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Capturing membrane structure and function in lattice Boltzmann models
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We develop a mesoscopic approach to model the nonequilibrium behavior of membranes at the cellular
scale. Relying on lattice Boltzmann methods, we develop a solution procedure to recover the Nernst-Planck
equations and Gauss’s law. A general closure rule is developed to describe mass transport across the membrane,
which is able to account for protein-mediated diffusion based on a coarse-grained representation. We demonstrate
that our model is able to recover the Goldman equation from first principles and show that hyperpolarization
occurs when membrane charging dynamics are controlled by multiple relaxation timescales. The approach
provides a promising way to characterize non-equilibrium behaviors that arise due to the role of membranes
in mediating transport based on realistic three-dimensional cell geometries.
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I. INTRODUCTION

Membranes play an essential role in biological systems,
providing the basic conditions that allow cells to control the
movement of material into and out of the cell. Ion transport is
particularly important within this context, since this is used to
control electrical responses and sense changes in the extra-
cellular environment [1]. Key cellular functions depend on
how the actions of membrane proteins interact with the overall
cell structure [2–4]. More generally, cell geometry will always
play a key role in electrical signaling due to well-known
effects of confinement on diffusion [5–7]. Recently, experi-
mental imaging techniques to resolve the geometric structure
of real cells have become more widespread [8–11]. Within this
context, mesoscopic simulation methods provide an intriguing
way to quantitatively explore nonequilibrium behaviors based
on true-to-life geometric constraints and biologically relevant
time scales. Mesoscopic methods are constructed based on a
coarse-grained representation of the molecular physics, allow-
ing for significantly larger timesteps and spatial domain sizes
as compared with molecular dynamics techniques [12]. At
the same time, mesoscopic methods are able to capture more
detailed information about nonequilibrium processes, well be-
yond what is possible with simplified rule-based models [13].
These considerations suggest that mesoscopic simulation can
fill an important gap with respect to the modeling of biological
systems.

Direct observations of cell structure provide key motiva-
tion for whole-cell models. Sources of 3D image data for
biological cells are widely available [9,14–16]. Many factors
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influence image data quality, and experimental tradeoffs with
respect to signal-to-noise ratio, resolution, and speed must be
balanced to obtain good data [17]. The input for simulation
workflows will generally be the output for experimental work-
flows, consisting of segmented structures that clearly identify
the cell location and material constituents. Optical microscopy
techniques present a wide range of opportunities to directly
observe cellular geometry as well as resolve dynamic re-
sponses due to ion transport [18,19]. The timescale to acquire
image data using optical techniques can vary from millisec-
onds to minutes, depending on the particular technique and
experimental objectives [14,20,21]. These experimental scales
constrain the types of processes that can be observed, since
the timescale for biological phenomena can vary widely. For
neurons, the timescale to observe an action potential requires
∼1 ms resolution and the timescale for calcium influx requires
∼100 ms. The length and time scales required to model these
phenomena are a natural match with mesoscopic methods.
Furthermore, experimental imaging techniques for live cells
are hindered by the destructive influence of photons; excessive
thermal stimulation can undermine the integrity of cellular
structure and alter dynamic behaviors [22–24]. Physics-based
simulation thereby provides a natural complement to experi-
mental imaging, since it is a mechanism to nondestructively
infer nonequilibrium behaviors at the appropriate timescale,
resolving critical physics that are difficult or impossible to
access experimentally. Opportunities to combine simulation
with experimental imaging protocols represent an intriguing
avenue to improve understanding of the relationship between
biological structure and function.

We develop a model to account for two main factors
that control the behavior of biological membranes. First is
the membrane geometry, which is determined by the cell
structure. Second are the diffusion characteristics for the
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membrane, which are determined by the membrane composi-
tion and interactions between membrane proteins and the local
environment. In principle, the cell geometry and membrane
transport properties can be independently tuned to design
membranes with desired properties and optimize their perfor-
mance. Within this context, mesoscopic simulation provides
a natural way to perform studies that would be prohibitively
expensive and time-consuming in a laboratory setting. Our
approach focuses on the role of membranes as barriers to
diffusion, noting that ion transport across the lipid bilayer
is of particular interest due to the central role of electro-
chemical gradients in many basic biological functions. We
propose straightforward mesoscopic closure rules to couple
the representation of the membrane to the underlying molecu-
lar transport mechanisms based on experimentally observable
phenomena. Our approach is constructed as a complemen-
tary tool for experimental protocols, such that images from
different sources can be easily ingested into the simulator.
Noting that accurate representation for the spatial distribution
of charge is important to correctly model the nonequilibrium
behavior for the membrane, the proposed solution procedure
offers a first-principles approach to model the effects of ion
transport at the whole-cell level. We verify that the described
approach is able to model both equilibrium and nonequilib-
rium membrane responses, and show that it can recover both
the Nernst reversal potential and the Goldman potential.

II. METHODS

Mechanisms that control mass transport across membranes
are responsible for many interesting nonequilibrium dynam-
ics. Proteins embedded in biological membranes contribute
to mass transport in novel ways, pumping ions against the
electrochemical gradient, and relying on various signaling
pathways to trigger voltage-gated ion channels that rapidly
discharge the membrane capacitance [25]. At the meso-
scopic scale these effects can be modeled by controlling the
direction-dependent membrane permeability, noting that the
membrane properties may vary in space (e.g., due to the pro-
tein composition within the membrane) as well as time (e.g.,
due to dynamically triggered effects). Mass transport across
the membrane is coupled to diffusion in the cell exterior and
interior, as depicted in Fig. 1, and a complete model must
include both aspects of the physics. Here we develop a generic
mesoscopic formulation to model these effects, relying on
three fundamental pieces: (1) a model for electrodiffusion in
the bulk regions; (2) data structures to represent the membrane
geometry; and (3) a closure rule to predict mass transport
across the membrane according to customizable rules.

A. Lattice Boltzmann Formulation

Lattice Boltzmann methods (LBMs) are a flexible class
of numerical method that are capable of modeling a wide
range of complex transport phenomena [26,27]. Due to fa-
vorable computational characteristics, LBMs are able to
model mesoscopic dynamics at length and timescales that
are presently inaccessible to any other numerical method.
In terms of the scale of representation, LBMs are most
similar to finite-element methods (FEM) and finite-volume

FIG. 1. Structure of the phospholipid bilayer membrane and role
in ion transport within a cell. The membrane serves as a barrier
that prevents ions from moving freely between the cell and the
extracellular fluid. Transport across the membrane is controlled by
ion channels by protein-mediated diffusion.

methods (FVM) [1,28,29]. LBMs differ from these ap-
proaches because closure rules are typically developed from
coarse-grained quasimolecular interaction models rather than
from continuum approximations. Furthermore, because the
LBM is a discrete solution to the Boltzmann transport equa-
tion, nonergodic transport behaviors can be treated based on
quasimolecular rules developed from a lower level in the
modeling hierarchy, relying on fewer assumptions about the
underlying processes.

A model to recover the nonequilibrium electrical behavior
within a cell must describe the transport of charged chemical
species as well as account for their effect on the electric field
and associated forces. The electric potential ψ satisfies the
differential form of Gauss’s law,

∇2ψ = − ρe

εrε0
, (1)

where ε0 is the permittivity of free space and εr is the material-
dependent relative permittivity. The solution of Eq. (1) is
coupled to ion transport based on the charge density ρe, which
can be computed directly based on the distribution of ions in
the system,

ρe =
∑

k

FzkCk, (2)

where Faraday’s constant is given by F = eNA = 96485
C/mol, zk is the valence charge of ion species k, Ck is the as-
sociated concentration, and NA is the Avogadro constant. The
evolution for each ion concentration Ck satisfies the Nernst-
Planck equations,

∂Ck

∂t
+ ∇ · jk = 0, (3)

jk = Cku − Dk

(
∇Ck + zkCk

VT
∇ψ

)
, (4)

where Dk is the diffusion coefficient for ion k. The thermal
voltage is defined as VT = RT/F based on the ideal gas
constant R and temperature T . The mass flux jk includes
contributions from advection as well as from the gradients
in the chemical and electric potential. The velocity u can be
determined from a separate solution of a momentum equation.
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For the cases considered in this work, u is set to zero for
simplicity, on the basis that the mass of ions is small compared
to the mass of the electrolyte.

The solution procedure for Eqs. (1) and (4) is defined based
on the lattice Boltzmann method. The LBM is constructed
as an approximation to the continuous Boltzmann transport
equation, utilizing Gauss-Hermite quadrature to formulate a
discrete representation for the molecular velocity distribution
[27]. To develop a solution procedure for Eq. (1), we rely on a
three dimensional approximation involving nineteen discrete
velocities (D3Q19), given by
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⎩
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The quadrature scheme leads to an associated set of discrete
distributions gq, q = 0, 1, . . . , 18. The discrete representation
can be used to construct efficient models for a wide range
of physics, including implementations that provide numerical
solution of Poisson’s equation [30–34]. In our case, effects of
anisotropy can be significant due to the shape of the mem-
brane; a particular choice of weights is selected to minimize
these effects. The weights associated with a D3Q19 approxi-
mation to the Laplacian are given by [35]

∇2
f eψ (xi ) = 1

6�x2

(
2

6∑
q=1

ψ (xi + ξq�t )

+
18∑

q=7

ψ (xi + ξq�t ) − 24ψ (xi )

)
. (5)

Consistent with this approximation, we define the equilibrium
functions

geq
q = wqψ, wq =

⎧⎪⎨
⎪⎩

1
2 for q = 0
1

24 for q = 1, . . . , 6
1

48 for q = 7, . . . , 18

, (6)

which implies that

ψ =
Q∑

q=0

geq
q . (7)

Given a particular initial condition for ψ , let us consider
application of the standard D3Q19 streaming step based on
the equilibrium distributions

g′
q(x, t ) = geq

q (x − ξq�t, t + �t ). (8)

Due to the choice of weights, after streaming an approxima-
tion to the Laplacian is easily obtained

∇2
f eψ (xi ) = 8

⎡
⎣−g0 +

Q∑
q=1

g′
q(x, t )

⎤
⎦. (9)

Relative to the solution of Gauss’s law, the error is given by

εψ = 8

⎡
⎣−g0 +

Q∑
q=1

g′
q(x, t )

⎤
⎦ + ρe

εrε0
. (10)

Using the fact that f0 = W0ψ , we can compute the value ψ ′
that would kill the error. We set εψ = 0 and rearrange terms
to obtain

ψ ′(x, t ) = 1

W0

⎡
⎣ Q∑

q=1

g′
q(x, t ) + 1

8

ρe

εrε0

⎤
⎦. (11)

The local value of the potential is then updated based on a
relaxation scheme, which is controlled by the relaxation time
τψ

ψ (x, t + �t ) ←
(

1 − 1

τψ

)
ψ (x, t ) + 1

τψ

ψ ′(x, t ). (12)

The algorithm can then proceed to the next timestep based on
Eq. (6).

A LBM solution to recover Eq. (4) is developed using
a three-dimensional, seven velocity (D3Q7) lattice structure,
which corresponds to q = 0, 1, . . . , 6 from Eq. (5). Each dis-
tribution is associated with a particular discrete velocity, f k

q .
The concentration is given by their sum,

Ck =
6∑

q=0

f k
q . (13)

Lattice Boltzmann equations (LBEs) are defined to determine
the evolution of the distributions f k

q ,

f k
q (xn + ξq�t, t + �t ) − f k

q (xn, t ) = 1

λk

(
f k
q − f eq

q

)
, (14)

where the relaxation time λk controls the bulk diffusion
coefficient,

Dk = c2
s

(
λk − 1

2

)
. (15)

The speed of sound for the D3Q7 lattice model is c2
s = 1

4 and
the weights are W0 = 1/4 and W1, . . . ,W6 = 1/8. Equilibrium
distributions are established from the fact that molecular ve-
locity distribution follows a Gaussian distribution within the
bulk fluids,

f eq
q = WqCk

[
1 + ξq · u′

c2
s

]
. (16)

The velocity u′ is given by

u′ = u − zkDk

VT
∇ψ. (17)

Solution of Eqs. (14)–(17) will recover the Nernst-Planck
Equations [36]. Combined with a numerical scheme to solve
Eq. (1), this is sufficient to define a model for electrodiffusion
within the bulk fluids [30–34]. Novel rules must be developed
to model transport across the membrane, since the local dif-
fusion properties will differ substantially from the behavior
within the bulk fluids.

B. Membrane representation and closure rule

The numerical representation for membrane structure is
the critical factor to implement general whole-cell modeling
capabilities. Due to scale separation it is advantageous to
represent a biological membrane as a two-dimensional entity.
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FIG. 2. Representation of a membrane (dashed line) within lat-
tice Boltzmann models: all discrete velocity links that cross the
membrane are identified and stored in a dedicated data structure.
Transport behavior for membrane links (open sites and associated
bold arrows) are determined independently from the rules used for
normal links (solid sites and light arrows). Distribution f k

q (xq
) is on
the interior side of the membrane, and f k

p (xp
) is on the exterior side.

The length scale for most cells falls within the range of 1 μm
to 1 mm. In contrast, the thickness of the lipid bilayer is
5 nm, below the resolution for many relevant optical tech-
niques. Accurately representing the membrane location can
be accomplished by using signed distance functions, which
are widely used in front-tracking algorithms. Given an ob-
served structure, a distance map D(x) can be generated using
approaches developed for level set methods [37]. The mem-
brane location corresponds to D(x) = 0, which can be used
to inform the lattice Boltzmann model. This is sufficient to
capture the core function of the membrane as being a barrier
to mixing within the system. Based on this representation, we
may take advantage of the LBM data structures to enforce
local rules that govern mass transport across the membrane.
This is accomplished by considering the symmetry of the
lattice based on the discrete velocity vectors ξq, noting that
for each distribution fq(xq
, t ) carrying mass out of the cell,
there is an opposing distribution fp(xp, t ) that will transport
mass into to the cell, with xp = xq + ξq�t . This is depicted in
Fig. 2. The standard lattice Boltzmann streaming step would
propagate fq(xq
, t ) to site xp
 at time t + �t , while fp(xp
, t )
will propagate to site xq
. Based on the structure of the discrete
velocity set, each distribution will be paired with exactly one
other distribution, which we call a link. This symmetry can
be exploited when considering the membrane representation.
Links that cross the membrane can be determined by using
the distance map to identify all lattice links that cross the
membrane, as shown in Fig. 2. With the discrete velocity ξq
pointing out of the membrane, membrane links 
 uniquely sat-
isfy the condition D(xq
)D(xp
) < 0. The bounce-back rule
is applied to exclude membrane links from participation in
the streaming step [38]. A separate list is formed to store
the membrane links, which are then treated according to an
alternative closure rule. All mass transfer across the mem-
brane occurs across these links. Manipulation of the lattice
Boltzmann data structures is thereby able to incorporate the

Algorithm 1. Membrane link update rule to
govern mass transport of component k.

for 
 = 0, 1, . . . , L do

f k′
q (xq
) ← (1 − αk


q ) f k
q (xq
) + αk


p f k
p (xp
)

f k′
p (xp
) ← (1 − αk


p) f k
p (xp
) + αk


q f k
q (xq
)

end for

membrane geometry into the mesoscale representation. Mass
transport across these links can then be governed by local
closure rules.

In this work we consider the membrane location to be
static, since our primary objective is model mass diffusion
across the membrane. The membrane inhibits mass transport
and normal diffusion statistics may consequently break down
in its vicinity. Behavior may be nonergodic due to the role
played by the membrane in preventing mixing in the system,
and due to the anomalous diffusion properties associated with
protein-mediated transport [39]. It is therefore appropriate to
formulate the link update rule in a way that allows meso-
scopic rules to deviate from those dictated by equipartition
of energy. A coarse-grained strategy is defined by consid-
ering the net rate of mass transport across the membrane
over the simulation timestep �t . This can be embedded in
the membrane permeability for each ion, which may vary
with both time and space. Since the permeability may also
be direction-dependent, independent coefficients 0 � αk


q � 1
and 0 � αk


p � 1 are defined to control the fraction of mass
that crosses the membrane from either side. The mass flux out
of the cell across link 
 is

j
k = (
αk


q f k
q − αk


p f k
p

)
ξq. (18)

Algorithm 1 summarizes how the closure rule is implemented
to move each ion across the membrane. Since Eq. (18) is
tied to the physical transport of ions across the surface, it
has a straightforward interpretation that may be easily gen-
eralized to describe a wide range of nonequilbrium membrane
transport behaviors. Rules can be customized to consider the
direction-dependent membrane permeability to vary as a func-
tion of the local voltage, concentration, etc.

αk

q = αk


q(ψ,Cj, . . .), αk

p = αk


p(ψ,Cj, . . .). (19)

The specific form for this relationship will depend on the
particular physical system considered. The coefficients must
account for the actual mass transfer across the membrane
during the timestep �t . In general, this can depend on both
time and space, e.g., based on the electric potential ψ (x, t ) and
concentrations Cj (x, t ) for any species j. Here we consider
the most basic situation where the membrane permeabili-
ties are constant, since this provides the basis to verify that
the developed algorithm is able to model well-established
nonequilibrium transport behaviors. To understand the re-
lationship between the coefficients and the local diffusion
coefficient, consider the distribution f k

q (xq
). Particles trans-
ported across the membrane are displaced from xq
 by �xq =
ξq�t . The displacement for remaining particles is zero. Since
αk


q is the fraction of particles that cross the membrane, the
mean squared distance traveled by particles associated with
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the direction of travel ξq is

MSD
q = αk

q(�xq )2. (20)

The diffusion properties can therefore be controlled inde-
pendently for each link, and are decoupled from the bulk
diffusion coefficient Dk . The formulation can even be applied
to consider the case where αk


q is different from αk

p, which

corresponds to the situation where ion k is subjected to active
transport rather than passive transport. Approaches to measure
direction-dependent diffusion statistics in the vicinity of the
membrane (e.g., single molecule tracking [40]) can thereby
be linked to Eq. (20) in a straightforward way.

An important feature of our model is that the timestep will
typically be large compared to the molecular timescale. Based
on this, transport will be coarse-grained in time to describe
an underlying process of interest. Since the key purpose of
the membrane transport rule is to characterize the rate of
mass transfer across the membrane, this provides a natural
mechanism to account for finite-size effects, as well as other
physical effects that constrain the rate of mass transfer through
a channel. For the purposes of illustration, let us consider
�t ∼ 1 μs as a typical timestep. Even if an individual channel
can allow only one ion to enter at a time, a single channel
might be able to allow multiple ions to pass through it dur-
ing the time interval �t . Suppose we perform an experiment
where we establish that the time required for an individual
ion crossing event is 135 ns. During the 1 μs for a timestep,
an individual channel could then transport a maximum rate of
7.4 ions per timestep. Volume exclusion is built into this rate
because it presents a bottleneck with respect to ions moving
through the channel. The maximum transport rate can then
be imposed as a constraint on the constitutive model that
governs transport over each membrane link. We anticipate
that the passage of individual ions through the channel (as
discrete events) will typically occur at a timescale faster than
an individual timestep. Note that the key advantage of the
LBM formulation is the ability to consider long timescales
as compared to MD simulation. In this context, the membrane
permeability characterizes how many ions can pass through
the channel during a single timestep.

C. Closure Model for Gated Ion Channels

Gated ion channels play an essential role in biological
membranes and control many cellular signaling pathways
[41–43]. In this section, we demonstrate how the general
closure rule stated in Eq. (19) can be put into particular
forms to model this type of scenario. Since there are many
different membrane proteins that support these functions, an
experimental study would provide the best way to establish a
particular closure rule. For individual ion channels, plausible
closed-form representations can be developed. Suppose we
perform a physical experiment on a certain kind of calcium
dependent potassium channel and establish the following re-
sult: if calcium is present above a critical concentration C̃Ca,
then the channel will be open, and the membrane will be more
permeable to potassium ions; otherwise, the channel will be
closed and potassium ions will be inhibited. Within the model,
the membrane link should dynamically resolve to one of two

possible states:

CCa > C̃Ca ⇒ gate is open ⇒ αK
q
 = α1 + α2, (21)

CCa � C̃Ca ⇒ gate is closed ⇒ αK
q
 = α1. (22)

When the gate is closed, potassium will slowly leak across
the link at the rate specified by α1. When the gate is open,
additional ions will be allowed to cross the link based on the
excess permeability due to the value of α2. To ensure that mass
conservation is observed for all possible states of the gate, the
coefficients must satisfy the following constraints,

α1 � 0, α2 � 0, α1 + α2 � 1. (23)

To implement the rule, we rely on the the Heaviside function
to define a particular form for Eq. (19),

αK

q(CCa ) = α1 + α2H (CCa − C̃Ca ). (24)

The coefficients that control the membrane permeability may
then vary in both time and space based on the local calcium
concentration at the link, CCa(x
q, t). Links where the local
calcium concentration is sufficiently high will be more perme-
able to potassium. If calcium is reduced in a time dependent
way, this will cause a corresponding response in the mem-
brane permeability.

Similarly, we can construct a closure rule to implement
a voltage-gated channel. Let �ψ
 = ψ (xp
, t ) − ψ (xq
, t ) be
the membrane potential across link 
. Since ψ is determined
based on the charge density according to Eq. (1), �ψ
 can
vary with both space and time. The behavior of the gate is as
follows:

�ψ
 > Ṽm ⇒ gate is open ⇒ αK
q
 = α1 + α2, (25)

�ψ
 � Ṽm ⇒ gate is closed ⇒ αK
q
 = α1, (26)

where Ṽm is the membrane voltage threshold that controls
gate. As before, Eq. (23) imposes a constraint on the coef-
ficients α1 and α2. For a voltage-gate channel, the analog of
Eq. (24) is

αK

q(�ψ
) = α1 + α2H (�ψ
 − Ṽm). (27)

It is clear that more complicated closure rules can be designed
such that the membrane permeability can vary dynamically in
space and time, with the possibility for transport to depend on
multiple variables. This is particularly useful when the spatial
resolution is large enough, such that several different proteins
might be present within the membrane region associated with
an individual membrane link. For membranes with heteroge-
neous composition, novel types of approaches are likely to be
necessary. Membrane closure rules can be designed to depend
on nearly any set of physical observables, provided that basic
constraints on mass conservation are followed.

III. RESULTS

We consider multi-ion transport based on constant mem-
brane permeability as a means to demonstrate the basic
features of the developed model, and to demonstrate that the
nonequilibrium electrical response can be recovered from first
principles. Ion k diffuses across the membrane based on the
effective diffusion coefficient for the membrane D̃k , which,
together with the membrane thickness h, defines the mem-
brane permeability pk . The coefficients are chosen such that
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FIG. 3. (a)–(c) Ion concentration and (d) electric potential for a 1D membrane that is permeable to a single ion species. Simulation results
are shown with the circle symbol, and analytical solution are solid lines. A background ion is used to initialize from an electroneutral condition
on either side of the membrane; (e) simulated electric potential and ion concentration fields.

bidirectional transport is unbiased, and capture the tendency
for the membrane to inhibit diffusion for ion k,

αk

p = αk


q = D̃k

Dk
= pkh

Dk
. (28)

This also provides the basis to choose the coefficients in
Algorithm 1 for situations where D̃k can be measured exper-
imentally. From a fundamental perspective, it is differences
in the permeability of the membrane to different ions that
produce the resting membrane potential [44]. In this situation,
a gradient in ionic strength will spontaneously produce a
membrane voltage. When the membrane is impermeable to
one charge carrier (e.g., charged macromolecules or proteins),
stationary transport will lead to an asymmetric distribution
of the permeable ions along the membrane, which is due to
the Donnan effect [45]. In nonequilibrium systems, devia-
tions from the relationship predicted by Donnan can become
significant [46]. Under stationary conditions, the concentra-
tion difference for each ion is determined by the membrane
permeabilities. On this basis, the Goldman equation predicts
the associated membrane potential. The familiar form for the
Goldman equation considers three ion species, Na+, K+, and
Cl−, corresponding to the three most prevalent ions in cells.
The Goldman potential ψ∗ can be predicted according to the
associated permeabilities,

ψ∗

VT
= ln

pKC∗(out)
K + pNaC

∗(out)
Na + pClC

∗(in)
Cl

pKC∗(in)
K + pNaC

∗(in)
Na + pClC

∗(out)
Cl

. (29)

When the membrane is permeable only to a single ion k
(setting p j = 0 for j �= k), the Goldman equation reduces to
the Nernst potential,

zk
ψ∗

VT
= ln

C∗(out)
k

C∗(in)
k

. (30)

To verify that expected stationary behavior is recovered,
we simulate a planar membrane as shown in Fig. 3. The ini-
tial ion concentration is piece-wise constant, with a different
concentration on either side of the membrane. Three dif-
ferent simulations are considered, separately considering the
Nernst potential for Na+, K+, and Cl−. Background ions with
opposite charge are added to enforce electrical neutrality,
meaning that there is a gradient in ionic strength across the
membrane but no net charge in the simulation domain. The
membrane is impermeable to the background ion, pj = 0.
With pk > 0 the ion k is free to establish a stationary pro-
file across the membrane. The permeable ion will diffuse
across the membrane, driven by the gradient in chemical
potential. Stationary profiles are obtained when diffusion is
balanced by the drift current driven by the electric potential
that is established as charges accumulate on both sides of
the membrane. Since the background ion is impermeable, it
acts as a constraint on the permeable ion. Figures 3(a)–3(d)
shows the simulated ion concentration and electric potential
plotted against the analytical solution reported by [47]. Ion
concentration in the Gouy-Chapman layer closely matches the
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FIG. 4. Recovery of Goldman potential based on a simple membrane geometry: (a)–(d) ion concentrations and (e) electric potential
resulting from stationary conditions; (f) concentration reaches stationary values following a multi-ion relaxation process; (g) based on differing
membrane permeability, the relaxation timescale for Na+ is significantly slower than for K+; (h) the Goldman potential is recovered from the
stationary solution, with hyperpolarization due to the combined effect of the two relaxation times.

analytical solution. The ability to resolve the Guoy-Chapman
layer is critical, since this region determines the surface charge
density and plays a major role in determining the transient
responses of the membrane.

Equations (29) and (30) are nonequilibrium expressions
that describe a stationary state. They cannot be used to predict
general nonequilibrium responses that occur based on ion
transport. Mesoscopic simulation provides broad capabilities
to model these dynamics. As an example, we simulate the
charging dynamics due to diffusion of potassium, sodium, and
chloride ions based on a simple membrane shape, as shown
in Figs. 4(a)–4(e). The length of the cell is 0.9 μm and a
maximum diameter of 0.36 μm, which is comparable to the
size for a typical bacteria. Simulations were performed on a
3D image of 128 × 64 × 64 voxels with a resolution of 10 nm.
Initial concentrations were established based on the values
listed in Table I, with the membrane transport coefficients

TABLE I. Initial and final conditions for simulation results
shown in Fig. 4. The membrane permeability is directly proportional
to D̃k . Final concentration values are used to compute the Goldman
equation.

Ion D̃k/Dk C (in)
k (t0) C (out)

k (t0) C∗(in)
k C∗(out)

k

Na+ 0.005 15 mM 20 mM 35.2 mM 11.2 mM
K+ 0.1 150 mM 4 mM 63.0 mM 2.0 mM
Cl− 1.0 10 mM 16 mM 6.7 mM 19.5 mM

chosen based on Eq. (28). The diffusion coefficient Dk =
1.0 × 10−9 m2/s is applied for all ions k. Since the relaxation
process is dominated by the slower timescales associated with
diffusion of Na+ and K+ across the membrane, the bulk
diffusion coefficients play only a minor role in determining
responses in the system.

For a membrane that is permeable to a single ion k, the
charging dynamics can be predicted based on an associated
relaxation time τk ,

ψ (t ) − ψ∗

ψ∗ = exp

[
t − t0

τk

]
, (31)

where the initial condition is given by ψ (t0) = 0. The sta-
tionary cell potential is ψ∗, with t∗ the time required to
achieve stationary conditions, such that ψ (t ) = ψ∗ for t > t∗.
In the mesoscopic model, τk is controlled by the membrane
permeability for ion k. When the membrane is permeable
to multiple ions, multiple relaxation timescales will coexist.
First principles simulation provides a natural mechanism to
directly resolve these nonequilibrium physics, with minimal
simplifying assumptions.

A nondimensional timescale is obtained by normalizing
with respect to the fastest relaxation rate, τCl. Taken inde-
pendently, the relaxation rate for the two positive ions is
shown in Fig. 4(f). These rates are controlled by choosing
the membrane permeability. Given a particular membrane
structure, the relaxation rate for ion k can be determined by
setting p j = 0 for j �= k, retaining the same initial condition.
The relaxation rates depicted in Fig. 4(f) are obtained by
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combining this condition with the initial ion concentrations
listed in Table I. For this situation Eq. (31) will hold and the
relaxation rate is easily identified. For this system the relative
relaxation rates are τK/τCl = 2.2 and τNa/τCl = 10.9. When
multiple ions relax simultaneously, as in Fig. 4(f), the charg-
ing dynamics are no longer governed by a single parameter.
Figure 4(h) shows that the system relaxes to the Goldman
potential based on the combination of both timescales, with
the fast dynamics determined by K+ and the slower dynamics
determined by Na+. Hyper-polarization is observed as a direct
consequence of the two relaxation timescales. The observed
behavior is consistent with the refractory period in real cells.
Defining the timescale to achieve stationary conditions as t∗,
the final ion concentrations determined from simulation are
listed in Table I.

IV. SUMMARY

We develop a mesoscopic representation for membrane
diffusion based on lattice Boltzmann methods. The method
is designed to complement experimental imaging protocols,
so that nonequilibrium responses can be understood in the
context of real cell geometries. The method provides a way to
model how protein-mediated diffusion phenomena influence
cellular responses based on a coarse-grained representation,
providing a way to model cellular systems at biologically
relevant length and timescales. Membrane transport coeffi-
cients are theoretically linked with the membrane diffusion
coefficient for each chemical species, which can be measured
or inferred from other experimental and computational ap-
proaches. Given a particular ion concentration field, chemical
and electrical responses can be determined based on particular
membrane transport properties. Transport in the bulk regions

is determined from the Nernst-Planck Equations and Gauss’s
law using a coupled solution procedure. Inputs for the model
are the initial concentration field and closure relationships
for the membrane permeability. Transient responses for the
concentration field and electrical potential are outputs from
the simulation.

Our approach is able to recover both equilibrium and
nonequilibrium behavior from first principles. We verify that
simulations are able to recover the Nernst reversal poten-
tial when the membrane is permeable to a single ion, and
the Goldman potential when the membrane is permeable to
multiple ions. We show that the approach can be used to iden-
tify time constants associated with membrane charging, and
that simulations for multi-ion transport can predict nonlinear
membrane dynamics. Hyperpolarization is observed based on
the charging dynamics for multiple ions relaxing at different
timescales. The formulation can support many different ap-
plications for lattice Boltzmann methods, and consider wide
range of biological and engineered systems.
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