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Emergence of macroscopic directional motion of deformable
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There is now growing evidence of collective turbulentlike motion of cells in dense tissues. However, how
to control and harness this collective motion is an open question. We investigate the transport of deformable
active cells in a periodically asymmetric channel by using a phase-field model. We demonstrate that collective
turbulent-like motion of cells can power and steer the macroscopic directional motion through the ratchet
channel. The active intercellular forces proportional to the deformation of cells can break thermodynamical
equilibrium and induce the directional motion. This directional motion is caused by the ratchet effect rather
than the spontaneous symmetry breaking. The motion direction is determined by the asymmetry of the channel.
Remarkably, there exits an optimal nonequilibrium driving (depending on the active strength, the elasticity, and
the packing fraction) at which the average velocity reaches the maximum. In addition, the optimized packing
fraction and the optimized minimum width of the channel can facilitate the directional motion of cells. Our
findings are relevant to understanding how macroscopic directional motion relates to the local force transmission
mediated by cell-cell contacts in cellular monolayers.
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I. INTRODUCTION

Collective cell motion in dense tissues plays an important
role in vital physiological processes including pithelial mes-
enchymal transition [1,2], cancer invasion [3], wound healing
[4], and tissue morphogenesis [5]. Cells are usually driven far
from equilibrium through intrinsic energy injection by their
biological constituent elements. The active force from micro-
scopic energy input can lead to the spontaneous emergence of
large-scale collective behavior, including phase separation [6],
flocking [7], topological defect pair production [8], mesoscale
turbulence [9], spontaneous flow transition in active polar gels
[10], and turbulent collective flows in epithelial cell monolay-
ers [11]. In a few engineered instances, chaotic active motion
can be stabilized into directed flows through geometrical con-
straints [12–19]: spontaneous shear flow in confined cellular
nematics [12], macroscopic directional motion in populations
of motile colloids [15], flow states of an active nematic in a
three-dimensional channel [14], spontaneous motion in hierar-
chically assembled active matter [17], and chiral edge current
in nematic cell monolayers [19]. These examples suggest the
possibility of harnessing chaotic active motion through the
special devices.
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In previous works, cells in a monolayer are isotropic in
shape, and most studies of epithelial cells have neglected
shape deformations. Recently, Mueller and coworkers [20,21]
presented a phase-field model of cellular monolayer based
on cell deformation and found that the local active forces
proportional to the deformation of cells can drive the system
out of equilibrium. Owing to the nematic nature of the in-
teractions, the total force is approximately zero at the tissue
level, and no macroscopic directional motion appears under
periodic boundary conditions. In addition, the chaotic mo-
tion of active matter can be translated into a self-sustained
coherent flow [12–19], but the direction of the coherent flow
is random and cannot be controlled. An interesting question
is therefore whether the local active force from the defor-
mation of cells can break the thermodynamic equilibrium
of the system and lead to the macroscopic directional mo-
tion through the specially geometrical constraints. The ratchet
model provides a strategy that can rectify the random motion
to a given direction [22–37]. The ratchet setup is a means to
get directed transport without net forces, which is originally
conceived to rectify stochastic motion and describe opera-
tional principles of biological motors. The ratchet setup can
convert the random motion into the directional motion, which
requires two necessary conditions: asymmetry and nonequi-
librium driving. Therefore, it is of great interest to explore
how active turbulence driven by shape deformation is rectified
into macroscopic directional motion.

In this work, we address this question for a dense tis-
sue system consisting of deformable active cells in a ratchet
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FIG. 1. Schematic of deformable active cells moving in a pe-
riodic channel defined by Eq. (1) with the period Lx . The active
intercellular forces resulting from force transmission across cell
junctions are defined from the nematic tensor in Eq. (8). The active
forces here are extensile (ζ > 0), which compresses cells into an
elongated form, forcing them to squeeze between neighboring cells.
The blue line denotes the long axis of each cell. The shape of the
channel described by the half width h(x) described in Eq. (1). The
parameter � = (L1 − L2)/Lx determines the asymmetry of the chan-
nel. W is the minimum width of the channel. A periodic boundary
condition is imposed on both ends of the channel and repulsive
interaction with the boundary of the channel.

channel. Cells in the channel are modeled as deformable
active droplets using a phase-field model. We find that col-
lective turbulent-like motion of cells can be controlled and
utilized in a ratchet channel. More specifically, we find the
following. First, we find emergence of the macroscopic direc-
tional motion induced by the local active forces between cells
based on their deformations. The local active forces can break
thermodynamical equilibrium and induce the macroscopic
directional motion in the ratchet channel. The directional mo-
tion is due to the ratchet effect rather than the spontaneous
symmetry breaking. The direction of the macroscopic mo-
tion is determined by the asymmetry of the channel. Second,
we find the optimized directional motion of cells caused by
the optimal parameters. There exist optimal parameters (the
minimum width of the channel, the packing faction, and the
activity strength) at which the average velocity of cells takes
its maximal value. Our results are helpful to understand how
macroscopic directional motion relates to the microscopic
dynamics in cellular monolayers.

II. MODEL AND METHODS

We consider N deformable active cells moving in a two-
dimensional periodic channel with the period Lx. Periodic
boundary condition imposed in the x direction and hard wall
boundaries in the y direction. The shape of the channel as
shown in Fig. 1 is described by the half width h(x),

h(x) =
{

W
2 + Ly−W

2L1
x, 0 � x < L1,

W
2 + Ly−W

2L2
(Lx − x), L1 � x < Lx,

(1)

where Lx and W are the period and the minimum width of
the channel, respectively. For convenience, we define Lx/Ly =
3/2. The channel is blocked at W = 0 and straight at W = Ly.
The asymmetry of the channel is determined by � = (L1 −
L2)/Lx, and the channel is symmetric at � = 0.

In the phase-field model, cells are modeled as deformable
active droplets. Unlike in hard-disk and active network models
[38], in the phase-field model the membrane of each cell can
be continuously deformable. The shape of each cell is defined
using an individual phase field, while its velocity is given by
a force-balance equation. The phase field of cell i satisfies the
equation of motion [20,21,39–43],

∂tφi + vi · ∇φi = − F
δφi

, (2)

where φi and vi are the phase field and the velocity of cell i,
respectively. The exterior and interior of cell i corresponds to
φi = 0 and φi = 1, respectively, with a diffusive interface of
length λ connecting the two regions and the midpoint, φi =
1/2, describing the cell boundary.

The role of the total free energy F is both to define inter-
actions between cells as well as to maintain the cell integrity.
The total free energy [20,21,39,40] is given by F = FCH +
Farea + Frep + Fwall, where

FCH =
∑

i

γ

λ

∫
dx

[
4φ2

i (1 − φi )
2 + λ2(∇φi )

2
]
,

Farea =
∑

i

μ

(
1 − 1

πR2

∫
dxφ2

i

)2

,

Frep =
∑

i

∑
j �=i

k

λ

∫
dxφ2

i φ
2
j ,

Fwall =
∑

i

kw

λ

∫∫
dxφ2

i φ
2
w. (3)

Here FCH is the Cahn-Hilliard free energy [44] that stabi-
lizes the cell interface and γ the elasticity. The free energy
Farea describes the cell compressibility by imposing a soft
constraint with strength μ, restricting the preferred area of
each cell to πR2, where R is the average radius of each cell.
This force causes cells to relax to circles in the absence of
other forces. The free energy Frep accounts for the repulsive
cell-cell interactions, which penalizes overlap between cells
with an energy scale k/λ. The free energy Fw defines the
repulsive interaction with the boundary of the channel, by
placing a fixed phase field along the boundaries defined as
φw = exp(−2d ) where d is the distance to the nearest wall
and kw/λ controls the repulsion between the wall φw and cell
φi.

The velocity vi for cell i moving on a substrate can be
obtained from an overdamped force-balance equation,

ξvi = F total
i , (4)

where ξ is the friction coefficient between cells and the
substrate. F total

i is the total force acting on the cell i and is cal-
culated as the integral of the local force density weighted by
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φi and a macroscopic tissue stress tensor σ tissue [20,21,39,40]

F total
i =

∫
dxφi∇ · σ tissue; (5)

here σ tissue is usually separated into passive and active stresses
[20,21]

σ tissue = −PI − ζQ, (6)

where Q and P are the tissue nematic tensor and tissue pres-
sure, respectively. ζ is the activity strength, and I is the unity
tensor. The tissue pressure P is obtained from the total free
energy F [20,21,39,40],

P =
∑

i

(
δFrep

δφi
+ δFwall

δφi
− δFCH

δφi
− δFarea

δφi

)
. (7)

The tissue nematic tensor Q is defined based on the cell
deformation [20,21],

Q =
∑

i

φiSi, (8)

where Si is the deformation tensor [20,21] of cell i given by

Si = −
∫

dx
{

(∇φi )
T ∇φi − 1

2
tr[(∇φi )

T ∇φi]

}
, (9)

whose eigenvectors and eigenvalues describe the orientation
and strength of the main deformation axes of each cell, re-
spectively. This active force leads to a cell either pushing or
pulling on its neighboring cells depending on their position
relative to the elongation axis. The system shows an activity-
driven transition to nonzero nematic order and flows for large
active strength ζ [20]. The deformation of cells is contractile
for ζ < 0 and extensile for ζ > 0. Contractile forces make
cells circular, and the interactions at the interfaces tend to
restore the equilibrium shape, while extensile forces compress
cells into an elongate form, giving rise to significant cell-cell
rearrangement. In our study, we consider only the extensile
case (ζ > 0).

To characterize the coordinated motion of cells, we mea-
sure the average velocity of cells. Because directed transport
occurs only in the x direction, the average velocity of cells
along the x direction in the asymptotic long-time regime can
be obtained from the following formula:

Vx = lim
t→∞

�X (t )

t
, (10)

where �X (t ) = 1
N

∑N
i=1〈xi(t ) − xi(0)〉 is the average dis-

placement of cells at time t along the x direction. xi(t ) is
the center of mass of cell i. The symbol 〈· · · 〉 denotes an
average over the random initial conditions. To describe the
density of particles in the channel, we define the ratio between
the area occupied by particles and the total available area as
the packing fraction ϕ = 2NπR2/[Lx(Ly + W )]. For the high
packing fraction ϕ in excess of 1, cells on average overlap.

Equations (2)–(5) are simulated using a finite difference
scheme on a square lattice with a predictor-corrector step. The
integration time step was chosen to be 0.005, and the total
integration time was more than 4 × 105 (this time is sufficient
to ensure that the system can reach a steady state). For all
simulation runs, we start with a set of N random cell positions

FIG. 2. Magnitude of the velocity field for the straight channel
(W = Ly) for different values of ζ at γ = 0.04 and ϕ = 1.0. The
underlying colormap depicts the magnitude of the velocity field
according to the color bar on the right. The black arrows describe
the flow direction.

and wait for equilibration before recording data. We consid-
ered 100 realizations to improve the accuracy and minimize
statistical errors. Unless otherwise stated, simulation param-
eters throughout this paper are N = 400, μ = 4.0, k = 0.4,
kw = 0.2, R = 8.0, λ = 3.0, and ξ = 1.0. We tested that the
presented results are robust against reasonable changes in
these parameters.

III. RESULTS AND DISCUSSION

A. The role of the channel on rectification of cells

We first consider the case of the straight channel (W = Ly)
where the entropic barrier disappears. At low activity (e.g.,
ζ = 0.001), velocities are perpendicular to the boundary and
symmetrically distributed near the boundary [Fig. 2(a)], and
there is no flow. At a threshold value of the activity strength ζ

which depends on γ and ϕ, the velocity field spontaneously
transforms to a nonuniform and nonsymmetric distribution
configuration that drives the flow. We note that the similar
activity threshold also exists in the absence of confining walls
[39,45]. When the activity strength (e.g., ζ = 0.008) is larger
than the activity threshold, the system is unstable to bend
instabilities, and the streamlines become oscillatory; thus ac-
tive turbulence appears [Fig. 2(b)]. Therefore, the microscopic
dipolar interaction between cells based on their deforma-
tions drives the system out of equilibrium. The similar active
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FIG. 3. (a) The average displacement �X (t ) of cells as a func-
tion of t for different � at ϕ = 1.0, γ = 0.04, ζ = 0.008, and W =
0.25Ly. The tissue on average moves to the left for � < 0 and to
the right for � > 0. There is no directional motion in a symmetrical
structure (� = 0.0). (b) The profiles of the effective entropic poten-
tial Ueff (x) for different �. In one period, the left side of the potential
is steep for � < 0, and the right side is steep for � > 0. fL and fR

are the amplitudes of the average forces from the left and right side
of the potential, respectively.

turbulence also appears in confined active nematics [45]. How
to control and harness this active turbulence is an interesting
and important problem. To overcome this problem, we will
focus our investigations on how to rectify active turbulence
into directional motion by using the asymmetric channel.

For the convenience of discussion, we use the effective
entropic potential obtained through the elimination of the y
coordinate by assuming the equilibrium in the orthogonal
direction [46]. The effective entropic potential is defined as
Ueff (x) ∝ −kBT ln[2h(x)/R], where 2h(x) is the width of the
channel, kB is the Boltzmann constant, and T is the absolute
temperature. Although this effective entropic potential is only
a rough estimate, it is helpful for us to analyze the rectification
mechanism of cells. The profiles of Ueff (x) for different � are
shown in Fig. 3(b). We next will explore how the properties
(the asymmetry � and the minimum width W ) of the channel
affect the directional motion of cells in Figs. 3 and 4.

Figure 3(a) shows the average displacement �X (t ) of cells
vs t for different � at γ = 0.04 and ζ = 0.008. In this case,

FIG. 4. The average velocity Vx as a function of the minimum
width W/Ly of the channel. (a) For different values of (γ , ζ ) at ϕ =
1.0. (b) For different values of ϕ at γ = 0.04 and ζ = 0.008.

the system is unstable to bend instabilities, and the streamlines
become oscillatory [see the velocity field shown in Fig. 7(b)
below at � = −0.8 and W = 0.25Ly], which shows that the
local active forces proportional to the deformation of cells are
able to drive the system out of equilibrium. It is found that
cells on average move to the right for � < 0 (e.g., � = −0.8)
and to the left for � > 0 (e.g., � = 0.8). The directed trans-
port disappears at � = 0. The direction of the macroscopic
motion is determined by the asymmetry of the channel. A
qualitative explanation of this behavior is presented as fol-
lows. In order to analyze the movement direction of cells,
we use the force from the effective entropic potential [ fx =
−∂Ueff (x)/∂x] and define fL and fR as the amplitudes of the
average forces from the left and right side of the potential,
respectively. The force from the effective entropic potential
always drives cells to the minima of the potential. The greater
the amplitude ( fL or fR) of the force, the harder it is for cells
to pass across the entropic barrier. Therefore, the movement
direction of cells is determined by the competition between
fL and fR. When � < 0, the left side from the minima of
the potential is steeper [shown in the top panel of Fig. 3(b)],
fL > fR, and it is easier for cells to leave the potential valley
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from the right; thus cells on average move to the right. When
� = 0, the effective entropic potential Ueff (x) is symmetric
[shown in the middle panel of Fig. 3(b)], cells feel the same
force from the left and the right ( fL = fR), and cells move to
the left and the right with the same probability; thus directed
transport disappears. In the same way, for � > 0, the right
side from the minima of the potential is steeper [shown in the
bottom panel of Fig. 3(b)], fL < fR, so cells prefer to leave
the potential valley from the left. Therefore, the direction of
the transport is completely determined by the asymmetry of
the channel. Because of the nematic nature of the interactions,
macroscopic directional motion here is due to the ratchet
effect, which is different from the directed motion induced
by the spontaneous symmetry breaking (e.g., the flocking in
active system with polar interactions). Since cells on average
move in the opposite direction for � and −�, we consider
only the case of � < 0.0 in the following.

How the minimum width W/Ly of the channel affects the
average velocity Vx is shown in Figs. 4(a) and 4(b) for different
cases. It is found that Vx is a peaked function of W/Ly. This
can be explained as follows. When the channel is too narrow
(W/Ly → 0), the channel is almost closed and cells cannot
pass cross the bottleneck of the channel; thus Vx tends to zero.
When W/Ly → 1, the channel becomes almost straight, and
the asymmetry of the channel becomes negligible; thus the
ratchet effect disappears and Vx converges to zero. Too wide
or too narrow channels will weaken the rectification of cells.
Therefore, there exists an optimal value of W/Ly at which Vx

takes its maximal value. Note that the optimal minimum width
of the channel is about W/Ly = 0.2, and this value hardly
changes when the system parameters are varied.

B. The role of the nonequilibrium driving on rectification of cells

In this section we set � = −0.8 and explore the directed
transport of cells by varying the packing fraction ϕ, the active
strength ζ , and the elasticity γ . We focus our investigations
on how the activity from deformation of cells affects macro-
scopic directional motion. Note that the activity-driven system
out of equilibrium is an effect of the cellular interactions
alone; this effect will disappear for single, isolated cells at
nonvanishing activity strength. Large activity strength does
not necessarily produce large nonequilibrim driving. For ex-
ample, even if ζ is large, but ϕ is small or the elasticity γ is
large, the nonequilibrim driving is very small. Therefore, the
nonequilibrium driving from deformation is determined by the
competition among ζ , ϕ, and γ .

The dependence of the average velocity Vx on the packing
fraction ϕ is shown in Figs. 5(a) and 5(b) for different cases.
We find that the average velocity is a peaked function of the
packing fraction. The activity driving the system out of equi-
librium is significant for large ϕ and negligible for small ϕ.
For ϕ < ϕc (depending on ζ and γ ), the nonequilibrium driv-
ing is negligible, and as a result the ratchet effect disappears.
An increase of the packing fraction can have two results:
(1) enhancing the nonequilibrim driving which facilitates the
directed motion of cells or (2) increasing the difficulty of
cells passing through the channel, which blocks the ratchet
transport. For small ϕ (e.g., ϕ = 0.3), the direct contact be-
tween cells is negligible, and the activity from deformation

FIG. 5. Dependence of the average velocity Vx on the packing
fraction ϕ. (a) For different values of (γ , ζ ) at W = 0.25Ly. (b) For
different values of W at γ = 0.04 and ζ = 0.008.

almost disappears; thus Vx tends to zero. When the packing
fraction increases from 0.3, the factor (1) first dominates
the transport, thus Vx increases with ϕ. However, when the
packing fraction becomes large (e.g., ϕ = 1.2), the factor (2)
dominates the transport; thus Vx decreases with increasing ϕ.
Therefore, there exists an optimal value of ϕ (near ϕ = 1.0)
at which the average velocity takes its maximal value. In
addition, we can find from Fig. 5(b) that the position of the
peak in the curves shifts slightly to large ϕ with the increase
of W .

Figure 6 describes the average velocity Vx as a function of
the active strength ζ for different γ at ϕ = 1.0. It is found
that large ζ does not always promote rectification of cells, and
there exists an optimal ζ (the peak in the curve) at which Vx

takes its maxima value. The emergence of the peak in each
curve can be explained as follows. When ζ → 0, the system
is in equilibrium, and no macroscopic directional motion ap-
pears; thus Vx tends to zero. There exists a finite threshold
ζc (depending on ϕ and γ ) below which the activity is not
enough to drive the system out of equilibrium, therefore the
transport disappears. The finite threshold ζc appears because
cells need to push (pull) strongly enough to cause sufficient
deformation of their neighbors. From the velocity field shown
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FIG. 6. Dependence of the average velocity Vx on the active
strength ζ for different values of γ at ϕ = 1.0 and W = 0.25Ly.

in Fig. 7(a), when ζ < ζc (e.g., ζ = 0.001), velocities are
perpendicular to the boundary and symmetrically distributed
near the boundary, and the system is in equilibrium. Note that
ζc increases with the increase of γ and decreases with the
increase of ϕ. When ζ > ζc, the active force is able to drive
the system out of equilibrium [see the velocity field shown
in Fig. 7(b)], and cells can pass across the entropic barrier
[shown in the top panel of Fig. 3(b)]; thus the ratchet transport
occurs. However, at high activities (e.g., ζ > 0.01), the system
is more out of equilibrium, and the active force dominates
the transport. If the active force is much greater than the
force from the effective entropic potential ( fL or fR), cells

FIG. 7. Magnitude of the velocity field for different values of ζ

at γ = 0.04, ϕ = 1.0, and W = 0.25Ly, corresponding the points a
and b in Fig. 6. The underlying colormap depicts the magnitude of
the velocity field according to the color bar on the right. The black
arrows describe the flow direction.

FIG. 8. Phase diagram of the average velocity in the ζ − γ rep-
resentation at ϕ = 1.0 and W = 0.25Ly. The average velocity is
maximal in region A and tends to zero in region B. The background
represents the value of Vx according to the color bar on the right. The
red dashed line represents the position of the peak in the Vx-ζ curve
of for different γ .

can easily pass across the entropic barrier, and the entropic
barrier becomes less important. In this case, the movement
direction of cells is determined by not only the asymmetry of
the channel but also the active force. When the active force
determines the direction of movement, cells move in different
directions due to the random direction of the active force;
thus the directed velocity on average is small. Although a
single cell moves very fast, the rectification of the system
becomes weak. In the extreme case of infinite active force,
cells can hardly feel the existence of the entropic barrier, the
movement direction of cells is completely determined by the
active force, and cells move to the left and the right with the
same probability; thus the ratchet effect disappears. Therefore,
there exists an optimal ζ at which the average velocity takes
its maximal value.

From Fig. 6 we also find that the position of the peak in
the curves shifts to large ζ with an increase in γ . This can
be explained as follows. The peak corresponds to the best
match between the nonequilibrium driving and the entropic
barrier. For a fixed entropic barrier, the optimal nonequilib-
rium driving must be required to obtain the best rectification.
The optimal nonequilibrium driving depends on the compe-
tition between the active strength ζ and the elasticity γ . The
nonequilibrium driving increases with the increase of ζ and
decreases with the increase of γ . Therefore, the higher γ

value, the more activity ζ is required to obtain the optimal
nonequilibrium driving; thus the position of the peak shifts to
large ζ with an increase in γ .

To study in more detail the dependence of the average
velocity Vx on the active strength ζ and the elasticity γ , we
plotted the phase diagram of the average velocity in the ζ -γ
representation at ϕ = 1.0 in Fig. 8. The red dashed line de-
scribes the position of the peak the Vx-ζ curve shown in Fig. 6
for different γ . When γ gradually increases, the position
of the peak shifts to large ζ . The color of the background
indicates that when γ continuously increases from 0.01, the
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FIG. 9. The average velocity Vx as a function of the total cell
number N at γ = 0.04, ζ = 0.008, ϕ = 1.0, and W = 0.25Ly. The
average velocity is obtained irrespective of the system size.

height of the peak first increases, reaches the highest, and then
decreases. Vx is a peaked function of γ at a given ζ . Therefore,
there exists an optimized parameter region (region A) of (ζ , γ )
where Vx takes its maximal value. In this region, the nonequi-
librium driving (depending on ζ and γ ) perfectly matches
the entrpoic barrier, which facilitates the rectification of cells.
However, in region B, the nonequilibrium driving is either
very large or very small, which does not match the entropic
barrier; thus Vx is very small. Note that this phase diagram
does not change qualitatively when the other parameters are
varied.

In Fig. 9 we investigate the effect of the system size on
rectification of cells, the average velocity Vx vs the total cell
number N . Here we fix R = 8.0, ϕ = 1.0, and W = 0.25Ly,
and the system size (Lx and Ly) changes correspondingly with
the total cell number N . It is found that no significant change
in the average velocity Vx when the system size N changes,
which shows that the rectification of cells is independent of
the system size. Therefore, our results are universal rather than
finite-size effects.

Finally, we briefly discuss the effect of the spontaneous
symmetry breaking on rectification of cells. If the polar align-
ment interaction between cells is considered, the spontaneous
symmetry breaking will occur, and cells will move in the
same direction together. The directed transport of cells is
determined by the competition between the ratchet effect and
the spontaneous symmetry breaking. When the polar align-
ment interaction is small, the ratchet effect dominates the
transport. In this case, the polar alignment interaction causes
cells to move together, which facilitates the rectification of
cells. When the polar alignment interaction is very large,
the spontaneous symmetry breaking dominates the transport,
and the asymmetry of the channel (the ratchet effect) can be
negligible. In this case, all cells move in the same direction,

but the direction is random, independent of the asymmetry of
the channel; thus the ratchet effect disappears.

IV. CONCLUSION AND OUTLOOK

In summary, we studied the directed transport of de-
formable active cells in the asymmetric periodic channel using
the phase-field model. We show that the microscopic dipolar
interaction between cells based on their deformations can
drive the system out of equilibrium and induce macroscopic
directional motion in the periodic asymmetric channel. The
asymmetry of the channel completely determines the direction
of the macroscopic motion. The average velocity is positive
for � < 0, negative for � > 0, and zero at � = 0.0. This
indicates that collective turbulent-like motion, driven by the
local active forces proportional to the deformation of cells,
can be controlled and utilized. The nonequilibrium driving
from deformation is determined by the competition among
the active strength, the elasticity, and the packing fraction.
There exists an optimized nonequilibrium driving at which
the average velocity takes its maximal value. The optimized
minimum width of the channel can facilitate macroscopic
directional motion of cells.

The macroscopic directional motion in our work is due to
the ratchet effect (cells on average moving in a given direc-
tion), and the direction of motion can be controlled, which is
different from in previous works [12–19] where macroscopic
directional motion is caused by the spontaneous symmetry
breaking (all cells moving in the same direction), but the
direction of motion is random. Our findings are relevant to
understanding how macroscopic directional motion relates to
the local force transmission mediated by cell-cell contacts
in cellular monolayers. Using the local (microscopic) active
driving, the motion direction of cells can be easily controlled
by adjusting the structure of the channel. We expect these
results to trigger further experimental studies of collective
motion in cellular monolayers, for example, Madin-Darby
canine kidney or human breast cancer cells [47], where a
bootstrap feedback between shape deformations and inter-
cellular driving allows cells of isotropic shape. It is hoped
that macroscopic directional motion can be observed in these
experiments through the special geometric constraints.
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