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Noise-induced symmetry breaking in a network of excitable ecological systems
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Noise-induced symmetry breaking has barely been unveiled on the ecological grounds, though its occurrence
may elucidate mechanisms responsible for maintaining biodiversity and ecosystem stability. Here, for a network
of excitable consumer-resource systems, we show that the interplay of network structure and noise intensity man-
ifests a transition from homogeneous steady states to inhomogeneous steady states, resulting in noise-induced
symmetry breaking. On further increasing the noise intensity, there exist asynchronous oscillations, leading to
heterogeneity crucial for maintaining a system’s adaptive capacity. The observed collective dynamics can be
understood analytically in the framework of linear stability analysis of the corresponding deterministic system.
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I. INTRODUCTION

A principle finding in theoretical ecology suggests that
even a simple population model can manifest a range of dy-
namical scenarios, from stable equilibria to cyclic oscillations,
through to chaos [1]. Oscillatory dynamics has a long history,
as summarized in diverse fields [2–4]. Elucidating various
mechanisms behind these oscillations is a major challenge and
has been of persistent interest in ecology [5]. As discussed
in [6], endogenous causes are the plausible explanation for
the generation of population cycles. Another well studied
nonlinear phenomenon observed in dynamical systems is ex-
citability [7,8]. Excitable dynamics are observed in a wide
range of natural systems, which under strong perturbations
can evoke large-amplitude fluctuations, before relaxing to a
rest state [9]. These large-amplitude transient fluctuations can
sometimes turn into sustained oscillations due to stochastic
perturbations, often called noise-induced oscillations [10,11].
Here, by considering an ecological network of excitable sys-
tems, we address the following questions: Do noise-induced
oscillations always directly transit from a steady state? Can
other intermediate collective dynamics exist while the system
shifts from a steady state to noise-induced oscillations?

Stochasticity or noise is ubiquitous in ecosystems. In recent
years, extensive research on stochastic ecological systems
has found that noise can lead to many novel phenomena,
from population cycles to coexistence [12,13]. The persua-
sive role of noise on the dynamics of excitable systems
is observed in many disciplines, including noise-induced
oscillations [10,14], the phenomenon of coherence reso-
nance [15,16], the occurrence of chimera states [17], and
noise-enhanced synchronization in coupled excitable sys-
tems [18,19]. An intriguing phenomenon that has received less
attention is noise-induced symmetry breaking (NISB). NISB
affirms reduced symmetric configuration in the presence of
noise, even though the underlying deterministic processes are
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symmetric, thus resulting in the occurrence of multiple stable
states. There is limited research on NISB [20,21], and so far,
its ecological facet remains to be studied. Multiple stable so-
lutions make it possible for populations in distinct patches and
nodes to settle into different steady states, therefore minimiz-
ing the extinction risk and increasing the stability of spatial
population through rescue effect [22]. The idea of spatial
ecosystem functioning and species interactions goes hand in
hand. Spatially separated populations, which through disper-
sal may synchronize, are considered necessary to understand
population cycles [23]. Researchers find that large systems of
interacting oscillators have promising applications in various
fluctuating systems [9,24]. Further, species dispersal network
structure is believed to influence the ecological dynamics
strongly, as explored by recent studies [25,26]. Following
those lines of thought, here we report that an interplay of net-
work structure and noise intensity results in a transition from
homogeneous steady states to inhomogeneous steady states
via NISB, before turning into noise-induced asynchronous
oscillations. These results are explained numerically with the
help of time series, spatiotemporal plots, and phase diagrams.
Further, we show that the network model’s linear stability
analysis can help to explain the observed dynamics.

II. MODEL OF AN ECOLOGICAL NETWORK

We consider an ecological network with N patches in-
habiting resource-consumer [27] systems. The consumers in
each patch are connected with other patches via a diffusive
coupling, where the connectivity pattern varies from local to
global. There is an additive Gaussian white noise ξ (t ) that
affects the consumer abundance. The network model, in the
presence of stochastic perturbations, is given below:

ε
dxi

dt
= rxi(1 − xi ) − a2x2

i

1 + b2x2
i

yi, (1a)

dyi

dt
= a2x2

i

1 + b2x2
i

yi − myi + σ

2P

j=i+P∑
j=i−P

(y j − yi ) +
√

2Dξi(t ),

(1b)
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FIG. 1. Time series of the resource population (x) for the model
(1) with σ = 0 and a = 9 (the system is in the excitable region):
(a) For zero noise intensity (D = 0) the system settles into a steady
state. Inset: nullclines of the resource (x) and the consumer (y).
(b) For a nonzero noise intensity (D = 0.000 05) there exists noise-
induced oscillations. Inset: stochastic cyclic attractor. Other model
parameters are r = 1, b = 7, m = 1, ε = 0.01, and N = 101.

where xi and yi, respectively, determine resource and con-
sumer abundance and i(= 1, 2, . . . , N ) denotes the patch
index (all indices are modulo N). The parameter ε > 0 is
responsible for a timescale separation between a fast resource
population and a slow consumer population. The resource
follows the logistic growth with an intrinsic growth rate r,
and the interaction of resource and consumer is characterized
by Holling’s type-III grazing with parameters a and b. m
is the natural mortality of the consumer. The parameter a
describes the excitability threshold of the isolated system; in
particular, it determines whether the system is in the excitable

(a > 8.975) or in the oscillatory (a ∈ [7.345, 8.975]) regime.
Here, we focus on the dynamics of the resource-consumer
population in the excitable regime (a = 9). The model as-
sumes the movement of the consumer population between
the patches, where the interaction is governed by the cou-
pling strength σ and the parameter P controls the coupling
range s = P/N , where 1 � P � (N − 1)/2 for an odd number
of patches. Increasing the value of P from 1 to (N − 1)/2
varies the network topology from local to global via non-
local. Further, ξi(t ) ∈ R is the normalized Gaussian white
noise that perturbs the consumer population in each ith patch,
i.e., 〈ξi(t )〉 = 0 and 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′), ∀i, j, and D
is the noise intensity. In the excitable region, the isolated
system rests in a stable steady state in the absence of noise
[see Fig. 1(a)]. Inducing stochastic perturbations beyond a
threshold value of the noise amplitude drives the population
to produce sustained oscillations, as seen in Fig. 1(b).

III. RESULTS

The interplay of node dynamics, network topology, and
noise introduced in the model (1), gives rise to distinct dy-
namical regimes [28]. Depending upon noise intensity D,
we demonstrate four distinct space-time patterns for resource
population in Fig. 2 (see Fig. 5 in the Appendix for the corre-
sponding consumer dynamics). In the absence of noise (D =
0) or for a low noise intensity, all the nodes rest in the
steady state, thus giving a homogeneous steady-state solution
[Fig. 2(a)]. Now, in the presence of a weak noise strength,
the system breaks into two subpopulations having two distinct
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FIG. 2. (a)–(d) Space-time (left column) and corresponding time series plots (right column) of resource xi for P = 8, σ = 0.1 with varying
noise intensities: (a) D = 0; steady state, (b) D = 0.000 01; symmetry breaking, (c) D = 0.000 033; stochastic switching between two resource
densities, and (d) D = 0.005; asynchronous oscillations. (e)–(h) Space-time (left column) and corresponding time series (right column) plots
for D = 0.000 01, σ = 0.6 with varying coupling range s: (e) s = 0.01 (local coupling); asynchronous oscillations, (f) s = 0.04; symmetry
breaking, (g) s = 0.25; symmetry breaking with most nodes settling at the lower branch, and (h) s = 0.5 (global coupling); steady state. Other
model parameters are r = 1, a = 9, b = 7, m = 1, ε = 0.01, and N = 101.
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noise-induced inhomogeneous steady states. The scenario is
shown in Fig. 2(b) for D = 0.000 01. The time series in
the right panel of Fig. 2(b) shows two distinct branches of
resource densities. Interestingly, the lower branch coincides
with the deterministic steady state. However, the presence
of noise gives birth to an additional steady state, i.e., the
upper branch. The spatiotemporal plot in the left panel of
Fig. 2(b) depicts that the upper branch randomly appears in
the background of the steady state of the lower branch. The
presence of two steady states breaks the spatial symmetry of
the system, and we get a new stationary state governed by
noise-induced symmetry breaking. We find that the network
exhibits stochastic switching between the two branches for
an intermediate noise intensity. Figure 2(c) demonstrates this
scenario for D = 0.000 033. For a large noise intensity (D =
0.005), inhomogeneous steady states no longer exist; rather,
stochastically spiking incoherent oscillations take place [see
Fig. 2(d)].

Moreover, to provide an insight into the effects of network
topology on the dynamics of the system, we fix the noise
intensity D = 0.000 01, coupling strength σ = 0.6, and vary
the connectivity from local (s = 0.01) to global (s = 0.5)
via nonlocal (s = 0.03, s = 0.25) coupling [see Figs. 2(e)–
2(h)]. We find notable differences between dynamics with the
changing network topology. Increasing the coupling range of
the network not only reduces the number of solutions but
also changes the dynamics from oscillatory to steady state.
As observed from Fig. 2(e), local coupling favors oscillating
populations with spatial incoherence, whereas increasing the
coupling range shows a transition from oscillating popula-
tions [Fig. 2(e)] to inhomogeneous steady states [Figs. 2(f)
and 2(g)], through to homogeneous solutions [Fig. 2(h)]. In-
terestingly, in the presence of nonlocal coupling, as depicted
in the space-time plot in Fig. 2(f), oscillators randomly rest at
the lower or the upper branch; however, with the increasing
network connectivity to global coupling, all the oscillators
settle at the lower branch [Fig. 2(h)], which also incites homo-
geneous population densities. Thus, for a fixed noise intensity
D and coupling strength σ , the network model (1) experiences
NISB while moving from global to local coupling.

The observed transition from oscillatory dynamics to in-
homogeneous states compels us to investigate our system’s
qualitative behavior in these respective regimes. We analyze
the features of the oscillatory region through the phase por-
trait in Figs. 3(a) and 3(b) for noise intensity D = 0.005.
We observe that the density of phase points of the stochastic
limit cycle attractor for one oscillator [see Fig. 3(a)] and
correspondingly for all the oscillators [see Fig. 3(b)] is larger
around two population densities, i.e., xi = 0.1 and xi = 0.55.
To further elaborate on the phenomenon of symmetry break-
ing observed in Fig. 2, we calculate the center of mass defined
as [29]

xc.m. = 1

T

∫ T

0
xi(t )dt, (2)

where xi is the resource density in each ith patch, and T is
taken sufficiently large. Resource population settles exactly
into two branches as is characterized by two distinct values of
center of mass [Fig. 3(c)], where for one part of the popula-
tion xc.m. ≈ 0.15 and for the other subpopulation xc.m. takes
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FIG. 3. Phase portraits exhibiting the long stay of attractor in the
two domains around xi = 0.1 and xi = 0.55 for (a) one oscillator
(15th node) and (b) all the oscillators, at noise intensity D = 0.005.
(c) Center of mass (xc.m.) and (d) phase portrait at a particular time
along with density distribution of yi corresponding to NISB for
nonlocal coupling (P = 8) at noise intensity D = 0.000 01. The his-
togram in the right panel of (d) represents the number of oscillators
in either of the two states. Other model parameters are r = 1, a = 9,
b = 7, m = 1, ε = 0.01, σ = 0.1, and N = 101.

the value around 0.5, therefore exhibiting two nonuniform
states. A relevant observation illustrated in the phase space
[Fig. 3(d)] suggests an underlying mechanism for symmetry
breaking, specifically NISB, clearly indicating the coexistence
of two steady states in the network. We observe that wide dis-
tributions show up for two density values (≈0.15 and ≈0.5),
thus settling the system solely around these two states.

To gain a comprehensive view of the spatiotemporal dy-
namics in the network, we compute phase diagrams in the
(s, D) and (s, σ ) parameter planes [see Figs. 4(a) and 4(b),
respectively]. Keeping the value of coupling strength σ fixed
to 0.1, we vary s and D in Fig. 4(a). For stronger noise
intensity D, in the entire range of s, the system resides in the
asynchronous oscillatory regime. For weaker values of D, we
observe either asynchronous oscillations or NISB, along with
a region of stochastic switching, depending upon the coupling
range s. NISB occurs for a certain threshold value of s > 0.07,
i.e., when the coupling is nonlocal with around eight nodes
connected and persists up to s = 0.5 (globally coupled). How-
ever, local coupling (s = 0.01) and less connected nodes (up
to six) maintain the oscillatory behavior. Moreover, a narrow
zone of stochastic switching is observed between these two
regimes. In Fig. 4(b), we explore the interplay of s and σ , with
the value of D being fixed to 0.000 01. The oscillatory region
observed for a large number of connected nodes s = 0.21,
narrows down to s = 0.02 with increasing coupling value
σ , clearly determining the persisting oscillatory pattern for
local coupling in the whole range of σ . Moreover, for a large
value of σ (≈0.53), a transition from oscillations to NISB via
stochastic switching takes place for a lower coupling range. In
contrast, with decreasing coupling strength, more connected
nodes are required for the transition. In the direction of global
coupling, beyond a threshold value of σ , the system traverses
a synchronous steady state [homogeneous steady state (HSS)].
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FIG. 4. Phase diagrams in the (a) (s, D) plane for σ = 0.1 and (b) (s, σ ) plane for D = 0.000 01, where NIO: noise-induced oscillations,
SS: stochastic switching, NISB: noise-induced symmetry breaking, and HSS: homogeneous steady state. (c)–(e) Distribution of the eigenvalues
for different values of s for σ = 0.6 and D = 0. Other model parameters are the same as in Fig. 2.

Our results can have significant implications for under-
standing the positive effects of noise on species diversity.
Metapopulations are essential as it supports the persistence
of many species under the events of local extinctions and
recolonization. Understanding the ecological effects of pop-
ulation cycles on ecosystem processes is also challenging.
Studies [30–32] suggest that cycles promote the coexistence
of several consumers competing for shared resources. The
work by Eveleigh et al. [33] shows that cyclic species can en-
hance biodiversity through the “bird-feeder effect.” Therefore,
oscillatory dynamics may significantly contribute towards
biodiversity maintenance [34]. Further, ecologists predict that
large population fluctuations could shift communities from
one state to another. The presence of alternative stable equi-
libria allows populations in different patches to settle in any

stable states depending upon the initial conditions. Thus there
is no spatial synchronization, which impedes extinction [22].

The noise intensity D considered for our analysis is in
the order of 10−5 (see Fig. 2). Thus, a careful investiga-
tion of the model (1) in the deterministic limit can give an
insight to explain the observed dynamics. Therefore, con-
sidering the deterministic framework, i.e., D = 0 in (1), we
carry the linear stability analysis. We calculate eigenvalues
of the linearized system using the equilibrium points based
upon the changing network topology [35]. Let (x∗, y∗) =
(x∗

1, y∗
1, x∗

2, y∗
2, . . . , x∗

N , y∗
N ) be a nontrivial equilibrium point of

the system (1) when D = 0. Linearization of the deterministic
system in the neighborhood of the equilibrium point (x∗, y∗)
yields the following block-structured matrix:

J =

⎡
⎢⎢⎢⎢⎣

J1(x∗
1, y∗

1 ) − diag{0, 2P} ... diag{0, mj} ... · · · ... diag{0, mj}
diag{0, mj} ... J2(x∗

2, y∗
2 ) − diag{0, 2P} ... diag{0, mj} ... · · ·

...
...

...
...

...
...

...

diag{0, mj} ... diag{0, mj} ... · · · ... JN (x∗
N , y∗

N ) − diag{0, 2P}

⎤
⎥⎥⎥⎥⎦,

where Ji is the Jacobian of the isolated ith patch at an equilib-
rium point (x∗

i , y∗
i ) (i = 1, 2, . . . , N) given as

Ji =
[

ji
11 ji

12

ji
21 ji

22

]
,

with ji
11 = 1

ε
− 2x∗

i
ε

− 1
ε

2a2x∗
i yi∗

1+b2x∗
i

, ji
12 = − 1

ε

a2x∗2
i

1+b2xi
∗2 , ji

21 =
2a2x∗2

i y∗
i

(1+b2x∗2
i )2 , and ji

22 = a2x∗2
i

1+b2x∗2
i

− 1. Further, mj = 1 if the ith
and jth nodes are connected, and mj = 0 otherwise.

The coupling strength σ = 0.6 and noise intensity D =
0.000 01 manifest four distinct regimes based upon the value
of s, as can be seen in Fig. 4(b). The transition from oscillatory
dynamics to NISB via stochastic switching (SS) occurs for
s = 0.05, further traversing HSS around s = 0.41. Here we
intend to investigate whether the node dynamics and net-
work structure determine the dominant pattern of NISB in
the limiting value of D tending to 0. Figures 4(c)–4(e) show
the distribution of eigenvalues with varying coupling range s.
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FIG. 5. (a)–(d) Space-time (left column) and corresponding time series plots (right column) of consumer yi for P = 8, σ = 0.1 with
varying noise intensities: (a) D = 0; steady state, (b) D = 0.000 01; symmetry breaking, (c) D = 0.000 033; stochastic switching between two
consumer densities, and (d) D = 0.005; frequent spiking. (e)–(h) Space-time (left column) and corresponding time series (right column) plots
for D = 0.000 01, σ = 0.6 with varying coupling range s: (e) s = 0.01 (local coupling); asynchronous oscillations, (f) s = 0.04; symmetry
breaking, (g) s = 0.25; most nodes settling at the lower branch, and (h) s = 0.5 (global coupling); steady state. Other model parameters are
r = 1, a = 9, b = 7, m = 1, ε = 0.01, and N = 101.

We observe complex conjugate eigenvalues (λi) for s ranging
from 0.01 to 0.04 as shown for s = 0.03 in Fig. 4(c). It is
ascertained from Fig. 4(c) that the fixed point obtained at
D = 0 for s = 0.03 is a stable spiral since Real(λi) < 0 ∀i.
However, as analyzed from Fig. 4(b) for the same coupling
range (s = 0.03), the presence of noise in the system results
in the occurrence of oscillations or SS. A recent study [36]
demonstrated the impact of additive noise on networks, tuning
their spectral properties. The work showed that increasing
noise intensity could coerce the eigenvalues to cross the
imaginary axis. Moreover, oscillations in stochastic excitable
systems are known to occur due to noisy perturbations [14].
Noise-driven excitable systems possess noise-induced eigen-
frequency, and thus can exhibit stochastic oscillations. The
work by Hidalgo et al. [37] describes the phenomenon of
“stochastic amplification of fluctuations.” The mechanism is
associated with the resonance amplification of some frequen-
cies when the corresponding steady-state equilibrium of the
deterministic system has complex eigenvalues. Therefore, we
infer that the transition from a steady state (D = 0) to an
oscillatory state or a region of SS (D 
= 0) in our work is due
to stochastic amplification of fluctuations and the impact of
noise on the eigenvalue spectrum that resulted in destabilizing
the equilibrium point by crossing the imaginary axis, and
hence the occurrence of Hopf bifurcation. Moving further to
s = 0.05, we observe the emergence of a few real eigenvalues
[see Fig. 4(d)], which also eventually tend towards 0 with
increasing coupling range (s = 0.1), as observed from
Fig. 4(e). We also notice that the number of real eigenvalues

increases in a passage of global coupling. Thus, we infer that
the presence of noise in the network (1) can lead the real
eigenvalues to cross the origin, henceforth inducing NISB via
a pitchfork bifurcation.

IV. CONCLUSION

In conclusion, we have shown that an ecological network
of identical excitable systems can be driven out of the rest-
ing state leading to different collective dynamics, including
regimes of heterogeneous steady states and asynchronous
oscillatory states, mediated by noise intensity and network
topology. For nonlocal coupling and adequately tuning the
noise intensity, we achieve an oscillatory regime due to the
resonance effect [11] or a region of inhomogeneous steady
states (NISB). Further, by keeping the noise intensity fixed
while changing the coupling range from local to global, we
identify a transition from an oscillatory domain to a region
HSS through NISB. Although the oscillatory and inhomo-
geneous steady states promote species’ sustainability, the
emergence of HSS while traversing towards global coupling
inhibits biodiversity [26]. Our results are robust across a
large region in the parameter space, as demonstrated via
phase diagrams. Therefore, our findings could be important
for understanding the mechanisms responsible for uphold-
ing biodiversity and ecosystem stability. Finally, deriving the
Fokker-Planck equation of stochastic ecological networks for
the analytical tractability of the observed collective dynamics
is an important future direction.
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APPENDIX: STOCHASTIC CONSUMER DYNAMICS

In Fig. 5, we demonstrate the effect of noise intensity and
network topology on consumer (y) dynamics (corresponding
to Fig. 2). For a fixed coupling range P = 8 and in the ab-
sence of noise (D = 0) we observe that all the nodes rest
in the steady state [Fig. 5(a)]. Adding noise into the sys-
tem (D > 0), although with weak intensity, results in two
inhomogeneous steady solutions, as shown in Fig. 5(b) for
D = 0.000 01. However, due to the low population density
maintained by consumers, the upper and the lower steady-

state branches do not have a large difference, as was in
the case of resource (x) densities [see Fig. 2(b)]. Further,
increasing noise intensity results in the switching between
the two branches of consumer densities [Fig. 5(c)]. For a
large noise intensity (D = 0.005), frequent spiking is noticed
[see Fig. 5(d)].

Moving ahead, for a fixed noise intensity D = 0.000 01
and for local coupling (s = 0.01), we observe oscillating dy-
namics of the consumer population from Fig. 5(e). Increasing
the coupling range results in symmetry breaking as is exhib-
ited by the consumer population settling in the two branches
[see Fig. 5(f)], where the densities of the upper and the
lower branches are not very significantly apart. Therefore,
any further increase in connectivity leads to the collision of
the two states, thus resulting in a single steady-state solution
[Figs. 5(g) and 5(h)].
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