6) with
respect to Pz and then with respect to ε, we find

∂2β(ε, z)

∂ε2

∣∣∣∣
ε=0

= ∂

∂ε

[(
∂S(ε, z, Pz )

∂Pz
+ 1

)
β(ε, z)

1 + ε

]∣∣∣∣
ε=0

.

(B1)
To find ∂S(ε,z,Pz )

∂Pz
, at a given fixed tension, corresponding to

stretching ε, we varied Pz, setting the values of Pz to −50,
−25, 1, 25, and 50 bar. The scaling function and β(ε, z) on
the right-hand side of Eq. (B1) were approximated by the
linear relation β(ε, z) = 1 + γ (z)ε. The resulting values of
∂2β(ε,z)

∂ε2 |
ε=0

are shown in Fig. 5.
From Fig. 5 it follows that the maximum absolute value

of ∂2β(ε,z)
∂ε2 |

ε=0
does not exceed approximately 1.5. The mo-

ments Pz
∫

m0

∂2β(ε,z)
∂ε2 |

ε=0
(z − z0)ndz relative to the location of

the neutral surface, z0 ≈ −1.2, at Pz = 1 bar, are 0.002 ±
0.002 kBT nm−2, –0.0006 ± 0.0037 kBT nm–1, and 0.002 ±
0.007 kBT for n = 0, 1, and 2, respectively, and thus are
negligibly small in comparison with the elastic parameters of
DPPC.
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