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Towards understanding the effect of fibrinogen interactions on fibrin gel structure

Anna C. Nelson *

Department of Mathematics, Duke University, Box 90320, Durham, North Carolina 27708-0320, USA

Aaron L. Fogelson†

Departments of Mathematics and Biomedical Engineering, University of Utah, 155 South 1400 East, Room 233,
Salt Lake City, Utah 84112-0090, USA

(Received 24 February 2022; revised 22 November 2022; accepted 23 January 2023; published 21 February 2023)

Fibrin gelation involves the enzymatic conversion of the plasma protein fibrinogen to fibrin monomers which
then polymerize to form the gel that is a major structural component of a blood clot. Because fibrinogen provides
the material from which fibrin is made, it is generally regarded as promoting the gelation process. However,
fibrinogen can bind to a site on a fibrin oligomer, preventing another fibrin oligomer from binding there, thus
slowing the polymerization process. “Soluble fibrin oligomers,” which are mixtures of fibrin and fibrinogen, are
found in the blood plasma and serve as biomarkers for various clotting disorders, so understanding the interplay
between fibrin and fibrinogen during fibrin polymerization may have medical importance. We present a kinetic
gelation model of fibrin polymerization which accounts for the dual and antagonistic roles of fibrinogen. It
builds on our earlier model of fibrin polymerization that proposed a novel mechanism for branch formation,
which is a necessary component of gelation. This previous model captured salient experimental observations
regarding the determinants of the structure of the gel, but did not include fibrinogen binding. Here, we add to
that model reactions between fibrinogen and fibrin, so oligomers are now mixtures of fibrin and fibrinogen,
and characterizing their dynamics leads to equations of substantially greater complexity than previously. Using
a moment generating function approach, we derive a closed system of moment equations and we track their
dynamics until the finite time blow-up of specific second moments indicates that a gel has formed. In simulations
begun with an initial mixture of fibrin and fibrinogen monomers, a sufficiently high relative concentration of
fibrinogen prevents gelation; the critical concentration increases with the branch formation rate. In simulations
begun with only fibrinogen monomers that are converted to fibrin at a specified rate, the rates of conversion,
fibrinogen binding to oligomers, and branch formation together determine whether a gel forms, how long it takes
to form, and the structural properties of the gel that results.
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I. INTRODUCTION

An important constituent of blood clots is a fibrous mesh
composed of the protein fibrin. Fibrin is produced by the
action of the coagulation enzyme thrombin on the soluble
precursor molecule fibrinogen that is present in high con-
centration in the blood plasma. The insoluble fibrin mesh is
a branched polymer structure in the formation of which no
specific branch forming or inducing molecule is involved. The
structure of the fibrin mesh has important health implications
as it affects the mechanical properties of the clot (its strength
and flexibility) and it also affects the efficacy of the fibri-
nolytic process which breaks down the clot [1,2]. A highly
ramified gel can be formed in vitro in mixtures of thrombin
and fibrinogen alone (in a suitable ionic environment). In
vitro, it is seen that the thrombin concentration influences the
fibrin gel’s structure; a high thrombin concentration leads to
a “fine” clot with a high number density of branch points and
relatively thin fibers, while a low thrombin concentration leads
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to a “coarse” clot with a low number density of branch points
and relatively thick fibers [1,3]. It is believed that the fibrin gel
structure is kinetically determined, but the regulation of fibrin
branch formation remains largely a mystery.

Fibrinogen is an elongated molecule with a central domain
and two identical end domains. During fibrin polymerization,
thrombin cleaves two short polypeptide chains on the central
domain exposing two “A-knob” binding sites and thereby
producing fibrin monomers. An A-knob binding site of one
fibrin monomer can bind to a constitutively active binding
site, an “a-hole,” present in the distal domain of a fibrinogen
monomer or a different fibrin monomer. Such binding among
fibrin molecules leads to longitudinal growth and produces
half-staggered fibrin structures called protofibrils. When a
protofibril reaches a critical length, it can bind side-to-side
to other long protofibrils in a process called lateral aggre-
gation, producing thicker fibrin fibers. During the overall
polymerization process, a branched structure forms that re-
sults in a three-dimensional network of fibrin fibers, which
appears at a time referred to as the gel point or gel time
[4]. While the branching process remains poorly understood,
it is known that the structure of the branched network is
mostly determined by gel time [5] and that the structure
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depends on the concentration of thrombin as discussed above
[3]. The binding together of two fibrin monomers can be
thought of as occurring in two steps, first the a-hole of
one molecule binds to the A-knob of the other, and then
the a-hole of the second molecule binds to the A-knob of
the first.

We previously published a model of fibrin polymerization
which builds upon the two-step binding process and
incorporates a plausible branch formation mechanism.
We showed that the model displayed the experimentally
observed qualitative behavior in terms of branch point density
[6]. To our knowledge, this is the only existing model that
includes a mechanism for branch formation during fibrin
polymerization. In the original model, fibrin monomers were
supplied either initially or at a prescribed rate. In further
developments of the model [7,8], fibrin monomers were
produced from fibrinogen monomers by thrombin and the
gel structure varied with the thrombin concentration as seen
experimentally. In these studies, fibrinogen, which alone
cannot polymerize, played no role other than as the raw
material from which fibrin was made.

In reality, fibrinogen has another role; it can bind to a
fibrin oligomer, but its binding is partial and hinders further
growth of the oligomer [9–12]. If the bound fibrinogen is
later converted to fibrin by thrombin, then its binding in the
oligomer can be completed, removing this hindrance. During
the early stages of fibrin polymerization, fibrinogen is gen-
erally present at much higher concentration than are fibrin
monomers and so fibrinogen-fibrin reactions are expected to
be frequent. This situation persists longer when the throm-
bin concentration is low and, consequently fibrin monomer
formation is slow. The novelty of the current paper is our
formulation of a model which adds to the model in Ref. [6]
the binding of fibrinogen to fibrin oligomers as well as the
thrombin-mediated conversion of fibrinogen to fibrin. We use
this model to examine how the additional role of fibrinogen
affects the dynamics of the oligomer distributions and the
structure of the resulting gel if, indeed, a gel forms. The
new model is substantially more complex than our existing
fibrin-branching model, which tracked only the concentrations
of oligomers of differing size and number of branches. In
our new model, oligomers are characterized by differing size,
number of branches, and differing fibrinogen content. Our
new model is an example (albeit a complex one) of a kinetic
gelation model of the type pioneered by Ziff and coworkers
[13] and it helps our discussion to briefly sketch Ziff’s work
and some related concepts below.

In the Ziff framework, reactions occur among a collec-
tion of identical monomers, each of which has f reactive
sites. Such monomers are said to have “functionality” f . The
monomers can react with one another to form oligomers, and
oligomers can react with one another to form even larger
oligomers. An oligomer is called a “k-mer” if it is composed
of k monomers. Ziff’s model follows the time evolution of the
concentrations ck of k-mers as oligomers interact through a
single type of reaction in which a reactive site on one oligomer
binds to a reactive site on a different oligomer. In the Ziff
model, a k-mer has ( f − 2)k + 2 free reactive sites and it is
assumed that k-mers react with j-mers at a rate proportional
to the product of the concentrations of free reactive sites

on each of these types of oligomers, i.e., in proportion to
[( f − 2)k + 2]ck[( f − 2) j + 2]c j .

Ziff explored the question of whether a gel forms and, if
so, when it forms. Informally, the gel is a “treelike oligomer
of infinite size” and a precise mathematical definition is given
below. Whether and how fast a gel forms in Ziff’s model
depends on the integer value of the functionality f ; a gel forms
if and only if f � 3 and it forms more quickly for larger values
of f . The actual mathematical condition for gel formation is
f > 2; this condition is relevant in our fibrin-fibrinogen model
where we look at a quantity we call the “average functional-
ity” which needs not be integer valued.

The oligomer distribution in the Ziff model has zeroth,
first, and second moments M0 = ∑

k ck , M1 = ∑
k kck and

M2 = ∑
k k2ck , respectively. From these moments, two dif-

ferent useful averages can be formed, an = M1/M0 and aw =
M2/M1 which sometimes are called the “number-average
mass” and “weight-average mass,” respectively [14]. The
number-average mass is based on sampling a k-mer with a
probability ck/M0 that is determined by the relative number
of k-mers in the mix of oligomers. The weight-average mass
is based on sampling k-mers with probability kck/M1, so that
a k-mer is sampled with a probability that is proportional to
both its size and its relative frequency in the oligomer mixture.
For a weight-average mass, large oligomers contribute more to
the average than do small ones, more so when the ratio of the
large oligomer size to the small oligomer size grows larger.
Ziff’s definition of gel formation is that the weight-average
mass M2/M1 blows up in finite time, and the time of blow up
is called the gel time. As stated above, in Ziff’s model, this
average blows up in finite time if and only if f > 2.

The number-average is useful in describing the potential of
an oligomer to participate in a chemical reaction with another
oligomer. For two specific oligomers, the rate at which they
react with one another depends on the number of free reaction
sites of each of them, and not directly on the number of
monomers comprising them. We define the average function-
ality as the number-average of the number of reaction sites
on the various oligomers: {∑k[( f − 2)k + 2]ck}/M0. In Ziff’s
model, the average functionality increases with every reaction,
and so it is always larger than the prescribed functionality f of
the monomers in that model. As we describe below, fibrinogen
and fibrin monomers in our model have functionality 2. The
formation of a branch from three monomers produces a cluster
with functionality 3, and it is only through sufficient branch
formation that a gel can form. Some reactions in our model,
including branch formation, increase the number-average
functionality fA of oligomers, but the binding of fibrinogen
to an oligomer always reduces fA. The relative frequency
of average-functionality-increasing reactions and average-
functionality-decreasing reactions influences whether a gel
forms in our model and affects the gel’s structure if one forms.

There are relatively few previous models of fibrin gelation.
Some of the existing models use polymer distribution theory
[15] while others take a kinetic, mean field approach to study
protofibril formation and the aggregation of protofibrils into
fibers [16]. Other models of fibrin polymerization directly
use the Ziff model and assumed a functionality greater than
2 so that the model equations have built into them the abil-
ity to form a gel [17–19]. Therefore, branch formation is
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neither required or even defined. Various subprocesses of
fibrin polymerization have been investigated using mathemat-
ical modeling. This work includes modeling the conversion
of fibrinogen to fibrin [20] and use of single-molecule scale
molecular dynamics simulations and many-body dissipative
particle dynamics to examine early-time dynamics [21,22].
For more information about these models, see Ref. [23].

As discussed above, we have taken a kinetic gelation model
approach to develop a model of fibrin polymerization that
includes a mechanism for branch formation [6] and which
displays behaviors qualitatively like those seen experimen-
tally [3]. That model and its extensions [8,24] did not include
the binding of fibrinogen to fibrin oligomers, which is the
main focus of the current paper. Others have published models
involving fibrinogen and fibrin interactions [25–27] but these
models focus on early events and track only small oligomers;
they do not track branch formation or other quantities related
related to gel structure. In fact, none allow for gelation to
occur.

To investigate the multiple roles of fibrinogen in fibrin
polymerization, we herein present a two-monomer kinetic
polymerization model which involves two distinct types of
monomers, denoted M and M̂, that represent fibrin and fib-
rinogen, respectively. Each monomer has two reaction sites
but the reactions in which the M binding sites can partici-
pate differ from those for the M̂ sites. The model includes
five types of reactions that represent those that occur during
fibrin polymerization prior to gelation. In the model, larger
oligomers are formed through reactions between reaction sites
on smaller oligomers and can be composed of mixtures of
M and M̂. As in the Ziff framework, each reaction occurs
at a rate proportional to the product of the concentrations of
the types of free reaction sites involved in that reaction. Our
model tracks concentrations of oligomers of all possible types
using an infinite set of ordinary differential equations.

As in Refs. [6,13,28], we introduce a moment generating
function and obtain a single partial differential equation, from
which we derive a closed system of ODEs for the lower
order moments of the oligomer distribution. We can use the
moment system until a finite time blow-up in one or more
of the oligomer distribution’s second moments occurs. This
blow-up event is interpreted as gelation as it corresponds
to the weight-average oligomer size approaching infinity in
finite time. If gelation occurs, then the weight-average branch
concentration and reaction site concentration also blow up.
The result is the presence of at least one oligomer whose size,
number of branches, and number of reaction sites increases
without bound, a situation corresponding to an intuitive notion
of gel formation.

The remainder of the paper is organized as follows: We
first sketch the development of our model (with details given
in Appendix A). We then examine its behavior in three cases,
each motivated by a possible biological situation. In this pa-
per, we do not make comparisons of our results with specific
experimental observations, as some of the rate constants in
our model remain to be determined. Instead our intent is
to characterize the range of behaviors of the new model, in
particular looking at the effect of fibrinogen binding on gel
formation and structure and to understand those behaviors in
terms of the relative rates of the various processes included in
the model.

FIG. 1. Schematic of monomers. Monomer M and monomer M̂
with S and Ŝ half-domains, respectively.

II. FIBRINOGEN-FIBRIN BRANCHING MODEL

Here, we introduce the fibrinogen-fibrin branching model.
It extends the branching model found in Ref. [6] to include
fibrinogen binding and conversion of fibrinogen to fibrin using
a framework similar to Refs. [13,28]. We idealize a fibrin
monomer, M, to be a linear molecule consisting of two half-
domains, S. An M monomer has two kinds of binding sites,
one at each of its ends and two in the center, corresponding
to “a-holes” and “A-knobs,” respectively. We depict these
respective binding sites as squares and circles in Figs. 1 and
2(c). For brevity, we refer to these as square sites and circle
sites. We allow a circle site of one M monomer to bind to a
square site of another M monomer. We also introduce an ideal-
ized fibrinogen monomer, M̂, as a linear molecule consisting
of two-half domains Ŝ (see Fig. 1). The square binding site

(c)

(b)

(a)

FIG. 2. Schematic of binding reactions in fibrinogen-fibrin
branching model. The linking reaction in panel (a) and the binding
reaction in panel (b) involve only M monomers that represent fibrin
and are identical to reactions in Ref. [6]. The reaction in panel
(c) involves an M monomer and an M̃ monomer representing fib-
rinogen and results in the occupation of an S domain. The dangling
Ŝ domain cannot interact with any other species. (a) Link formation
with M-type monomers. (b) Branch formation process with M-type
monomers. (c) M̂-type monomer binding to M-type monomer, occu-
pying an S domain.
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C120

FIG. 3. Schematic of oligomer, C120. A trimer consisting of one
M and two M̂ monomers, representing a heterogeneous trimer with
two free fibrinogen reaction sites and no free fibrin reaction sites.

on an Ŝ domain can bind to a circle S binding site on a fibrin
molecule, but not to sites on other Ŝ domains.

The model includes two types of reactions involving only
M monomers. We imagine that linear polymerization begins
with a square binding site on a monomer’s S domain binding
to a circle binding site on a different monomer’s S domain,
forming the intermediate species Z so that S + S → Z . This
molecule can then “zipper” closed to form a linear link L [see
Fig. 2(a)]. Letting [S] denote the concentration of S domains
on M monomers and assuming the law of mass action, the ini-
tial binding event occurs at rate ks[S]2 and the overall reaction
S + S → L occurs at rate kskz[S]2 = kl [S]2, where kz is the
rate constant for zippering events and kl is the rate constant
for the overall reaction. In the model, we consider only the
overall bimolecular reaction in which two S domains join to
form a link with rate constant kl = kskz.

Due to the two-step nature of linear polymerization, the
process of zippering can be blocked by another S domain
binding event, resulting in a structure we call a branch (B) [see
Fig. 2(b)]. The rate constant for branch formation between
a Z structure and an S domain is kB[S], so the overall rate
of branch formation is kb[S]3, where kb = kBks. The model
involves only the overall trimolecular branching reaction S +
S + S → B. While higher-order branch structures can in prin-
ciple form, considering them does not lead to greater insight
and they are not included in the analysis below.

We also allow reactions that involve M̂ monomers. The
square binding site on a Ŝ domain can bind to a circle binding
site on a S domain, as shown in Fig. 2(c), at rate kg[Ŝ ][S] to
form species L̂ . To reflect the fact that “A-knobs” on fibrino-
gen have not been removed, we assume that the open circle
on an Ŝ domain cannot completely bind to the square on the
S domain. If another M̂ monomer binds to the other S domain
on L̂ , then species C120 (shown in Fig. 3) is formed. It cannot
participate in any binding reactions.

We allow fibrinogen monomers to bind to free fibrin bind-
ing sites in fibrin monomers or larger oligomers, but, as
explained below, we do not allow binding of a fibrinogen that
is already part of an oligomer. Finally, we allow conversion
of an M̂ fibrinogen monomer to an M fibrin monomer with
rate constant km and we allow conversion of fibrinogen in an
oligomer to fibrin with rate constant ko. We assume that the
newly-converted fibrin in oligomer immediately completes
the zippering process halted earlier to form a linear link. In a
model that explicitly includes the enzyme thrombin, the rates
km and ko would be proportional to the instantaneous thrombin
concentration. In this paper, we treat km and ko as constant, as
if the thrombin concentration itself were constant.

Taking into account the above reactions, we next describe
the formation of clusters. We define cluster Cmgk to be com-
posed of m + 2(g + k − 2) fibrin monomers, and to have g
free fibrinogen binding sites and k free fibrin binding sites;

we denote the concentration of such clusters by cmgk . A fibrin
monomer (M) is denoted C102 and a fibrinogen monomer (M̂)
by C020. As discussed above, we assume that when an M̂
monomer binds to a free S domain, the S domain becomes
unavailable to bind to anything else. The number of branches
in an oligomer can be computed easily using the relation
b = k + g − 2.

As noted above, we do not allow fibrinogen in an oligomer
to bind. Our main reason is our desire to limit the mathe-
matical complexity of the model. If we allow such reactions,
then the number of fibrinogen in an oligomer would no longer
have to equal the number of free fibrinogen binding sites on
the oligomer. Hence, it would be necessary to track oligomers
with four distinct attributes rather than three as in the current
model. We offer two arguments to support our assumption: (i)
At any given time during a simulation, the total concentration
of free fibrinogen binding sites on oligomers is typically much
less than the total concentration of free fibrin binding sites and
free binding sites on fibrinogen monomers, so that a fibrin
binding site is much more likely to bind with another fibrin
binding site or a monomeric fibrinogen binding site than with
a fibrinogen in an oligomer. (ii) If an oligomer-bound fibrino-
gen were to bind to a fibrin binding site, then the result would
be a cluster that is functionally similar to one formed through
a new linear link. Since only monomeric M̂ can bind to other
oligomers, C020 is the only fibrinogen-containing species that
can bind via its Ŝ domain to a Cmgk oligomer.

In terms of the notation just introduced, we allow the fol-
lowing reactions to occur:

Cm1g1k1 + Cm2g2k2

kl−→ Cm1+m2,g1+g2,k1+k2−2, (1)

Cm1g1k1 + Cm2g2k2 + Cm3g3k3

kb−→
Cm1+m2+m3−2,g1+g2+g3,k1+k2+k3−3, (2)

Cmgk + C020
kg−→ Cm,g+1,k−1, (3)

C020
km−→ C102, (4)

Cmgk
ko−→ Cm+1,g−1,k+1. (5)

To calculate some quantities of interest, we must sum over
all oligomers that contain fibrin, that is oligomers Cmgk with
m > 0, g � 0, k � 0. To facilitate describing these quantities
we introduce the notation

∑
m,g,k

=
∞∑

m=1
g=0
k=0

. (6)

We track the total concentration of fibrin, MT , the total con-
centration of fibrinogen, M̂T , and the total concentration of
branches B, using the expressions

MT =
∑
m,g,k

(m + 2g + 2k − 4)cmgk, (7)

M̂T =
∑
m,g,k

gcmgk + c020, (8)

B =
∑
m,g,k

(k + g − 2)cmgk . (9)
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The total concentration of fibrin in oligomers is O = MT −
c102 and similarly the total concentration of fibrinogen in
oligomers is Ô = M̂T − c020. The concentration of free fibrin
reaction sites on oligomers is

R =
∑
m,g,k

kcmgk, (10)

and we define the weight-average number of monomers (fibrin
or fibrinogen) per cluster to be

A =
(∑

m,g,k (m + 2g + 2k − 4 + g)2cmgk + c020
)

MT + M̂T
, (11)

where we use the fact that the number of fibrin monomers in
a Cmgk oligomer is m + 2(g + k − 2), as noted earlier.

Following Ziff, we regard gelation as occurring if A → ∞
at a finite time, which we call the gel time and denote tgel.
The gel time depends not only on the above reaction rates,
but also on the initial concentrations of fibrinogen and fibrin
monomers. In the Ziff model framework, which pertains to a
system of identical monomers each with a fixed functionality
f , a gel can form only if f > 2 [13]. In our model, fibrino-
gen and fibrin monomers have functionality f = 2; gelation
can still occur because the branching reaction gives rise to
oligomers with three or more functional sites. The goal of
our analysis below is to determine which parameter values
lead to gel formation, and to determine the clot structure
and oligomer distribution at gel time. With the five reactions
described above, we write the equations for the oligomer
concentrations cmgk and for the concentration of fibrinogen
monomers c020 as

dcmgk

dt
=

linear link formation︷ ︸︸ ︷
kl

2

∑
m1+m2=m
g1+g2=g

k1+k2=k+2

k1k2cm1g1k1 cm2g2k2 − klkcmgkR +

branch formation︷ ︸︸ ︷
kb

6

∑
m1+m2+m3=m+2

g1+g2+g3=g
k1+k2+k3=k+3

k1k2k3cm1g1k1 cm2g2k2 cm3g3k3 − kb

2
kcmgkR2

+
fibrinogen binding︷ ︸︸ ︷

2kgc020[(k + 1)cm,g−1,k+1 − kcmgk] +
oligomeric conversion︷ ︸︸ ︷

ko[(g + 1)cm−1,g+1,k−1 − gcmgk] +
monomeric conversion︷ ︸︸ ︷

δm,1δg,0δk,2(kmc020), (12)

dc020

dt
= −2kgc020R − kmc020, (13)

where R is defined by Eq. (10) and satisfies the differential
equation

dR

dt
= −klR

2 − kb

2
R3 − 2kgc020R + 2kmc020 + koÔ. (14)

Equation (12) holds for m � 1, g � 0, and k � 0. As indicated
by the overbraces, the first terms on the right-hand side of
Eq. (12) describe the fibrin link formation reactions and the
next two terms describe the fibrin branch formation reactions.
Such reactions among smaller oligomers can increase the con-
centration cmgk , while reactions of Cmgk oligomers with other
oligomer decrease cmgk . These linking and branching reactions
are the same as those considered in Ref. [6]. The next two
terms describe how fibrinogen binding to oligomers affects
cmgk , and the remaining pairs of terms describe the conversion
of oligomeric and monomeric fibrinogen to fibrin. The terms
in Eq. (13) describe the binding of fibrinogen monomers to
oligomers and the conversion of fibrinogen monomers to fib-
rin, respectively.

To facilitate our analysis of the behavior of the infinite set
of ordinary differential equations in Eqs. (12) and (13), we
introduce a generating function G(t, x, y, z),

G(t, x, y, z) =
∑
m,g,k

cmgk (t )xmygzk, (15)

and find that

∂G

∂t
=

link formation︷ ︸︸ ︷
kl

2

(
∂G

∂z

)2

− klz
∂G

∂z
R +

fibrinogen binding︷ ︸︸ ︷
2kgc020(y − z)

∂G

∂z

+

branch formation︷ ︸︸ ︷
kb

6x2

(
∂G

∂z

)3

− kb

2
z
∂G

∂z
R2

+
monomeric conversion︷ ︸︸ ︷

kmxz2c020 +

oligomeric conversion︷ ︸︸ ︷
ko(xz − y)

∂G

∂y
. (16)

Note that the fibrinogen monomer concentration c020 is not
included in the definition of G(t, x, y, z) in Eq. (15). Using G,
we define moments

Mabc = ∂a+b+cG

∂xa ∂yb ∂zc

∣∣∣∣
x=1,y=1,z=1

, (17)

and we write physical quantities of interest in terms of com-
binations of the moments Mabc. The total concentration of
all fibrin and fibrinogen monomers, the branch concentration,
the concentration of free fibrin reaction sites, and the weight-
average oligomer size, respectively, can be written as

MT =
∑
mgk

(m + 2g + 2k − 4)cmgk

= M100 + 2M010 + 2M001 − 4M000, (18)

M̂T =
∑
m,g,k

gcmgk + c020 = M010 + c020, (19)
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B =
∑
m,g,k

(k + g − 2)cmgk = M001 + M010 − 2M000, (20)

R =
∑
m,g,k

kcmgk = M001, (21)

and

A = 1

MT + M̂T
(M200 + 9M020 + 4M002 + 12M011

+ 6M110 + 4M101 − 8M100 − 12M001

− 15M010 + 16M000 + c020). (22)

In Appendix A, we use Eqs. (16) and (17) to derive ODEs
for the low-order moments. In Appendix B, we also show
that the average oligomer size A is bounded if and only if
M002 is bounded and, furthermore, M002 is bounded if and
only if all of the moments in Eq. (22) are bounded. Because
it is easier to determine when a variable goes to 0 than to
determine when a variable blows up, we use a Riccati trans-
formation in Appendix C to define a new variable V , where
M002 − R = −V ′/(kl + kbR)V , with the property that V → 0
at a finite time if and only if A → ∞ at the same time. Hence,
V becoming zero at a finite time indicates a gel forms at that
time.

Appendix C presents the details of the nondimensional-
ization that yields the nondimensional equations (23)–(29)
for the evolution with respect to nondimensional time τ of
the nondimensional indicator variable v, the nondimensional
concentrations of fibrinogen monomers c̃020, fibrin monomers
c̃102, free fibrin reaction sites r, branches b, fibrin in oligomer
o, fibrinogen in oligomer ô, and the nondimensional second
moments m011, m020, and m002:

d2v

dτ 2
= −

[
κ

2
r3−2γ c̃020r + ηo(2m011 − ô)

]
αv

+
(

κr2−4γ c̃020 + α′

α

)
dv

dτ
, (23)

dc̃020

dτ
= −2γ c̃020r − ηmc̃020, (24)

dc̃102

dτ
= (−2r − κr2)c̃102−4γ c̃020c̃102 + ηmc̃020, (25)

dr

dτ
= −r2 − κ

2
r3 − 2γ c̃020r + 2ηmc̃020 + ηoô, (26)

db

dτ
= κ

6
r3, (27)

do

dτ
= 2c̃102r + κ c̃102r2 + 4γ c̃102c̃020 + ηoô, (28)

dô

dτ
= 2γ c̃020r − ηoô, (29)

dm011

dτ
= (m002 − r)m011 + κ

(
m002 − 1

2
r

)
rm011

+ 2γ c̃020(m002 − m011) + ηo(m020 − m011), (30)

dm020

dτ
= m2

011 + κm2
011r + 4γ c̃020m011 − 2ηom020, (31)

TABLE I. Nondimensional parameter values for each case
discussed.

Nondimensional parameter Case 1 Case 2 Case 3

Initial composition (φ) 0–1 1 1
Branching (κ) 10−1–104 10−1–104 10−1–104

Fibrinogen binding (γ ) 10−1–104 10−1–104 10−1–104

Monomeric conversion (ηm) 0 10−2–102 10−2–102

Oligomeric conversion (ηo) 0 0 10−7–102

dm002

dτ
= m2

002 − 2m002r + κ
(
m2

002r − m002r2
)

− 4γ c̃020m002 + 2ηmc̃020 + 2ηom011, (32)

where α = 1 + κr.
It is useful to define the initial composition variable φ as

φ = c̃020(0)

c̃020(0) + c̃102(0)
. (33)

φ is the fraction of initial monomers that are fibrinogen
monomers, and we can express the initial conditions for
Eqs. (23)–(32) as

v(0) = 1,
dv

dτ
(0) = 0,

c̃020(0) = φ, c̃102(0) = 1 − φ,

r(0) = 2(1 − φ), b(0) = 0,

o(0) = 0, ô(0) = 0. (34)

III. RESULTS

For the results in this paper, we simulate Eqs. (23)–(32)
for specified values of the initial composition parameter φ

and the nondimensional reaction rates κ , γ , ηm, and ηo and
we determine if and when a gel forms. If gelation occurs,
then τgel denotes the nondimensional time at which v → 0.
If finite time blow-up does not occur and v remains positive,
then we solve the equations until time τmax = 1010. We note
that our results are not sensitive to changes in τmax provided
it is sufficiently large. We define τend = min(τmax, τgel ), which
gives the end time of a simulation whether or not a gel forms.

Our parameter studies are organized based on various
timescales and we show results for three cases as outlined
in Table I. Parameter values are chosen to explore the gela-
tion capability of the system, and some parameter values, in
particular, the branching rate, are unknown for fibrin poly-
merization. For Case 1, we allow linking, branching, and
fibrinogen binding, but we do not allow any conversion of
fibrinogen to fibrin. Therefore, ηm = ηo = 0 and we vary the
initial mixture parameter φ between 0 and 1. By eliminating
the conversion timescales, Case 1 investigates the ability of
fibrinogen to inhibit gelation and affect concentrations of
interest, including the branch concentration and the concentra-
tion of fibrinogen in oligomer. In Case 2, we allow the same
three binding reactions and also incorporate the monomeric
conversion timescale, so ηm �= 0. Through this case, the abil-
ity of fibrinogen to both hinder and enhance gelation is
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(a)

(b)

(c)

FIG. 4. (Case 1) Time evolution of nondimensional concentra-
tions for varying κ and φ with fixed γ = 1. (a, b) Initial composition
parameter φ = 0.2, and (a) κ = 1, (b) κ = 10. (c) κ = 10 and φ =
0.7. The inset in panel (c) shows that v remains above 1 at large
times.

investigated. In Case 3, we also allow fibrinogen in oligomers
to be converted to fibrin, thus representing more closely the
biological system. We assume that only fibrinogen monomers
are present initially in Cases 2 and 3, so φ = 1.

A. Case 1: No conversion (ηm = ηo = 0)

With no conversion of fibrinogen, we require φ < 1 for
a gel to form, as fibrinogen cannot polymerize by itself.
This setup is analogous to an imagined biological experiment
in which both fibrinogen and fibrin monomers are present
initially and no thrombin is added to the mixture. In our
numerical experiments, we determine which values of φ result
in gel formation and how fibrinogen binding affects both the
gel time and the gel’s structure.

We study Eqs. (23)–(32) with ηm = ηo = 0 until v → 0
or until τ = τmax. Figure 4 illustrates how the concentrations
of interest evolve in time for different branch rates κ and
initial composition parameter values, φ, and for fibrinogen
binding rate γ = 1. With φ = 0.2, we compare the situation
in which κ = 1 [Fig. 4(a)] to that with κ = 10 [Fig. 4(b)]. A
gel forms sooner for κ = 10 than for κ = 1. The concentration

FIG. 5. (Case 1) Results for various branching rates κ and initial
composition parameter values φ, with γ = 1. To the left of the black
line, a gel forms. (a) Gel times, τgel, and concentrations of (b) branch
points b, (c) fibrinogen monomer c̃020, and (d) fibrinogen in oligomer
ô at τend.

of branches at gel time is higher while the concentrations of
fibrin in oligomer and fibrinogen in oligomer at gel time are
lower for the larger value of κ .

Figure 4 shows concentrations of interest for φ = 0.7,
where the proportion of initial fibrinogen has increased com-
pared to Figs. 4(a) and 4(b). Here, a gel does not form, as
indicated by the failure of v to approach 0. The inset shows
that v remains approximately constant at a value above 1 for
over 103 time units and that the other variables appear to be at
steady state. In the main figure, we see that the concentrations
of free fibrin reaction sites r and fibrin monomers c̃102 decay
quickly to zero while all of the other concentrations asymp-
tote to positive values. Therefore, the progression to larger
oligomers and to gelation is halted by the depletion of free
fibrin sites and fibrin monomer.

We show results in Fig. 5 from a parameter exploration to
determine whether a gel forms and how concentrations at gel
time vary for a range of κ and φ values with γ = 1. The heat
map color corresponds to either concentration or gel time and
where the heat map color is white, no gelation occurs by time
τmax. Figure 5(a) shows strong variations in gelation behavior
as κ and φ are varied. The black curves in the figure are
separatrices between regions in which a gel does or does not
form. As κ increases in Fig. 5(a), the upper limit of φ values
for which a gel forms also increases. Branching is required for
gelation, and as κ increases, the gel time decreases by several
orders of magnitude.

In Figs. 5(b), 5(c), and 5(d), the end-time concentrations
of branches, fibrinogen monomers, and oligomeric fibrinogen
are shown as functions of φ and κ . Figure 5(b) shows that the
branch concentration is larger for shorter gel times (φ < 0.2,
κ > 30) and that few branches form in the no-gel region. Even
though no-gel simulations are continued to time τmax, branch
concentrations in the no-gel region at that time are lower than
those at τgel for points in the gel region. These observations are
consistent with the results from Fig. 5(d), which show a high
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fibrinogen content in oligomers in the no-gel region. Without
conversion, fibrinogen binds to an oligomer and permanently
occupies a fibrin reactive site, curtailing reactions overall.
However, if the branching rate κ is sufficiently large or if φ is
small enough, then branch formation can overcome fibrinogen
binding thus leading to gelation.

The concentration of fibrinogen monomer, c̃020 at τend is
shown for varying κ in Fig. 5(c). In the no-gel region, there
is a lower concentration of fibrinogen monomer for a given
φ value than in the gel region. Since no gel forms, fibrino-
gen monomer has time to be incorporated into oligomers,
resulting in a lower fibrinogen monomer concentration than
in the gel region of parameter space. The concentration
c̃020 approaches 1 as φ → 1. With low or no fibrin, few
or no oligomers form and fibrinogen remains largely in
monomeric form.

Figure 5(d) demonstrates how the fibrinogen in oligomer
concentration depends on the branching rate and initial com-
position. Parameters values in the no-gel region produce
higher concentrations of oligomeric fibrinogen than those in
the gel region, as the free reaction site concentration goes to
zero in the no-gel region as time advances (not shown). Inter-
estingly, the largest concentration of fibrinogen in oligomers
occurs for φ ≈ 0.66. At this φ value, there are approxi-
mately two fibrinogen monomers for every fibrin monomer.
For fibrinogen binding rate γ = 1 or higher, many of the
oligomers present are “inert” trimers composed of two fibrino-
gen monomers and one fibrin monomer, the species we denote
by C120. Exploration of how variations in the fibrinogen bind-
ing rate γ modulates the influence of fibrinogen binding on
the polymerization system is shown in Figs. 14 and 15 in
Appendix E. There, we show and explain the insensitivity
of the border between no-gel and gel regions in the ηm-γ
parameter plane to variations in γ for γ > 2.

B. Case 2: Monomeric conversion only (ηo = 0)

By allowing only monomeric fibrinogen to be converted to
fibrin monomers, this limiting case where ηo � ηm explores
the dynamics of the system when fibrinogen can either in-
hibit gelation through fibrinogen binding or enhance gelation
through monomeric conversion. We assume that only fibrino-
gen is present initially, so φ = 1, and all fibrin is supplied
by conversion of monomeric fibrinogen. For these studies,
we solve Eqs. (23)–(32) with ηm > 0, ηo = 0 and with initial
conditions given by Eqs. (34) with φ = 1.

We first investigate how varying the monomeric conversion
rate ηm affects gel time. Figure 6(a) shows the variation in
τgel with ηm and κ for γ = 1. The solid black curve again
partitions parameter space into gel and no-gel regions. For
some values of κ in Fig. 6(a), there is a minimum ηm value
necessary for a gel to form, while for higher values of κ , a gel
forms for all ηm values considered; however, τgel is high for
large κ and small ηm. An increase in ηm allows more fibrin
to participate in branching reactions and reduces the pool of
fibrinogen that can bind with oligomer, and inhibit further
oligomer growth.

Recall that, in the current case, the binding of a fibrinogen
monomer to an oligomer hinders gelation in two ways: (i)

FIG. 6. (Case 2) For various monomeric conversion rate ηm and
branching rate κ values with fibrinogen binding rate γ = 1, heatmaps
of (a) τend and concentrations at τend of (b) branches b, (c) fibrinogen
monomer c̃020, and (d) fibrinogen in oligomer ô. Black curves depict
the gel/no-gel boundary.

by preventing that fibrinogen monomer from becoming fibrin;
and (ii) by permanently blocking a fibrin reaction site on the
oligomer. Therefore, τgel decreases as ηm increases; this is
reminiscent of the result from Ref. [6], where faster supply
of monomer leads to shorter gel times.

Figure 6 also shows heatmaps of the concentrations
of branch points, fibrinogen monomer, and fibrinogen in
oligomers at τend as functions of ηm and κ for γ = 1. The
heatmap of branch concentration in Fig. 6(b) indicates that
branch formation is strongly limited in the no-gel region and
that the branch concentration varies nonmonotonically in κ

for fixed ηm and is nonmonotonic in ηm for a sufficiently large
fixed value of κ . The monomeric fibrinogen concentration
at simulation’s end in Fig. 6(c) also shows nonmonotonic
behavior in ηm for large κ values.

A high concentration of fibrinogen monomer at simula-
tion’s end, shown in Fig. 6(c), exists only in parameter regions
where a gel forms, and in particular, for large κ . Figure 6(a)
shows that the gel time for the same parameter region is
small, indicating that gelation occurs before much fibrino-
gen monomer can be incorporated into oligomers. In the
no-gel region, no fibrinogen monomer remains at the end of
simulation.

Complementary to these observations, the concentration of
fibrinogen in oligomer is large in the no-gel regions as shown
in Fig. 6(d). A large concentration is found almost exclusively
in the no-gel region, with a high concentration of oligomeric
fibrinogen in the gel region only for large κ and small ηm.
Since Fig. 6(a) shows that gel times within that part of the
gel region are large, the longer time allows for fibrinogen
monomer to bind to other oligomers, resulting in a higher
oligomeric fibrinogen concentration.

Figure 17 in the Appendix E shows how variations in the
fibrinogen binding rate γ affect whether a gel forms, the time
it forms, and the gel-time concentrations of fibrin reaction
sites r, branches b, and fibrinogen monomer c̃020.
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FIG. 7. (Cases 2 and 3) (Row 1) τend, (Row 2) ô(τend), and (Row 3) o(τend) as functions of branching rate κ and conversion rate ηm. Columns
from left to right: ηo/ηm = 0 (Case 2), 10−5, 10−1, 1. Panel (a) shows the same data as Fig. 6(a) with a different colorbar range.

C. Case 3: Monomeric and oligomeric conversion (ηo > 0)

To determine how oligomeric conversion of fibrinogen
affects gel time and concentrations of interest, we allow
oligomeric conversion to occur at a specified fraction of the
monomeric fibrinogen conversion rate, that is, we vary ηo/ηm

from zero to one. Figure 7 shows how the gel time τgel and
concentrations of interest at the end of the simulation vary as
functions of the branching rate κ , monomeric conversion rate
ηm, and oligomeric conversion rate, ηo. The columns, from left
to right, depict results for ηo/ηm = 0, ηo/ηm = 10−5, ηo/ηm =
10−1, and ηo/ηm = 1. For large κ and large monomeric con-
version rate, corresponding to the upper right quadrant of each
heat map, concentrations, and gel times are similar for all
values of ηo considered, indicating ranges of parameter values
for which Cases 2 and 3 exhibit similar behavior.

For low κ and low ηm values, varying ηo alters both the
gel time and the structure of the clusters at gel time. For this
κ and ηm region, Figs. 7(a)–7(d) show that τgel decreases as
the oligomeric conversion rate increases. Since ηm is small
and therefore conversion of monomeric fibrinogen to fibrin is
slow, changing ηo can significantly change the overall con-
version rate. Furthermore, for these low κ values, free fibrin
reaction sites are slowly incorporated into branches and thus
are subject to binding by fibrinogen for long periods. Without
oligomeric fibrinogen conversion to fibrin, this would result
in permanent obstacles to further polymerization. With a low
rate of oligomeric conversion, these obstacles are eventually
removed, but the time until gelation is long. In fact, the gel
times vary by more than seven orders of magnitude; the white
space in Fig. 7(a) is a no-gel region and at points in the bright
yellow region in Fig. 7(b), τgel > 105.

The concentrations of fibrinogen in oligomer, ô, and fibrin
in oligomer, o, are shown in Figs. 7(e)–7(h) and Figs. 7(i)–7(l),

respectively. Unsurprisingly, as ηo increases the concentration
of fibrinogen in oligomer decreases, while the concentration
of fibrin in oligomer increases. As ηo/ηm increases from 0 to
1, Figs. 7(e)–7(h) show that ô decreases throughout parameter
space but does so more strongly, especially for lower ηo/ηm

values, at points in the no-gel region of Fig. 7(a). As shown in
Figs. 7(i)–7(l), fibrin in oligomer, o, increases with increasing
ηo/ηm, again nonuniformly with the greatest change occurring
in the no-gel region.

Figures 8(a) and 8(b) shows the concentration of branches
at the end of the simulations for ηo/ηm = 0, as in Case 2, and
for ηo/ηm = 1, and we see that the concentration is insensitive
to the changes in ηo/ηm. To understand this insensitivity, we

FIG. 8. (Case 2 and Case 3) For various monomeric conversion
rate ηm and branching rate κ values, concentrations at τend of (a, b)
branches b and (c, d) free fibrin reaction sites r. Left column shows
results for Case 2 with γ = 1 and ηo = 0. Right column shows results
for γ = 1 and ηo = ηm.
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FIG. 9. (Case 3) Concentration of branches formed through re-
actions involving exactly three fibrin monomers (solid), exactly two
fibrin monomer (dash-dotted), exactly one fibrin monomer (dashed),
and oligomers only (dotted) for γ = 1, κ = 100, ηm = 1. The line
colors denote ηo = 0 (blue) and ηo = 1 (purple).

calculate the total concentration of branches formed through
the different branching reactions which involve different com-
binations of fibrin monomers and oligomers. The overall rate
of branch formation κ

6 r3 from Eq. (27) can be written as

κ

6
r3 = 4

3
κc3

102 + 2κc2
102(r − 2c102)

+ κc102(r − 2c102)2 + κ

6
(r − 2c102)3, (35)

where the terms on the right-hand side correspond to the
rates at which branches form via reactions involving three
fibrin monomers, two fibrin monomers and an oligomer,
two oligomers and a fibrin monomer, and three oligomers,
respectively.

The cumulative contribution to the concentration of
branches made by each of the four processes can be calcu-
lated by integrating each term in that equation with respect to
time. For ηo = ηm, κ = 100, and γ = 1, Fig. 9 shows that the
majority of branches are formed through reactions involving
two or more fibrin monomers. Since oligomeric conversion of
fibrinogen does not increase the amount of fibrin monomer
available, increasing ηo has little effect on the branch concen-
tration.

We compare the free reaction site concentrations in
Figs. 8(c) and 8(d) and we focus on the points indicated by
the gray line segment in each heatmap. The points on this line
segment for κ < 10 are in the no-gel region when ηo = 0. In
Fig. 8(c), with ηo = 0 the concentration of free reaction sites
is very low for parameter values along this line segment (low
κ and moderate ηm). In contrast, they are moderately high
for parameter values corresponding to points just above the
middle of the line segment for the ηo = ηm case shown in
Fig. 8(d). The difference is seen more clearly in the graphs
of r(τgel) and b(τgel ) for points along the lower portion of the
line segment shown in Fig. 16 in Appendix E. This behavior
is consistent with results in Figs. 7(e)–7(h) which show that
for these parameter values, the concentration of fibrinogen in
oligomers decreases as ηo/ηm is increased. Recall that a Cmgk

oligomer has g free fibrinogen reaction sites and k free fibrin
reaction sites, and that the number of branches b is related to
these as k = b + 2 − g. Decreases in g and increases in k are
correlated if the branch number changes are small.

To look at the direct effect of fibrinogen binding, we
compare a Case 3 simulation with γ = 1 and ηo = ηm to a

FIG. 10. (Case 3 and fibrin-only case) For various ηm and κ

values, (a, b) τend = τgel, and concentrations at τend = τgel of (c, d)
fibrin in oligomer, (e, f) branches, and (g, h) free reaction sites.
Left column shows results for Case 3 with γ = 1 and ηo = ηm.
Right column shows results for γ = 0, corresponding to Fibrin-only
polymerization. Panel (a) shows the same data as Fig. 7(d), with
a different colorbar range and panel (e) shows the same data as in
Fig. 8(b).

simulation with no fibrinogen binding with γ = 0 [8] as we
vary κ and ηm. Because oligomers in the case γ = 0 consist
only of fibrin, we refer to this as the “fibrin-only” Case.
Figures 10(a) and 10(b) show that for both cases, a gel forms
for all values of κ and ηm considered and that gel times vary by
over five orders of magnitude as κ and ηm are varied. For any κ

and ηm, gelation occurs later if fibrinogen binding is allowed,
with the greatest delay occurring for small values of ηm. In
Figs. 10(c) and 10(d), we see that the total concentrations
of reactive sites r at τgel are very similar in the two cases
across all κ and ηm values considered. Figures 10(e)–10(h)
show that for ηm > 1, the concentrations at τgel of branches
and of fibrin in oligomers are quite similar whether γ = 0 or
γ = 1. In contrast, there are significant differences in both o
and b for the two values of γ for ηm < 1: (i) the concentration
of fibrin in oligomers is higher, by up to a factor of about 4 for
a range of κ values when fibrinogen binding is allowed, and
(ii) there is clear nonmonotonicity in the branch concentration
when fibrinogen binding is allowed, but not for the fibrin only
case. More specifically, if fibrinogen binding is allowed, then
there is a swath of parameter space running between the center
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FIG. 11. (Case 2) Branch concentration, branch reaction rates,
and cumulative production and consumption of free reaction sites for
γ = 1, κ = 103 and varying conversion parameter ηm. Time courses
of (a) branch concentration, (b) branch formation rate, and (c) con-
centrations of branches made in reactions involving (solid) two or
more monomers or (dotted) two or more oligomers. Conversion
rate ηm = 10−2 (blue), 10−1 (red), 100 (green), 101 (orange), 102

(purple). Time courses (d, e, f) of the integral of the individual terms
in Eq. (26), which are related to fibrinogen conversion, fibrinogen
binding, branch formation, and link formation.

and the upper left corner of the heatmap in which the branch
concentration is higher than in the adjacent regions on both
sides of the swath.

To obtain more insight into the nonmonotonic behavior of
b(τgel ) with respect to variations in ηm, as shown in Figs. 8(a)
and 8(b) [and Fig. 10(e)], we plot b(τ ) for various ηm values
in Fig. 11(a) with ηo = 0 (Case 2). The right end point of each
curve is [τgel, b(τgel )] for the associated ηm value and these
b(τgel ) values reprise the nonmonotonicity seen in Fig. 8(a).
For each 10-fold decrease in ηm, there is an approximately 10-
fold longer delay before the branch concentration noticeably
begins to rise. There is then a period of accelerating branch
formation.

Figure 11(b) shows that for ηm � 1, gelation occurs by
τ = O(10−1) and branch formation continues to accelerate
until just before τgel. For ηm � 10−1, the branch formation
rate reaches its peak value at about τ = 1 and then remains
near that value for an extended period of time (note that τ

is plotted on a log scale). For ηm = 10−1, branches form at
near the peak rate until time τgel ≈ 9; for ηm = 10−2, the
branch formation rate remains near its peak until τ ≈ 100,
before then dropping sharply (as fibrinogen is depleted-not
shown) until a gel forms at τgel ≈ 103. While the peak rate
for ηm = 10−1 is about 20-fold lower than for ηm = 1, branch
formation at near the peak rate continues for a much longer
time and this results in a higher value of b(τgel ). When ηm

changes from 10−1 to 10−2, the reduction in peak branching
rate is not compensated for by the extended duration of near

peak rate branch formation and this leads to lower cumulative
branch formation for ηm = 10−2.

Recall that nonmonotonicity is not seen in the fibrin-only
simulations (γ = 0) shown in Fig. 10(f), and that the gel times
when γ = 1 are much longer than the corresponding ones
when γ = 0 [compare Figs. 10(a) and 10(b)]. The behavior of
the model depends on the production and use of fibrin reaction
sites. To examine the role of fibrinogen binding with γ = 1 in
the nonmonotonicity, we looked at the cumulative production
of reaction sites up to time τ by conversion of fibrinogen and
the cumulative consumption of reaction sites up to that time
by each of link formation, branch formation, and fibrinogen
binding. These quantities, which are, respectively, the integral
up to time τ of 2ηmc̃020, r2, 3κ

2 r3, and 2γ c̃020r [see Eq. (26)]
are shown in Figs. 11(d)–11(f) for ηm =1, 0.1, and 0.01 cor-
responding to the green, red, and blue curves, respectively, in
Figs. 11(a) and 11(b).

Looking at the production curves, we see that for each τ

for which multiple such curves are defined, production was
greater for higher ηm. However, the cumulative production of
reaction sites by τgel increased as the conversion rate ηm de-
creased. A maximum cumulative production of 2 is possible;
the actual cumulative production up to gel time was ≈0.32,
≈0.72, and ≈0.71 for ηm =1, 0.1, and 0.01, respectively.
Cumulative production is still increasing rapidly at τgel for
the two larger values of ηm, but has plateaued for ηm = 0.01
indicating depletion of fibrinogen. We see that for all three
values of ηm, link formation consumed only a small portion
of the reaction sites. For ηm = 1, most of the reaction sites
produced were still present at gel time, with branch forma-
tion consuming more reaction sites than fibrinogen binding
or link formation. For ηm = 0.1, a much smaller fraction of
the reaction sites produced were present at gel time, and
consumption by branch formation was approximately equal
to that by fibrinogen binding. So, for ηm = 0.1, not only were
reaction sites produced more slowly, but also close to half of
the sites produced were blocked by fibrinogen binding. For
ηm = 0.01, until t ≈ 10, fibrinogen binding consumed almost
all of the reaction sites produced. After this time, fibrinogen
binding slowed dramatically because of fibrinogen depletion,
allowing the remaining reaction sites to be utilized primarily
for branch formation.

We see that the conversion rate ηm influences not only
how fast fibrin monomers are produced, but also the use to
which fibrin reaction sites are put, with a much larger fraction
being blocked by fibrinogen binding for ηm = 0.01, balanced
consumption to form branches and by fibrinogen binding for
ηm = 0.1, and more used for branch formation for ηm = 1.
There are two pairs of rate comparisons which seem to be key:
(i) the rate of producing reaction sites by the conversion of
fibrinogen monomers into fibrin 2ηmc̃020 compared with the
rate of binding of fibrinogen to fibrin reaction sites 2γ rc̃020

and (ii) the rate that reaction sites are used to form branches
κ
2 r3 compared to the rate they are used to bind fibrinogen
2γ c̃020r. For the first, the issue is which of ηm and γ r is
larger, and for the second, the issue is which of κ

2 r2 and 2γ c̃020

is larger. In both comparisons, the prescribed values of the
parameters ηm, γ , and κ matter, but so does the current reac-
tion site concentration r. If ηm > γ r and κ

2 r2 > 2γ c̃020, then
both conversion of fibrinogen and branch formation dominate
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fibrinogen binding. Both inequalities hold if r satisfies
(4γ c̃020

κ

)1/2
< r <

ηm

γ
. (36)

The upper bound is fixed once parameters are chosen, and
from Eq. (26) with ηo = 0 since we are discussing Case 2,
we see that if r(0) = 0, then 2γ r(τ )c̃020(τ ) � 2ηmc̃020(τ ) for
all τ > 0. Hence, the second inequality in Eq. (36) is always
satisfied. However, the lower bound decreases as fibrinogen
monomer is consumed and c̃020 decreases. A large value of ηm

leads to fast increases in r and fast decreases in c̃020, making
the left inequality easier to satisfy and allowing branch for-
mation to dominate. A low value of ηm leads to slow growth
in r both because fibrinogen is converted more slowly and
because fibrinogen binding to the fibrin that is produced is rel-
atively rapid. While r is small, branching occurs at a relatively
slow rate, thus delaying or preventing gelation. Further results
about and discussion of the changes in relative timescales as
ηm, κ , and γ are varied is presented in Figs. 18–22 and the text
surrounding them in Appendix E.

Related to the availability of fibrin monomers is the type of
branch forming reactions that dominate for different values
of ηm. As shown in Fig. 11(c), branch formation reactions
involving two or more monomers dominate for ηm � 1, but
production of branches through reactions that use one or no
monomers, i.e., those involving mostly oligomers, is about
equal to these for ηm = 0.1 and is dominant for ηm = 0.01.

D. Oligomer functionality and stochastic simulations

Kinetic gelation models with fixed monomer functionality
require the functionality to be greater than two for gelation
to be possible and reactions in these models are assumed
to be bimolecular [13]. Here, we assume that both fibrin
and fibrinogen monomers have a fixed functionality of two,
but higher functionality is achieved through the trimolecular
branch reaction. Fixed monomer functionality of two has also
been assumed in our previous fibrin-only models of polymer-
ization [6,8]. A key metric in Ref. [8] is the number-average
number of functional sites per cluster, or number-average
functionality, and is defined as the ratio of the concentration
of free (fibrin) reaction sites to the concentration of clusters
of all sizes. In the notation of the current paper this would
be expressed fA = r/m000. It is a dynamic quantity that, for
that model, is greater than 2 whenever gelation occurs. For
the present study, this definition is inappropriate. As a result
of fibrinogen binding, there may be many clusters which have
no free fibrin reaction sites at all, and these “inert” clusters
cannot participate in any binding reactions. Clusters with ex-
actly one free reaction site may also be numerous and these
clusters participate only in reactions in which the function-
ality of the product is less than that of the reactant with the
greater functionality. A measure of number-average function-
ality potentially more appropriate for the current situation is
computed by dividing the total concentration of free fibrin
sites, counting only clusters with at least two such sites, by the
total concentration of clusters with at least two reaction sites.
We call this metric f (2)

A , and we define f (1)
A similarly based

on clusters with at least one reaction site. We hypothesize that
gelation occurs in the current model only when f (2)

A > 2 in the

(a) (b)

(c) (d)

FIG. 12. (Gillespie simulations) Rate constants κ = 100, γ =
1, ηm = 0.1, ηo = 0.1 for Case 3. Number of monomers N = 4 ×
104, Volume v = 4 × 104. (a) Largest oligomer vs time, (b) weight-
average oligomer size vs time, (c) deterministic (black) and
stochastic concentrations of fibrin in oligomer (blue), free reaction
site (red), branch (yellow), and fibrinogen in oligomer (green) vs
time, and (d) concentration of all clusters, M000 (blue), clusters with
at least one free reaction site (red), and at least two free reactions
sites (yellow).

time leading up to gelation. However, information about these
subpopulations of oligomers is not available from the solu-
tions of Eqs. (23)–(32), although it would be from the solution
of the system Eqs. (12)–(13) from which these equations were
derived.

To investigate the number-average functionality of noninert
species, we used the Gillespie method [29,30] to stochasti-
cally simulate the reactions (see Appendix D) whose deter-
ministic description is Eqs. (12)–(13). Within the stochastic
simulations, it is straightforward to track the subpopulations
of oligomers with no free reaction sites, those with exactly one
such site, and those with two or more sites. In the stochastic
simulations, there is a finite number of monomers, so the
weight-average oligomer size cannot “blow-up.” However, the
size of the largest oligomer and the weight-average oligomer
size begin to sharply increase starting at the gel time predicted
by the deterministic ODE system (vertical line), as shown in
Figs. 12(a) and 12(b). Figure 12(c) shows plots of o, r, b, and
ô from the Gillespie simulations (color) and the deterministic
ODE system Eqs. (23)–(32) (black). We see excellent agree-
ment between the stochastic and deterministic concentrations
for τ � τgel; thus, we can use the stochastic simulation to
further assess the polymerization system. Figure 12(d) shows
how the concentrations of all clusters, M000(t ), clusters with at
least one free reaction site, and clusters with at least two free
reaction site depend on time. As expected, the concentration
of clusters with at least one free reaction site is much smaller
than the concentration of all clusters, indicating that many
clusters have no available free sites and are inert species.
We also see that for much of the simulation, there are many
oligomers with exactly one reaction site.
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FIG. 13. (Case 3) Number-average functionality vs time from
deterministic (black) and stochastic [29,30] simulations (color). The
green curve shows the number-average functionality, R/M000 in
the fibrin-only case (green), where γ = 0, ηm = 0.1, κ = 100. For
the other curves, γ = 1, ηo = ηm = 0.1, κ = 100. Number-average
functionality in stochastic simulations is shown for all oligomers fA

(blue), for oligomers with at least one free reaction site f (1)
A (red),

and for oligomers with at least two free reaction sites f (2)
A (yellow).

Vertical lines denote gel times found by solving the ODE system
Eqs. (23)–(32) until v → 0.

We carried out stochastic simulations with conversion rates
ηm = ηo = 1, branching rate κ = 100, and fibrinogen binding
rate γ = 1 for the fibrinogen-fibrin system and, by setting
γ = 0, for the fibrin-only system. To compare results from the
full system with those from the fibrin-only simulation, we par-
tition the clusters contributing to m000 into subpopulations of
clusters with no free reaction sites, one or more free reaction
sites, or two or more free reaction sites and we compute the
quantities fA, f (1)

A , and f (2) described above. Figure 13 shows
the concentration fA = r/m000 from the deterministic system
(black) and the stochastic simulations (color). We compare fA

from the fibrin-only simulation (green) with fA, f (1)
A , and f (2)

A
from the fibrinogen-fibrin simulation, shown in blue, red, and
yellow, respectively. The number-average functionality fA for
the fibrin-only system increases monotonically in time and is
above 2 at gel time, while the number-average functionality
for the fibrin-fibrinogen model including all clusters is much
lower than 2. However, the number-average functionality f (2)

A
of clusters with at least two free sites is larger than 2 at gel
time and is comparable to the number-average functionality
of the fibrin-only clusters at the fibrin-only gel time.

IV. DISCUSSION

We have proposed a model of fibrin polymerization with
fibrinogen interactions that includes mechanisms for fibrin
branch formation, for fibrinogen binding to fibrin, and for
fibrinogen in both monomeric and oligomeric form to be con-
verted to fibrin. These reactions are combined into a kinetic
polymerization model that is expressed in terms of an infinite
set of oligomer concentrations, cmgk . Each oligomer is defined
by the number of free fibrin binding sites and the number of
each type of monomer (fibrin and fibrinogen) contained in
the oligomer. Using a moment generating function approach
[6,13,28], we obtain a closed system of low-order moment
equations that describe the dynamics of quantities of interest,
up to gel time.

To our knowledge, this is the first mathematical model
of fibrin polymerization up to gelation that incorporates

fibrinogen’s ability to be a source of fibrin and to bind to fibrin
with a proposed mechanism for branching. These reactions
allow us to determine how the inhibitory role of fibrinogen can
affect the time to form a gel and the resulting gel structure. To
fully understand our proposed model, our results are divided
into three cases that are distinguished by which conversion
reactions are allowed to occur.

Case 1 allows no conversion reactions and defines an ini-
tial composition parameter, φ, which specifies the fraction
of fibrinogen in the initial mixture of fibrinogen and fibrin
monomers. We explored how fibrinogen binding to fibrin re-
action sites hinders gelation. We demonstrated that for a given
branching rate κ , there exists a maximal value φ for which
gelation can occur. This case is similar to a general model of
two monomer polymerization [28]. In that study, each type of
monomer had a prescribed functionality (number of binding
sites), and as in Case 1 here, the initial mixture of monomers
and the types of reactions allowed were varied. The gel time
in Ref. [28] depended on the initial composition, the relative
reaction rates, and the monomers’ functionalities.

In the current paper, monomers have a fixed functionality
of 2; it is only through branch formation that molecules of
sufficiently high functionality appear so that gelation can oc-
cur. We allow for conversion of monomeric fibrinogen in Case
2 and assume that initially only fibrinogen is present, so that
φ = 1. With both monomeric conversion and fibrinogen bind-
ing allowed, we examine how the dual role of fibrinogen, both
hindering and facilitating gelation, can affect gel structure and
gel time. Again, we show that there exists a gelation thresh-
old; if both monomeric conversion and branching rates are
sufficiently small (compared to the rate of fibrinogen binding
to fibrin), fibrinogen binds to a large fraction of the available
binding sites on the fibrin molecules and in so doing, prevents
gelation.

For a very low monomeric conversion rate, gelation still
occurs for a sufficiently large branching rate κ , but it takes
a long time for a gel to appear. In this situation, conversion
of fibrinogen monomers to fibrin is the rate-limiting step and
the gel time reaches as high as O(103), almost four orders of
magnitude larger than the gel time when the monomeric con-
version rate is high. Polymerization occurs slowly and during
the long period of time until a gel is formed, more fibrinogen
is incorporated into the gel and more branches are formed.
Allowing for both oligomeric and monomeric conversion at
the same rate in Case 3, the system gels for all parameter
values but can exhibit large gel times in parameter regimes
where the conversion and branching rates are small. For all κ

and ηm values considered, the concentrations of b and r are
similar for ηo/ηm values of 0, 10−5, 10−1, and 1, where ηo is
the rate at which oligomer-bound fibrinogen is converted to
fibrin. For large κ and ηm values, the fibrin in oligomer and
the fibrinogen in oligomer concentrations are similar for these
values of ηo/ηm.

Branch formation, a trimolecular reaction, can be charac-
terized by how many monomers are involved in the reaction.
We examine how the rate of each of the four types of branch
formation reaction changes as ηm and ηo are varied. For most
parameter values, more branches are formed through reactions
that involve at least two monomers, but for sufficiently low
ηm values, reactions that involve mostly oligomers are the
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dominant form of branch formation. This switch in the dom-
inant branch forming mechanism is similar to that seen in
a model of fibrin branching with a constant source of fibrin
monomer as the branching rate was varied [6], but here the
switch is related more to the relative rates of monomer con-
version, fibrinogen binding and branch formation.

For large conversion rates, the branch concentration at gel
time increases as ηm = ηo increases; this is seen biologically,
where branch number at gel time increases with thrombin
[3], thus leading to “fine” clot with high density of branch
points. A quasi-steady-state analysis of our earlier model with
no fibrinogen binding and with a constant fibrin source rate
can explain the nonmonotonic behavior for varying branching
rate in that model, as a crossover between different scaling
behaviors seen for very small and very large branching rates
[8]. The fibrin-only model does not exhibit nonmonotonicity
with changes in ηm. With fibrinogen binding allowed, the
nonmonotonicity with respect to variations in ηm is a result of
competition in how fibrinogen monomers are used—for fibrin
formation or to block fibrin reaction sites—and competition
of how fibrin reaction sites are used—being blocked by fib-
rinogen or participating in branch formation. The value of ηm

directly affects the first competition, and indirectly affects the
second competition by influencing the value of the reaction
site and fibrinogen monomer concentrations.

Because values of critical parameters, in particular the
branching rate κ , are unknown, we have not attempted to
quantitatively compare our results with experiments. Our re-
sults are qualitatively similar to experimental results. We see
that increasing ηm over ranges of several orders of magni-
tude results in gel times that decrease by several orders of
magnitude. If we think of varying ηm as representing varying
concentrations of thrombin, then our results agree with the
behavior of gel times seen experimentally [1]. In the same
study, branch concentration was seen to increase substan-
tially as thrombin increased. For a range of κ values, we
also see a large increase in branch point density as ηm is
increased from 10−2 to 102. Other experiments show that for
very small thrombin concentrations, virtually all oligomers
contain bound fibrinogen [12]. We see a high concentration
of oligomer-bound fibrinogen for small ηm in both Cases 2
and 3.

Fibrin polymerization is only one component of the blood
clotting process. We have not discussed how spatial-temporal
heterogeneities in thrombin concentration (and consequently
in the rate of fibrinogen conversion) form under flow, and
how the presence of other species, such as platelets, affects
the formation of the gel structure. When formed under flow
conditions, fibrin fibers align with the flow field and fiber
thickness decreases as shear rate increases [31,32]. Addition-
ally, thrombin is produced on the surface of activated platelets
through a system with strong positive feedback mechanisms
and this results in a localized burst in the thrombin con-
centration [33]. These all contribute to the development
of a heterogenous fibrin clot structure that is more diffi-
cult to degrade by fibrinolysis compared to clots formed
without platelets [33,34]. Understanding how thrombin het-
erogeneities and flow impact the availability of fibrinogen to
bind and aid in fibrin gel formation is a subject of further
investigation.
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APPENDIX A: DERIVATION OF MOMENT EQUATIONS

To derive low-order moment equations, we use Eqs. (16)
and (17). For example, setting x = y = z = 1 in Eq. (16), we
obtain

dM000

dt
= −kl

2
R2 − kb

3
R3 + kmc020. (A1)

Differentiating each term in Eq. (16) with respect to only x,
only y, and only z, respectively, and setting x = y = z = 1,
we obtain

dM100

dt
= −kb

3
R3 + kmc020 + koM010, (A2)

dM010

dt
= 2kgc020R − koM010, (A3)

dR

dt
= −kl R

2 − kb

2
R3 − 2kgc020R + 2kmc020 + koM010.

(A4)

Similarly, we can show that

dMT

dt
=

∑
m,g,k

(m + 2g + 2k − 4)
dcmgk

dt
= kmc020 + koM010,

(A5)

dM̂T

dt
=

∑
m,g,k

g
dcmgk

dt
+ dc020

dt
= −kmc020 − koM010. (A6)

Note that it then follows that

d

dt
(MT + M̂T ) = 0, (A7)

and so the total concentration of fibrin and fibrinogen
monomers is conserved, as it must be because monomer is
neither created nor destroyed. The total concentration of fibrin
in oligomers is O = MT − c102 and similarly the total concen-
tration of fibrinogen in oligomers is Ô = M̂T − c020 = M010.
It then follows that

dO

dt
= 2klc102R + kbc102R2 + 4kgc102c020 + koÔ, (A8)

dÔ

dt
= 2kgc020R − koÔ. (A9)

From the formula defining B in Eq. (20), we see that

dB

dt
=

∑
m,g,k

(k + g − 2)
dcmgk

dt
= kb

R3

6
. (A10)
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For our analysis, we also need ODEs for the six second mo-
ments, i.e., the terms Mabc in Eq. (17) for which a + b + c =
2. It is straightforward to show that

dM200

dt
= klM

2
101 + kb

(
R3 − 2R2M101 + M2

101R
) + 2koM110,

(A11)
dM110

dt
= klM101M011 + kb(M101M011R − R2M011)

+ 2kgc020M101 + ko(M020 − M110), (A12)

dM101

dt
= kl (M002 − R)M101 − 2kgc020M101

+ kb

(
M101M002R − 1

2
R2M101 − R2M002

)

+ 2kmc020 + ko(M010 + M110 + M011), (A13)

dM020

dt
= klM

2
011 + kbM2

011R + 4kgc020M011 − 2koM020,

(A14)
dM011

dt
= kl (M002 − R)M011 + 2kgc020(M002 − M011)

+kb

(
RM011M002 − 1

2
M011R2

)
+ ko(M020 − M011),

(A15)
dM002

dt
= kl

(
M2

002 − 2M002R
) + kb

(
M2

002R − M002R2
)

− 4kgc020M002 + 2kmc020 + 2koM011. (A16)

APPENDIX B: BOUNDEDNESS OF M002

Recall that gelation is defined as the occurrence of a finite
time blow-up in the weight-average oligomer size A(t ) which,
if it occurs, happens at a time we denote tgel. We wish to
show that A → ∞ if and only if M002 → ∞. From Eq. (22),
we see that A is a linear combination of all of the moments
through second order divided by the (constant) total monomer
concentration MT + M̂T . It is clear from the definition of A(t )
and the boundedness of the first moments (see below) in its
definition, that A(t ) → ∞ if M002 → ∞. We show below that
if A(t ) → ∞ then M002 → ∞. Since M002(t ) blows up if and
only if A(t ) blows up, we can use the blow-up of M002 as
an indicator that a gel has formed. We note that once this
equivalence is established, we no longer need to compute the
second moments M200, M101, and M110 because they are not
needed to evolve the physical concentrations or M002.

To establish the boundedness claim, we examine the sys-
tem of equations (A1)–(A16). First, consider the closed
subsystem composed of Eqs. (13), (A3), (A4) for c020, M010,
and R = M001, respectively. We assume that initially these
variables are nonnegative. Then Eqs. (13), (A3), and (A4)
imply that c020, M010, and R remain nonnegative. Additionally,
Eq. (13) implies that c020 is bounded for all t > 0. Adding
Eqs. (13) and (A3) gives us d

dt (c020 + M010) = −kmc020 −
koM010, which implies that c020 + M010 is bounded for t > 0.
Since c020 is nonnegative and bounded and M010 � 0, M010 is
bounded for t > 0. Then Eq. (A4) implies that R is bounded
for t > 0 and M100 must also be bounded because all terms on

its right-hand side of Eq. (A2) are bounded. In summary, all
first moments are bounded.

Consider Eqs. (A11)–(A16). Suppose M002 is bounded.
Then by the form of Eq. (A16), M011 must also be bounded.
Since Eq. (A14) is linear in M020 and all terms on the right-
hand side are bounded, M020 is also bounded. The coupled
equations (A12)–(A13) for M110 and M101 are linear with
coefficients that are bounded. Hence, both M110 and M101 are
bounded, and by Eq. (A11), M200 is also bounded. In sum-
mary, if M002 is bounded, then so are all of the other moments
whose linear combination defines A, and so A is bounded.

APPENDIX C: RICCATI TRANSFORMATION

To simplify the discussion on boundedness of M002, we
define a new variable X = M002 − R and find that it satisfies

dX

dt
= (kl + kbR)X 2 + (kbR2 − 4kgc020)X (C1)

+
[

kb
R3

2
− 2kgc020R + ko(2M011 − Ô)

]
. (C2)

Since R remains bounded, X becoming unbounded at finite
time is also an indication that gelation occurs at that time. The
differential equation for X is a Riccati equation and takes the
form

dX

dt
= c(t ) + b(t )X + a(t )X 2, (C3)

where c(t ) = kb
R3

2 − 2kgc020R + ko(2M011 − Ô), b(t ) = kbR2

− 4kgc020, and a(t ) = kl + kbR. Therefore, by introducing
a new variable V such that X = − dV

dt /aV , we can rewrite
Eq. (C2) as a linear second order ODE of the form

d2V

dt2
= −

[
kb

2
R3−2kgc020R + ko(2M011 − Ô)

]
aV (C4)

+
(

kbR2 − 4kgc020 + a′

a

)
dV

dt
. (C5)

Using these changes of variables in Eq. (A15) yields

dM011

dt
= klXM011 + kb

(
X + 1

2
R

)
RM011

+ 2kgc020(X − M011 + R) + ko(M020 − M011).
(C6)

Since V → 0 whenever X → ∞, we now use V → 0 as a
more convenient indicator of gelation. Finally, we nondimem-
sionalize the equations by scaling all concentrations by the
total initial concentration of monomers,

C0 = c102(0) + c020(0),

and use c̃mgk to denote the nondimensional concentration of
oligomer Cmgk and lower case letters for the nondimensional
moment concentrations and indicator function V . We scale
time as τ = klC0t . Four nondimensional parameter groups ap-
pear in the resulting nondimensional equations: branching rate
κ = kbC0

kl
, fibrinogen-fibrin binding rate γ = kg

kl
, monomeric

fibrinogen conversion rate ηm = km
klC0

and oligomeric fibrino-

gen conversion rate ηo = ko
klC0

. Defining α = 1 + κr, and
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using the nondimensional Riccati transformation x = m002 −
r = − dv

dt /αv, we obtain the closed system of nondimensional
equations Eqs. (23)–(32). We also solve Eq. (12) in the in-
stances (m, g, k) = (1,0,2), (1,1,1), and (1,2,0) to determine
the concentrations of fibrin monomers c̃102, fibrin-fibrinogen
dimers c̃111, and inert trimers c̃120.

APPENDIX D: GILLESPIE IMPLEMENTATION

To further examine the dynamics of the polymerization
system described in Sec. II, we performed stochastic simu-
lations using the Gillespie Algorithm [29,30] in a volume v

with N fibrinogen monomers C020 present initially. We denote
the number of Cm,g,k monomers as nm,g,k . Oligomers can par-
ticipate in polymerization reactions or conversion reactions.

Oligomers Cm1g1k1 and Cm2g2k2 form a link during
an infinitesimal time interval, δt , with probability
v−1klk1k2nm1g1k1 nm2g2k2δt if (m1, g1, k1) and (m2, g2, k2) are
distinct, and with probability (2v)−1klk2

1nm1g1k1 (nm1g1k1 − 1)δt
if (m1, g1, k1) and (m2, g2, k2) are the same. Oligomer Cm1g1k1

and fibrinogen monomer C020 bind together with probability
v−1kgk1nm1g1k1 n020δt .

A branch is formed by oligomers Cm1g1k1 , Cm2g2k2 , and
Cm3g3k3 with probability v−2kbk1k2k3nm1g1k1 nm2g2k2 nm3g3k3δt
if (m1, g1, k1) (m2, g2, k2), (m3, g3, k3) are all distinct. If
(m1, g1, k1) and (m2, g2, k2) are the same but different
from (m3, g3, k3), then the probability is 1

2v−2kbk2
1k3nm1g1k1

(nm1g1k1 − 1)nm3g3k3δt . If (m1, g1, k1)(m2, g2, k2) and
(m3, g3, k3) are the same, then the probability of branch
formation is 1

6v−2kbk3
1nm1g1k1 (nm1g1k1 − 1)(nm1g1k1 − 2)δt .

Finally, fibrinogen monomer C020 is converted to C102 in time
δt with probability kmn020δt and oligomer Cm1g1k1 is converted
to Cm1+1,g1−1,k1+1 with probability kog1nm1g1k1δt .

APPENDIX E: SUPPLEMENTARY FIGURES

1. Case 1: Effects of γ variations

We look at the behavior of the model Eqs. (23)–(32) in
Case 1 (no conversion of fibrinogen to fibrin) for a range
of fibrinogen binding rates γ and initial composition values
φ. For these simulations, Fig. 14 indicates whether a gel
forms, the time at which it forms, and the concentrations
at simulation’s end of branches, fibrinogen monomers, and
fibrinogen in oligomers. The heat map in Fig. 14(a) shows
the variation in τgel; the white region indicates that a gel did
not form for the corresponding parameter values. The black
curves in each of the panels is the boundary between the gel
and no-gel regions. We see that for large γ values, the no-gel
region extends to lower φ values, indicating that more fibrin
is required for gelation. For γ ≈ 2 and above, the gel/no-gel
boundary appears to be independent of γ . (An explanation for
this behavior is given below.) Further we see that within the
gel region, τgel shows little sensitivity to γ for γ > 2.

Figure 14(b) shows that the branch concentration is larger
when τgel is small and that few branches form in the no-gel
region. The branch concentration varies strongly with φ and
relatively weakly with γ ; the largest concentration of branches
at gel time occurs when φ = 0, that is, when initially there
are only fibrin monomers. The concentration of fibrinogen
monomer, c̃020, at τgel or τend is shown in Fig. 14(c). For

FIG. 14. (Case 1) Fibrinogen binding rate γ and initial composi-
tion parameter φ are varied with branching rate κ = 10. To the left
of the black line, a gel forms. (a) τend, and concentrations at τend of
(b) branch points b, (c) fibrinogen monomer c̃020, and (d) fibrinogen
in oligomer ô at τgel or at τend = 1010 with no conversion.

a given φ value, this concentration is lower in the no-gel
region than in the gel region. When no gel forms, fibrino-
gen monomer has a long time to become incorporated into
oligomers, and this results in a lower fibrinogen monomer
concentration than when a gel does form. Additionally, the
concentration c̃020 approaches 1 as φ → 1. With low or no
fibrin, few or no oligomers can form and fibrinogen remains
in monomer form.

Figure 14(d) shows the dependence of the fibrinogen in
oligomer concentration on γ and φ. The largest concentration
of fibrinogen in oligomers occurs for φ ≈ 0.66. At this φ

value, there are approximately two fibrinogen monomers for
every fibrin monomer. For fibrinogen binding rate γ = 1 or
higher, we expect that many of the oligomers present are
“inert” trimers composed of two fibrinogen monomers and
one fibrin monomer, the species we denote by C120. That this
is indeed the case is indicated by the fact that õ ≈ 0.66 for
γ > 10 when φ = 0.66.

The insensitivity of the gel/no-gel boundary to γ when γ

is sufficiently large can be explained by looking at the terms
that dominate at early times in the equations for the free fibrin
reaction site and fibrinogen monomer concentrations. These
are

dc̃020

dτ
≈ dr

dτ
≈ −2γ c̃020r. (E1)

We note that c̃020(0) = φ and r(0) = 2(1 − φ) imply that
c̃020(0) = 3φ − 2 + r(0), and that it follows that c̃020(τ ) =
3φ − 2 + r(τ ) for τ � 1 because c̃020 and r decrease at the
same rate. Substituting this expression for c̃020(τ ) into the
differential equation for r(τ ) and solving the resulting equa-
tion gives

r(τ ) = 2 − 3φ

1 + ν(τ )
( 2φ−2

φ

) 2
3φ−2

, (E2)

where ν(τ ) = exp[−2γ τ (2 − 3φ) − 3φ

3φ−2 log( 2φ−2
φ

)].
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(a)

(b)

FIG. 15. (Case 1) Time course of r(τ ) and c̃020 for (a) φ = 1/4
and (b) φ = 1/2 with κ = 10. Dotted and dashed black lines corre-
spond to plotting the approximate value for r and c̃020 using Eq. (E2)
for γ = 106 and γ = 108, respectively. Note the different x axis
scales.

Figure 15 shows how the approximate value for r(τ ) from
Eq. (E2), and the corresponding approximate c̃020(τ ) (dashed
black), compare with solutions of the full system. We show so-
lutions with γ = 106 for φ = 1/2 (gelation does not occur) in
Fig. 15(a) and for φ = 1/4 (gelation does occur) in Fig. 15(b).
For both φ values, we see excellent agreement between the
approximate solution and the full solution. We also see that
c̃020 goes rapidly to zero. In this large γ limit, the fibrinogen
monomer quickly binds to the initial fibrin monomers. Since
two fibrinogen monomers can bind to each fibrin monomer,
and the initial concentration of fibrinogen is less than twice the
initial concentration of fibrin, fibrinogen monomer is almost
completely depleted in a very short time while simultaneously
the concentration of free reaction sites drops. From the re-
lation c̃020(τ ) − r(τ ) = 3φ − 2, we see that when c̃020 ≈ 0,
r(τ ) ≈ 2 − 3φ, consistent with the curves in Fig. 15. The
limiting value r(τ ) ≈ 2 − 3φ does not depend on the value
of γ . Since the rapid depletion of fibrinogen monomer and
reduction of r to 2 − 3φ occurs for all sufficiently large values
of γ , the subsequent dynamics, including whether a gel forms,
are essentially the same for all large γ .

2. Cases 2 and 3: Free reaction site and branch dependence on κ

To better show the difference between the end time concen-
trations of free reaction sites and branch points in Cases 2 and
3, depicted in Fig. 8, we show the end time concentrations
as a function of κ in Fig. 16 for γ = 1 and ηm = 1. These
curves correspond to the gray vertical lines found in Fig. 8
in the manuscript. For Case 2, we see a quick rise in the

(a)

(b)

FIG. 16. End time concentration of (a) free reaction sites and
(b) branch points for Case 2 (red) and Case 3 (blue) with γ =
1, ηm = 1.

end time free reaction site concentration in Fig. 16(a) around
κ ≈ 3, corresponding to the beginning of the gel region. This
rise contributes to the large increase in end time branch point
concentration shown in Fig. 16(b). Interestingly, the peak end
time branch concentration for Case 2 is larger than that for
Case 3 even though the peak end time reaction site concentra-
tion is larger for Case 3 than Case 2.

3. Case 2: Effects of γ and ηm variations

We investigate the simulation end times and end time con-
centrations for Case 2 when varying κ , ηm, and γ in Fig. 17.
Figure 17(a) shows changes in τgel as γ and ηm are varied,
with gelation occurring to the right of the separatrix. As γ

increases, the minimum value of ηm needed for gelation also
increases, as faster fibrin monomer production is needed to
compete with the faster fibrinogen binding. In Fig. 17(b), we
see that branch formation is strongly limited in the no-gel re-
gion, and, in the gel region, the end time branch concentration
increases as ηm increases. Figure 17(c) shows that there is very
little fibrinogen monomer at gel time, and that the amount of
fibrinogen monomer concentration at gel time decreases as ηm

increases with γ fixed. In the no-gel region of Fig. 17(c), the
end time fibrinogen monomer concentration is very low and
corresponds to the high end time concentration of fibrinogen
in oligomer found in the no-gel region of Fig. 17(d).

4. Case 2: Relative timescales

We examine the time course of model variables and of
fibrin reaction site production and consumption for a base
case (γ = 1, κ = 10, ηm = 1, ηo = 0) and six other cases in
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FIG. 17. (Case 2) Each concentration or gel time is a function
of monomeric conversion rate ηm and varying γ , fixed κ = 10.
(a) Gel time τgel and concentrations of (b) branches b, (c) fibrinogen
monomer c̃020, and (d) fibrinogen in oligomer ô at end of simulation.
Black curves show the gel/no-gel boundary.

which, one at a time, we increase or decrease each of these
parameters by 10-fold relative to its base case value. As shown
in Fig. 18, the base case parameter values correspond to a
point (the point labeled “2”) that is in the gel region but close
to the gel/no-gel boundary (for γ = 1). For each parameter,
the 10-fold variation in one direction moves the parameter trio
(γ , κ , ηm) further into the gel region, while the variation in the
other direction moves it into the no-gel region. The relative
size of the terms contributing to changes of the reaction site
concentration r(τ ) are key to understanding the results. Here,
for convenience is Eq. (26) from the main paper:

dr

dτ
= −r2 − κ

2
r3 − 2γ c̃020r + 2ηmc̃020 + ηoô, (26)

For Case 2 simulations, ηo = 0, and so reaction sites are
produced only by conversion of fibrinogen monomers to fibrin
and they are “consumed” in forming branches, forming links,
and binding to fibrinogen. In the simulations shown below,
the main determinants of whether a gel forms come from the
inequalities in Eq. (36) of the main paper reproduced here:

(4γ c̃020

κ

)1/2
< r <

ηm

γ
. (36)

FIG. 18. (Case 2) Heatmap of τend for various ηm and κ values
with γ = 1. The base case considered here is point “2” and has ηm =
1, κ = 10, and γ = 1.

With ηo = 0 and r(0) = 0, we see from Eq. (26) that r(τ ) �
ηm/γ is always true because production of reaction sites by
fibrinogen conversion must at least match their consumption
through fibrinogen binding. But the amount by which ηm

exceeds γ r determines how many “surplus” reaction sites are
available for branch or link formation. The left inequality con-
cerns the relative rates of using reaction sites to form branches
or for fibrinogen binding. From all of our examples, it is clear
that this inequality must hold for a significant portion of a
simulation if a gel is to form. It is also useful, particularly to
understand the nongelling cases, to compare two additional
pairs of terms from Eq. (26). When 2

κ
< r, the rate of branch

formation is greater than the rate of link formation, and when
2γ c̃020 < r, the rate of link formation exceeds that of fibrino-
gen binding.

In Fig. 19 we look at the effect of the 10-fold changes
in the fibrinogen monomer conversion rate coefficient ηm.
The relevant parameter values are indicated by points “1”
and “3” on the heatmap in Fig. 18. In Figs. 19(a) and
19(d) we see that for ηm = 0.1, gelation does not occur. In
the right inequality in Eq. (36), ηm/γ = 0.1 and is only a little
greater than r(τ ) for a significant part of the simulation. The
left inequality is not satisfied until τ ≈ 12 when most of the
fibrinogen has been depleted. Neither the concentration of fib-
rin monomer c̃102 nor the concentration of reaction sites r ever
becomes large. Figure 19(d) shows that by the time fibrinogen
is depleted, about 35% of the fibrinogen has been converted
to fibrin monomers and most of the rest of the fibrinogen
has bound with the fibrin monomers to form inert trimers.
In Fig. 19(a), we see that fibrinogen binding has neutralized
most of the reaction sites produced by fibrinogen’s conver-
sion to fibrin, some of the fibrin has formed links with other
fibrin monomers, and little branch formation has occurred.
Figure 22(a) shows that for this simulation, r(τ ) is less than
half of 2

κ
throughout the simulation, showing that link forma-

tion is strongly favored over branch formation, and that r(τ ) is
much less than 2γ c̃020 for almost all of the simulation, indicat-
ing that fibrinogen binding to reaction sites is strongly favored
over link formation. These relations explain the ordering of
fibrin reactions site consumption seen in Fig. 19(a).

We see in Fig. 19(e) for ηm = 1, that r(τ ) is greater than the
lower limit in Eq. (36) starting at a time coinciding with the
beginning of rapid branch formation. From Fig. 19(b), we see
that at τgel the consumption of reaction sites through branch
formation slightly exceeds their consumption through fibrino-
gen binding and their consumption through link formation. At
τgel, the concentration of inert trimers is less than one-half the
concentration of branches.

Figures 19(c) and 19(f) show results for ηm = 10. The gel
forms much more quickly than for ηm = 1. The reaction site
concentration r is far below the upper limit from Eq. (36) for
the entire simulation so that many more reactions sites are
produced than are used for fibrinogen binding. We see that r is
above the lower limit from an early time coinciding with the
onset of rapid branch formation. That r so quickly exceeds√

4γ c̃020/κ is a consequence of the rapid increase in r and
drop in c̃020 both of which are due to the rapid conversion of
fibrinogen to fibrin. Even though a gel forms quickly, most
of the fibrinogen has been converted to fibrin monomers by
τgel, and a little less than half of the reaction sites on these
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FIG. 19. (Case 2) Variations in ηm. Time course of the integral of the individual terms in that contribute to r(τ ) (top row) and time course
of the concentrations of fibrinogen monomers (c̃020), fibrin monomers (c̃102), fibrinogen-fibrin dimers (c̃111), inert trimers (c̃120), free fibrin
reaction sites (r), branch points (b), and gel indicator function v (bottom row) for three ηm = 0.1, 1.0, 10.0 values with κ = 10, γ = 1. The
gray dotted lines refer to upper and lower bounds on r in Eq. (36).

monomers have gone into branch formation, far exceeding the
portion of reaction sites used for link formation or blocked by
fibrinogen binding.

In Fig. 20 we look at the effect of the 10-fold changes in
κ . The relevant parameter values are indicated by points “4”
and “5” on the heatmap in Fig. 18. In Figs. 20(a) and 20(d)
we see that for κ = 1, gelation does not occur. For the entire
simulation, r is substantially below the upper limit ηm/γ = 1,
indicating that a significant fraction of the reaction sites pro-
duced by fibrinogen conversion are available for branch or
link formation. However, r is also below

√
4γ c̃020/κ , which

starts at the relatively high value of 2, for much of the

simulation, and fibrinogen binding is strongly favored over
branch formation. Because of the low branching rate coeffi-
cient κ , r is far below the level 2/κ for the entire simulation,
as shown in Fig. 22(b), so link formation is also greatly
favored over branch formation. That figure also shows that
r is substantially above 2γ c̃020 starting a little after τ = 1,
implying that link formation happens at a much faster rate
than fibrinogen binding. These results explain both the large
fraction of reaction sites that are used for link formation rather
than fibrinogen binding and the very low consumption of
reaction sites for branch formation. The diversion of reaction
sites to link formation rather than fibrinogen binding has the
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FIG. 20. (Case 2) Variations in κ . Time course of the integral of the individual terms in that contribute to r(τ ) (top row) and time course
of the concentrations of fibrinogen monomers (c̃020), fibrin monomers (c̃102), fibrinogen-fibrin dimers (c̃111), inert trimers (c̃120), free fibrin
reaction sites (r), branch points (b), and gel indicator function v (bottom row) for three κ = 1, 10, 100 values with ηm = 1, γ = 1. The gray
dotted lines refer to upper and lower bounds on r in Eq. (36).
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FIG. 21. (Case 2) Variations in γ . Time course of the integral of the individual terms in that contribute to r(τ ) (top row) and time course
of the concentrations of fibrinogen monomers (c̃020), fibrin monomers (c̃102), fibrinogen-fibrin dimers (c̃111), inert trimers (c̃120), free fibrin
reaction sites (r), branch points (b), and gel indicator function v (bottom row) for three γ = 0.1, 1, 10 values with ηm = 1, κ = 10. The gray
dotted lines refer to upper and lower bounds on r in Eq. (36).

consequence that the concentration of inert trimers at the end
of the simulation, shown in Fig. 20(d), is lower than it is for
the other nongelling cases, ηm = 0.1 in Fig. 19(d) and γ = 10
in Fig. 21(f).

Figures 20(b) and 20(e) show that for κ = 10, our base
case, comparable amounts of the fibrin reaction sites produced
by conversion of fibrinogen are used in branch formation,
fibrinogen binding, and link formation, and the final concen-
tration of inert trimers is small. For κ = 100 [Figs. 20(c) and
20(f)], r quickly exceeds

√
4γ c̃020/κ , which starts at the rela-

tively low value of 0.2, branch formation occurs rapidly, and
gelation happens early. In this simulation with a moderate rate
of fibrinogen conversion and rapid rate of branch formation,
almost half of the fibrinogen monomers remain at τgel.

Figure 21 shows the effects of 10-fold changes in γ . These
changes correspond to movement in the ηm, κ , γ parameter
space perpendicular to the plane of the heatmap shown in

Fig. 18. Compared to the location of the gel/no-gel boundary
in Fig. 18, the gel/no-gel boundary is lower and further to
the left for γ = 0.1, and higher and further to the right for
γ = 10 (not shown). Figure 21(f) shows that gelation does
not happen for γ = 10. Figure 21(c) shows that the rate of
fibrinogen binding to the fibrin reaction sites almost matches
their rate of production by conversion of fibrinogen; corre-
spondingly, for much of the simulation, r is approximately
equal to the upper limit in Eq. (36). The rates of branch
formation and link formation remain low, as r � √

4γ c̃020/κ

and r � 2γ c̃020 (see Fig. 22) until most of the fibrinogen has
been depleted. Approximately 75% of the original fibrinogen
has been incorporated into inert trimers by the time fibrinogen
is depleted. With γ = 1 (the base case), shown in Figs. 21(b)
and 21(e), gelation occurs and branch formation accounts for
slightly more reaction site utilization than does fibrinogen
binding. Figure 21(d) shows that when γ is dropped to 0.1, gel
formation occurs quickly, occurring at about the same time as

FIG. 22. (Case 2) Nongelling simulations: (a) ηm = 0.1, κ = 10, γ = 1, (b) ηm = 1, κ = 1, γ = 1, (c) ηm = 1, κ = 10, γ = 10. Time-
course of concentrations of reactive sites r, fibrinogen monomers c̃020, and inert trimers c̃120. Plots of reaction rate boundary curves: r <

ηm
γ

if

the rate of reaction site production by fibrinogen conversion exceeds the rate of reaction site use by fibrinogen binding, r >
√

4γ c̃020/κ if the
rate that reaction sites are used for branch formation exceeds their use by fibrinogen binding, r > 2

κ
if the rate of reactive site use for branch

formation exceeds that by link formation, and r > 2γ c̃020 if the rate of reaction site use for link formation exceeds that by fibrinogen binding.
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when κ = 100 [Fig. 20(f)] and just a little later than it does
when ηm = 10 [Fig. 19(f)].

It is interesting to compare the parameter combinations
in each set (Figs. 19–21) that lead to the fastest gelling.
Among these simulations, the one with ηm = 10 and baseline
values of κ and γ , achieves the highest values r and c̃102.
The fibrin monomer concentration reaches its peak at the
start of rapid branch formation, and r peaks about half-way
though the interval of rapid branch formation that leads to
gelation. Almost all of the fibrinogen has been depleted by
τgel, and the use of reaction sites for branch formation far
exceeds, by about fourfold, their use for either fibrinogen
binding or link formation. The concentration of branches at
gel time b(τgel ) is highest among the three fast-gelling cases.
For the simulation with γ = 0.1 and baseline values of ηm

and κ , r and c̃102 reach moderate levels, with c̃102 and r again

peaking at the start of rapid branch formation and midway
between the start of rapid branch formation and gel time,
respectively. About 60% of the fibrinogen had been used by
gel time. The value of b(τgel ) is lower than for the ηm = 10
case. With κ = 100 and ηm and γ at their baseline values,
the timing of the peaks of c̃102 and r relative to the time
interval of rapid branch formation is similar to the other cases,
but the peaks in c̃102 and r are much smaller than in the
previous two cases. At gel time, only ≈50% of the fibrinogen
has been used. The consumption of reaction sites in branch
formation is about twice that for fibrinogen binding which,
in turn, is much larger than their use for link formation.
The value b(τgel ) is much lower than that for ηm = 10 and
somewhat lower than for γ = 0.1, and this likely reflects the
differing levels of fibrinogen depletion by gel time in the
three cases.
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