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Curvature-dependent adhesion of vesicles
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The morphology and motion behavior of a cell are highly influenced by its external biological, chemical,
and physical stimuli, and geometric confinement. In this paper, it is revealed that the mean curvature of the
substrate significantly influences the adhesion of vesicles. By employing the variational method and investigating
the Helfrich free energy, the configuration of axisymmetric vesicles adhered to curved spherical substrates is
obtained theoretically. Moreover, numerical simulations based on the finite element method are also carried out
to investigate the adhesion of vesicles on curved substrates with complex shapes. It is found that for a fixed area
of a vesicle, its total free energy depends mainly on the mean curvature of the adhesion region but is insensitive
to the specific shape of the substrate, and the total free energy monotonically decreases with the increase in the
mean curvature. In addition, possible biological significances of the curvature-dependent adhesion, such as the
shape of the cell and antibiofouling, are discussed. This study may deepen our understanding of the underlying
mechanisms of adhesion in cellular activities.
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I. INTRODUCTION

Adhesion plays an extremely important role in physiolog-
ical and pathological activities of cells [1–5]. For example,
adhesion greatly contributes to the organization, prolifera-
tion, survival, phagocytosis, exocytosis, metabolism, and gene
expression of cells [1,6–8]. Moreover, adhesion is crucial
in the biomedical and biotechnology fields [9,10]. For ex-
ample, cells are fixed on a substrate or extracellular matrix
for highly efficient medicine transport [11], and biotechnical
applications also require the adhesion of membranes to a sub-
strate [11,12]. Recent studies suggest that the geometry of the
substrate affects the adhesion and the realization of the func-
tionality of cells. In addition, cells take different morphologies
when adhering to concave and convex substrates [3], and most
cells tend to migrate from convex regions to concave valleys
for stronger adhesion [2]. Therefore, a rational morphological
design of substrates may suppress the adhesion of cells and
retard biofouling [13].

In recent years, the adhesion of cells on curved substrates
has attracted much attention due to its scientific significance
and potential applications. Seifert and Lipowsky introduced
the contact potential to describe the intensity of the adhe-
sion energy between a vesicle and a flat substrate [14–16].
From the geometrical point of view, differential operators
and integral theorems were applied to predict the equilibrium
configurations of vesicles adhered to flat and curved substrates
[17–21]. Das and Du investigated the adhesion of vesicles on
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curved substrates. They found that concave substrates favor
vesicle adhesion in comparison with convex substrates, and
found that the transition from a free vesicle to a bound state
depends significantly on the substrate shape [17]. To investi-
gate the situation with a nonaxisymmetric shape, Zhang et al.
developed an adaptive finite element method (FEM) that can
characterize the adhesion of vesicles on substrates with com-
plex shapes, and they also found that concave substrates favor
adhesion [22]. Moreover, Shi et al. investigated the pulling of
a vesicle adhered to curved substrates, and correlated the ex-
ternal force and the displacement of the vesicle to the substrate
shape and interaction potential [23]. The adhesion behavior of
a vesicle on a curved soft substrate was also theoretically stud-
ied, and different equilibrium states of wrapping of the vesicle
depending on the work of adhesion and bending stiffness were
reported [6,24]. Besides the study of individual vesicles, it was
recently found that the substrate curvature can regulate both
the migration mode and density fluctuation of the collective
cell population [25–27]. Besides the substrate curvature, the
role of the spontaneous curvature and local curvature of free
vesicles in the engulfment of nanoparticles was investigated
by Agudo-Canalejo and Lipowsky [28,29]. They discovered
that partially engulfed nanoparticles can be pulled towards the
membrane segments with lower and higher mean curvatures if
the particles originate from the exterior and interior solutions,
corresponding to endo- and exocytosis, respectively.

Despite these previous efforts, there is still a lack of
comprehensive understanding of the influence of substrate
curvature on the adhesion of vesicles. Recent in vitro experi-
ments showed that the adhesion, migration, and differentiation
behaviors of cells are closely related to the substrate curvature
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[2,3,27]. Recently, Pieuchot et al. reported a cellular ability
and termed it as “curvotaxis” [2], suggesting that cells are able
to respond to cell-scale curvature variations, and the adherent
cells avoid convex regions during their migration and posi-
tion themselves in concave valleys. However, the underlying
physics remains obscure. The above interesting results moti-
vate us to perform the current study from a theoretical point of
view. We devote this work to clarifying how curved substrates
affect the adhesion behavior of the vesicle. Specifically, we
will show that the mean curvature of the adhesion region plays
a significant role. For curved substrates with different shapes
(such as spherical, cylindrical, conical, saddle-shaped, and
many other complex shapes), the vesicle may exhibit similar
adhesion behaviors when the local adhesion regions between
the vesicle and the substrate have the same mean curvature.

These questions are reminiscent of the wetting of droplets
and particles on curved solid substrates and fluid inter-
faces, where the curvature-driven mechanism has been well
quantified in a broad range of interfacial systems, such as
spontaneous transport of droplets on curved solid substrates
[30–33] and liquid-vapor interfaces [34], particles at liquid-
vapor [35] and solid-vapor interfaces [36], and bubbles at the
liquid-vapor interfaces [34]. Despite these systematic investi-
gations, the droplets, bubbles and liquid-vapor interfaces have
negligible stiffness [37], meaning that the adhesion systems
were much simpler than the adhesion of vesicles. For a vesi-
cle, besides surface tension, stiffness may have an important
influence on adhesion, which makes the analysis intractable.
Moreover, the manner to handle the question of an adhering
vesicle is remarkably different from that of a wetting drop.
For a drop, surface tension σ is usually constant, for given
parameters such as the droplet volume V, the strength of
adhesion (which could be characterized by employing the
contact angle θ ), and the specific shape of the substrate, other
quantities of interest can be simply solved, such as the total
energy of the drop Etot (and its components), the contact
area Ac, and the free area (liquid-vapor area) Af , as well as
the drop shape. However, this is not the case for a vesicle.
To theoretically solve the profile of an adhering vesicle, we
usually employ the variational method [38] and Helfrich free
energy [39], in which some conservation relationships must
be given in advance. Usually, we assume that the vesicle
either has a constant area or a constant volume [6,18,24].
Considering that the vesicle consists of a certain amount of
lipid molecules, we assume that its total area A stays constant.
In this case, the vesicle volume V will be adjusted through the
osmotic pressure when adhering to different substrates. De-
tailed discussions will be given in the following sections, from
which we will see the surface tension σ and volume V of the
vesicle are determined by given physical parameters (such as
spontaneous curvature c0, stiffness kc, contact potential w, and
pressure difference �P), as well as the mean curvature κ of
the adhesion region. Therefore, clarification of the unknown
influences of the substrate mean curvature on the adhesion
of a vesicle might shed light on fundamental understandings
of the adhesion and bring great prospects for biotechnology
applications.

In this paper, the influence of the substrate mean curva-
ture on the adhesion behavior of a vesicle is investigated.
Based on the variational method [38] and Helfrich free
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FIG. 1. Configuration of an axisymmetric vesicle adhered to
spherical convex (a) and concave (b) substrates in the cylindrical
coordinate system, where r and z are the radial and axial coordinates,
respectively. s represents the arc length parameter of the vesicle,
and the positive direction is denoted by the associated arrows. ψ

represents the angle between the tangent line at an arbitrary point
(r, z) and the horizontal line (i.e., the direction along the r axis).
R and κ = ±1/R are defined as the curvature radius and the curvature
of the spherical substrate, respectively. Here, R has a positive value,
and the plus and minus signs in κ are defined for the cases of [(a),(b)],
respectively.

energy [39], we theoretically derive the governing equations
and boundary conditions of axisymmetric adhering vesicles
on curved substrates, and the configurations are numerically
solved by employing a shooting method. Under given values
of the physical parameters such as the stiffness, spontaneous
curvature, contact potential, and osmotic pressure difference
(between the inside and outside) of the vesicle, the surface
tension and the volume are determined by these physical
parameters and will change with the mean curvature of the
adhesion region. An important finding is that the free energy
of an adhering vesicle depends mainly on the mean curvature
of the adhesion region but is insensitive to the specific shape of
the substrate. By employing the FEM to study the nonaxisym-
metric shape of vesicles adhered to cylindrical, conical, and
saddle-shaped substrates, the generality of our findings is ver-
ified. Moreover, we find there is a mean curvature-dependent
threshold for the detachment of the vesicle from the substrate.
We expect this work will deepen our understanding of the
cellular adhesion behaviors and find applications to regulate
many functions such as motion, morphology, and evolvement
of the cells.

II. THEORY

A. Model of an adhered vesicle

As shown in Fig. 1, we consider a vesicle adhered to a
curved substrate. In the theoretical part, for simplicity, we will
focus on an axisymmetric vesicle which is in contact with a
spherical rigid substrate surface. Let the positive parameter
R denote the curvature radius of the spherical surface and
κ = ±1/R denote its mean curvature, where the plus and
minus signs are defined for a spherical concave [Fig. 1(a)]
and a spherical convex [Fig. 1(b)] substrate, respectively. In
this regard, the vesicle consists of two regimes: the area ad-
hered to the substrate and the free area. In addition, we assume
that the vesicle is homogeneous and has uniform physical
parameters such as spontaneous curvature, bending stiffness,
osmotic pressure, and contact potential. In the adhesion area,
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the interaction between the fluid membrane and the substrate
is modeled by an effective contact potential w [16,17]. Fol-
lowing the pioneering work of Helfrich [39] and referring to
the cylindrical coordinate system shown in Fig. 1, we use s to
denote the arc length parameter of the surface profile, and ψ

denotes the angle between the tangent line at an arbitrary point
(r, z) and the horizontal line, with r and z being the radial and
axial coordinates, respectively. In the adhesion region (blue)
and the free surface (red), one has s ∈ [0, s0] and s ∈ [s0, s1],
respectively.

According to the Helfrich free energy theory [39,40], the
bending energy density per unit area φ of a bilayer vesicle is
expressed as

φ = kc

2
(2H − c0)2 + kGK, (1)

where kc and kG are the bending stiffnesses corresponding to
the mean curvature H and the Gaussian curvature K, respec-
tively, and c0 is the spontaneous curvature [39–41]. The total
bending energy of the vesicle is obtained by integrating φ over
the entire vesicle profile. As shown in Fig. 1, even though
the adhesion region and the free surface are two separate
parts, they are continuous and smooth at s0. In other words,
ψ |s0− = ψ |s0+ , denoting s0− and s0+ as the points of s0 at
the adhesion area and the free surface, respectively. However,
based on the Gauss-Bonnet theorem [41], the contribution of
the Gaussian curvature to the total energy is constant for a
closed adhering vesicle. Therefore, the variation of the energy
resulting from the Gaussian curvature will be zero and kG will
not be considered in the following analysis.

For axisymmetric vesicles, the cylindrical coordinate sys-
tem is employed, as shown in Fig. 1. In the following, we
consider a vesicle that has a target value A0 of the total area.
Then, the free energy Etot of the vesicle can be written as

Etot =
∫

A
φdA − wAc + σ (A − A0) + �PV

+
∫ s1

s0

[μ̄(s)(ṙ − cos ψ ) + η̄(s)(ż − sin ψ )]dA

= 2πkc

[∫ s0

0
L1(ψ ) ds +

∫ s1

s0

L
(
ψ, ψ̇, r, ṙ, z, ż

)
ds

]

− σA0. (2)

It shows that the free energy consists of several parts: the
bending energy

∫
Ac

φdA and
∫

Af
φdA in the adhesion area Ac

and the free surface Af , respectively; the surface energy σAc

and σAf in the two regions, with σ being the surface tension of
the vesicle; the adhesion energy –wAc in the adhesion region,

with w being the contact potential [16,17]; and the volume
potential �PV, with �P being the osmotic pressure difference
between the inside and outside of the vesicle [16,17]. Here,
A = Af + Ac is the actual total area of the vesicle during
the calculation, and V is the volume of the vesicle. In this
work, we will not consider the influence of line tension on
the morphology of the vesicle [18,22]. Moreover, μ̄(s) and
η̄(s) serve as the Lagrange multipliers to impose the geometric
relations ṙ = cos ψ and ż = sin ψ , where the dot is defined as
the derivative to s, i.e., (· · · )· = d (· · · )/ds.

In the present work, we assume that the vesicle with a
certain number of lipid molecules has a fixed area A0. In this
regard, we will see that the surface tension σ will vary with the
curvature of the substrate. Moreover, during the mathematical
calculations, A must be equal to the target value A0, indicating
that the contribution of the energy resulting from the surface
tension is zero (see Eq. (2) and Eq. (S2) in the Supplemental
Material [42]).

Specifically, for a vesicle adhered to a spherical substrate
with curvature radius R (Fig. 1), we have the following
relations,

L1(ψ ) =
[

1

2

(
± 2

R
− c0

)2

+ σ − w

kc

]
R sin ψ

+ �P

2kc
R2sin3ψ, (3)

L
(
ψ, ψ̇, r, ṙ, z, ż

) = 1

2

(
ψ̇ + sin ψ

r
− c0

)2

r

+ σ

kc
r + �p

2kc
r2 sin ψ

+μ(s)(ṙ − cos ψ ) + η(s)(ż − sin ψ ),

(4)

where L1 (ψ ) and L(ψ, ψ̇, r, ṙ, z, ż) represent the functions
of the energy densities of the contact region and the free area,
respectively; μ(s) = μ̄(s)/(2πkc); and η(s) = η̄(s)/(2πkc).
Since both concave and convex substrates are here considered,
on the right-hand side of Eq. (3), we employ the plus and
minus signs to describe the cases shown in Figs. 1(a) and 1(b),
respectively.

Next, by minimizing the free energy in Eq. (2) [38], we
obtain the equilibrium equation for the free surface of the vesi-
cle, as well as the boundary conditions. Since kc is constant,
for simplicity, we carry out the first variation of Etot/(2πkc)
instead of Etot. Then, we have

δ

(
Etot

2πkc

)
= L1|s0

δs0 −
∫ s0+δs0

s0

Lds +
∫ s1+δs1

s1

Lds

+
∫ s1

s0

[L(ψ + δψ, ψ̇ + δψ̇, r + δr, ṙ + δṙ, z + δz, ż + δż) − L(ψ, ψ̇, r, ṙ, z, ż)]ds

= L1|s0
δs0 − L|s0

δs0 + L|s1
δs1 +

(
∂L

∂ψ̇
δψ

)∣∣∣∣
s1

s0

+
(

∂L

∂ ṙ
δr

)∣∣∣∣
s1

s0

+
(

∂L

∂ ż
δz

)∣∣∣∣
s1

s0

+
∫ s1

s0

[(
∂L

∂ψ
− d

ds

∂L

∂ψ̇

)
δψ

+
(

∂L

∂r
− d

ds

∂L

∂ ṙ

)
δr+

(
∂L

∂z
− d

ds

∂L

∂ ż

)
δz+ ∂L

∂μ
δμ + ∂L

∂η
δη

]
ds + 1

2πkc

(∫ s1

0
2πrds − A0

)
δσ, (5)
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where δs0 and δs1 denote the increments of s0 and s1, respec-
tively; and δψ , δr, δz, δμ, and δη are the first variations of
ψ(s), r(s), z(s), μ(s), and η(s), respectively.

B. Governing equations

The equilibrium differential equations of the free surface
and the relevant boundary conditions are given, with the
tedious derivations available in the Supplemental Material
[42]. The first variation of Etot/(2πkc) leads to a set of
Euler-Lagrange equations that govern the free surface of the
adhered vesicle:

ψ̈ + ψ̇
cos ψ

r
− sin 2ψ

2r2
− �P

2kc
r cos ψ − μ(s)

sin ψ

r

+ η(s)
cos ψ

r
= 0, (6)

1

2

[(
ψ̇ − c0

)2 −
(

sin ψ

r

)2
]

+ σ

kc
+ �P

kc
r sin ψ − μ̇(s) = 0,

(7)

η̇(s) = 0, (8)

ṙ − cos ψ = 0, (9)

ż − sin ψ = 0. (10)

The boundary conditions are

ψ̇s0 = ± 1

R
+

√
2w

kc
, (11)

μs0 cos ψs0 = −1

2

[
ψ̇2

s0
−

(
± 1

R
− c0

)2
]

R sin ψs0

+ σ

kc
R sin ψs0 + �P

2kc
R2sin3ψs0 , (12)

μs1 = 0, (13)

ηs0 = 0, (14)

ηs1 = 0, (15)

where ψs0 , ψ̇s0 , μs0 , μs1 , ηs0 , and ηs1 are the values of ψ (s),
ψ̇ (s), μ(s), μ(s), η(s), and η(s) at points s0 and s1, re-
spectively. It is emphasized that on the right-hand sides of
Eqs. (11) and (12), the plus and minus signs denote the cases
of a vesicle adhered to a spherical concave [Fig. 1(a)] and a
spherical convex [Fig. 1(b)] substrate, respectively [17,21].

Since it is difficult to analytically solve the above differen-
tial equations, we numerically solve them by using a shooting
method (Sec. 3 in the Supplemental Material [42]). Then the
configuration of a vesicle and the energy of different parts can
be determined. For simplicity, the following dimensionless
parameters are employed,

L̄ = L

R0
, Ā = A

R2
0

, V̄ = V

R3
0

, κ̄ = κR0, k̄c = kc

kc0
, w̄

= wR2
0

kc0
, σ̄ = σR2

0

kc0
, �P̄ = �PR3

0

kc0
, Ē = E

kc0
, (16)
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FIG. 2. Configuration of vesicles adhered to spherical substrates
with different curvature radii. (a) κ̄ = −0.5 (R̄ = 2); (b) κ̄ = 0
(R̄ = ∞); (c) κ̄ = 0.4 (R̄ = 2.5). The upper panel shows the three-
dimensional configurations from an oblique side view, and the lower
panel shows the corresponding profiles from a side view. The con-
figurations of the vesicle in the upper and lower panels are drawn to
scale, respectively, while the lipid molecules are drawn not to scale
compared with the vesicles.

where R0 is a characteristic length, defined as R0 =
[A0/(4π )]1/2 (the typical size of vesicles or cells varies be-
tween 0.1 and several tens of micrometers [48,49]). Ā0 =
4π is assumed for all vesicles in the following analysis. In
Eq. (16), as aforementioned, κ denotes the mean curvature of
the substrate. It is stressed that for a general curved substrate
with an arbitrary shape, each point may have a different mean
curvature. Here, κ is defined as the mean curvature of the
geometric center of the contact region, which is positive and
negative on concave and convex substrates, respectively. In
addition, kc0 is a characteristic stiffness (typically on the order
of ∼ 10–19 J) [50] and it is a constant.

III. RESULTS AND DISCUSSIONS

A. Numerical results

As shown in Fig. 2, the equilibrium configurations of the
vesicle on curved spherical substrates are investigated. First,
to examine the curvature effect, we exemplarily choose κ̄ =
−0.5 (R̄ = 2), κ̄ = 0 (R̄ = ∞), and κ̄ = 0.4 (R̄ = 2.5), cor-
responding to the convex, flat, and concave substrates shown
in Figs. 2(a)–2(c), respectively. Second, some basic dimen-
sionless parameters are given as k̄c = 1, c̄0 = 0, w̄ = 6, and
�P̄ = 4. Lastly, the two unknown parameters σ̄ and V̄ can
be obtained based on the shooting method (see Sec. 3 in
the Supplemental Material [42]), and the numerical solutions
are σ̄ = −1.61 and V̄ = 3.99 when κ̄ = −0.5, σ̄ = −0.8 and
V̄ = 3.68 when κ̄ = 0, and σ̄ = 0.23 and V̄ = 3.68 when
κ̄ = 0.4. These results suggest that despite some parameters
(i.e., Ā0, k̄c, c̄0, w̄, and �P̄) being kept, the shape and the
other parameters (i.e., σ̄ and V̄ ) of the vesicle are determined
by the mean curvature of the adhesion region. Moreover, as
shown in the lower panel of Fig. 2 (from left to right), the
dimensionless adhesion area Āc monotonously increases with
the dimensionless mean curvature κ̄ of the adhesion region,
which will be discussed in detail in Sec. IV.

Besides the equilibrium configurations of the vesicle, we
are also interested in the dependence of its total free en-
ergy Ētot on the mean curvature of the adhesion region κ̄ .
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(b)(a)

FIG. 3. Vesicle configuration obtained by employing SURFACE

EVOLVER (SE), and comparison between the results of SE (domain
with grid) and theory (dashed red curve). (a) A vesicle on a concave
substrate with k̄c = 1, c̄0 = 0, w̄ = 6, �P̄ = 4, and κ̄ = −0.1; (b) a
vesicle on a convex substrate with k̄c = 1, c̄0 = 0, w̄ = 6, �P̄ = 4,
and κ̄ = 0.1.

Remarkably, it is found that Ētot monotonously decreases with
κ̄ , and Ētot = 41.1, Ētot = 36.6, and Ētot = 29.2 are obtained
for the cases in Figs. 2(a)–2(c), respectively. This tendency
is consistent with the curvature-dependent wetting behavior
of drops [30–33]. However, until now we have only obtained
the configurations of vesicle and substrate that both have
axisymmetric shapes (Fig. 2); a thorough investigation of the
adhesion behavior of vesicle on complex curved substrates
will be the next objective.

Since it is difficult to analytically solve the configurations
of the vesicle with an arbitrary shape, we perform FEM sim-
ulations by employing the public domain software package
SURFACE EVOLVER (SE) [51]. The basic concept of SE is to
minimize the energy and find the equilibrium shape of a liquid
volume surface with given parameters such as the surface ten-
sion and stiffness, subjected to external forces (e.g., gravity,
centrifugal force, magnetic force) and constraints (e.g., vol-
ume conservation, contact angle, pinning of the contact line).
SE has been widely applied to studying various interfacial
phenomena (such as morphologies of droplets and particles
[30,52–55], foams [56], etc.), as well as the equilibrium

configuration of biomembranes [57,58], with excellent agree-
ment to experimental results.

First, to check its reliability, the SE method is employed to
simulate the morphology of the axisymmetric vesicles which
have already been solved theoretically. Then, comparisons
between the theoretical and simulation results are carried out.
As shown in Figs. 3(a) and 3(b), we exemplarily exhibit two
vesicles adhered to a convex and a concave substrate, respec-
tively, where the red curves represent the theoretical results,
and the domains with grids represent the simulation results.
The comparisons suggest a very good consistency.

Next, to achieve a general perspective, we consider non-
axisymmetric vesicles and substrates. Figure 4 shows the
adhesion of vesicles on cylindrical, conical, and saddle-
shaped substrates. By varying the radius of the cylindrical
substrate, as well as placing the vesicle at different places on
the conical substrate, the value of κ̄ is systematically varied.
For the saddle-shaped substrate, we study the case when the
vesicle adheres to the saddle point of the substrate, where
the mean curvature κ̄ is systematically varied by designing
substrates with different shapes. Moreover, the vesicles are
placed on the outside and inside of these curved substrates,
and thus both the negative and positive mean curvatures are
considered.

As shown in Fig. 5, the red squares, green stars, and cyan
pentagons are simulation results obtained by SE on cylindrical,
conical, and saddle-shaped substrates, respectively. We also
give the theoretical (blue dots) and simulation results (orange
diamonds) on spherical substrates. The scenario of Fig. 5
is reminiscent of the curvature-driven phenomenon of drops
[30], and the following conclusions can be drawn: (1) All the
data collapse onto a master curve (i.e., the red dashed curved);
(2) it suggests that the total free energy of the adhered vesicles
depends mainly on the mean curvature of the adhesion region

FIG. 4. Different views of vesicles adhered to the inner and outer sides of the cylindrical, conical, and saddle-shaped substrates carried out
by SE simulations: (a) κ̄ = 0.25, (b) κ̄ = −0.25, (c) κ̄ = 0.19, (d) κ̄ = −0.19, (e) κ̄ = 0.25, and (f) κ̄ = −0.25. The red and light blue colors
represent the free area and adhered region, respectively.
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FIG. 5. Dimensionless free energy Ētot as a function of the sub-
strate mean curvature κ̄ . Different kinds of substrates (spherical,
cylindrical, conical, and saddle-shaped) are compared. The blue
dots represent the theoretical results of the vesicles on spherical
substrates, and the orange diamonds, red squares, green stars, and
cyan pentagons represent the SE results on the spherical, cylindrical,
conical, and saddle-shaped substrates, respectively. k̄c = 1, c̄0 = 0,
w̄ = 6, Ā = 4π , and �P̄ = 4 are physical parameters with fixed
values. The inset is a zoomed-in view of energy Ētot around κ̄ = 0,
which demonstrates a linear relation.

but is insensitive to the specific shape of the substrate; (3)
a zoomed-in view of the energy Ētot around κ̄ = 0 is given,
which demonstrates a linear relation.

Moreover, Fig. 6 gives the variations of the components
of the total free energy with respect to the mean curvature
(in dimensionless forms). Specifically, the dimensionless ad-
hesion energy Ēadh = −w̄Āc (red square dots) has a negative
value and it monotonously decreases with κ̄ . However, the
dimensionless stiffness energy Ēκ first increases and then
slightly decreases with κ̄ , whereas the dimensionless volume
potential ĒV has an opposite tendency and its variation with
κ̄ is negligible. Since the amplitude of the variation of Ēadh is
remarkably larger than Ēκ and ĒV, this suggests that Ēadh plays
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mensionless mean curvature κ̄ of the adhesion region. The blue
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sionless physical parameters with fixed values.
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FIG. 7. Adhered shape of vesicle and curvature-dependent en-
ergy. Here, k̄c = 1, c̄0 = 0, and Ā = 4π . (a) Bound-unbound shape
transformation in the w̄ − �P̄ parameter space for concave sub-
strates with fixed values of κ̄ = 0.5 (and R̄ = 2). b1 (dashed curve),
b2 (solid curve), and b3 (solid curve) are defined as the transition
lines and are revisited based on the work of Das and Du [17], which
divides the parameter space into three regions with three kinds of
adhering vesicle: bound spherical state (red curve), bound oblate
state (green), and bound prolate state (blue). If k̄c, c̄0, and Ā are
fixed but κ̄ is increased, different w̄ − �P̄ parameter spaces will be
obtained, and the evolution of each kind of vesicle follows the cor-
responding arrows. (b) Dimensionless free energy Ētot as a function
of κ̄ for these three kinds of vesicle. The dots are numerical results
with corresponding colors of the vesicles shown in (a). The inset is a
zoomed-in view of the bound prolate state.

a significant role accounting for the variation of the energy of
the system.

Furthermore, we systematically elaborate upon the influ-
ences of other parameters (i.e., w̄, c̄0, and k̄c) on the variation
of the relevant energies (i.e., the total energy Ētot and its
components such as Ēadh, ĒV, and Ēκ ) of the adhered vesicle
in terms of the mean curvature κ̄ , and we put these investiga-
tions in Sec. 5 of the Supplemental Material [42]. In all of
these cases, Ētot decreases with κ̄ , which confirms that the
mean curvature-dependent adhesion behavior is general and
not substantially influenced by the physical parameters.

B. Adhered shapes

In the above analysis, the mean curvature-dependent adhe-
sion of vesicles has been revealed. Previous studies showed
that vesicle shape transformation induced by the adhesion
could happen even on planar substrates [16]. In this section,
by considering a larger range of parameters (thus the vesicle
would have different kinds of shapes, in other words, adhering
states), we will shine more light on the generality of the
curvature-dependent adhesion.

As early as 30 years ago, Seifert et al. discussed the shape
transformation of free vesicles [59] and vesicles adhering
to planar surfaces [16]. After that, Das and Du investigated
the shape transformation of adhering vesicles on curved sub-
strates in the w̄ − �P̄ parameter space [17]. As in the example
shown in Fig. 7(a), the w̄ − �P̄ parameter space of a vesicle
adhered on a concave substrate with κ̄ = 0.5 (and R̄ = 2)
is revisited based on the work of Das and Du [17]. Ac-
cording to the conclusion of Das and Du [17], b1 (dashed
line), b2 (solid curve), and b3 (solid curve) represent the
transition lines and divide the w̄ − �P̄ parameter space into
three regions with bound spherical (red color), bound oblate
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(green color), and bound prolate (blue color) states of the
vesicle, respectively. Moreover, these transition lines (i.e.,
b1, b2, and b3) in the w̄ − �P̄ parameter space change with
the substrate curvature, and if κ̄ increases, the vesicle shape
varies following the accompanying arrows [see the insets of
Fig. 7(a)]. Moreover, the relations between the dimensionless
total energy Ētot and the mean curvature κ̄ of the adhesion
region in these different cases are also investigated, and their
mean curvature-dependent adhesion behaviors are confirmed
in Fig. 7(b). Since the scope of κ̄ for the bound prolate state
is pretty narrow, its curvature-dependent adhesion behavior is
presented by a zoomed-in view as the inset of Fig. 7(b).

Here, it is emphasized that this work aims at revealing
the mean curvature-dependence of the total free energy of
the adhered vesicle, and we will not investigate the shape
transformation of a vesicle induced by the mean curvature
of a substrate having complex shapes, which is beyond the
scope of the present paper and deserves a dedicated study in
the future. For axisymmetric shapes of substrate and vesicle,
how substrate curvature triggers the shape transformation of a
vesicle can be found in the work of Das and Du [17].

IV. DISCUSSIONS

From the above analysis, we have obtained the following
conclusions that are worth discussing. The total free energy
of the adhered vesicle depends mainly on the mean curva-
ture of the adhesion region but is insensitive to the specific
shape of the substrate, which is supported by Fig. 5 where
the total free energy of the adhered vesicles on different sub-
strates collapses onto a master curve. This finding is similar to
the curvature-dependent wetting behavior of drops on curved
substrates [30–33]. Moreover, for vesicles with various shapes
as shown in Fig. 7, it also shows a monotonous decrease of
the total energy with the mean curvature. Considering that
the vesicle is widely employed as a simple model for cell
membranes [17], in the following, we will discuss the above
results of vesicle adhesion that may correlate to the previously
reported biological experiments of cells.

The first insight is about the main conclusion shown in
Fig. 5, that the total free energy decreases with the mean
curvature of the adhesion region, which indicates that spon-
taneous motion of a vesicle may happen when adhering on

a substrate with a mean curvature gradient. In the experi-
mental work of Pieuchot et al. [2], it is observed that for
mesenchymal stem cells (MSCs) adhering on a sinusoidal
substrate, the adherent cells avoid convex regions during their
migration and position themselves in concave valleys. In this
regard, our mean curvature-dependent energy may give some
perspectives to understanding the cell migration behavior: the
free energy of the adhering cell on the concave substrate is
higher than it is on the convex substrate, which leads to a
spontaneous cell migration to decrease the energy of the cell.

Moreover, considering the mean curvature-dependent sur-
face tension and configuration of the vesicle, we will
qualitatively compare our results with the experimental obser-
vations of human mesenchymal stem cells (hMSCs) adhering
on spherical substrates carried out by Werner et al. [3]. A
spiderlike morphology of cell on concave substrates was
reported, while there was a snaillike morphology on convex
substrates. To adopt the spiderlike morphology, the cell has
to stretch with tensile elements to lift cells on the concave
substrates. On the contrary, to adopt the snaillike morphol-
ogy, the cell has to bend to attach to the convex substrates.
Therefore, stronger actin filaments were observed on concave
substrates than on convex substrates. In the experiments of
Werner et al. [3], the stronger actin filament means a stronger
tensile force, which corresponds to a larger value of surface
tension in our result. As shown in Fig. 8(a), for each specific
curve, the surface tension indeed increases with the mean cur-
vature of the adhesion region. It should be stressed that the real
situation of cell adhesion is more complicated; for instance,
the adhesive process involves assembly and disassembly of
the cytoskeleton [60], which has not been considered in our
model. Therefore, we are not able to correlate our dimen-
sionless analysis to the exact value of the surface tension. In
addition, we note that for different parameter sets, the sign of
the surface tension would change with the mean curvature; its
biological meanings remain to be addressed. Therefore, more
elaborate theories need to be developed in the future.

Finally, as shown in Fig. 8(b), it is worth exploring further
how much contact area of the adhering vesicle there is on
the curved substrate, and its significance on biofouling. For
a given parameter set (k̄c = 1, c̄0 = 0, w̄ = 6, Ā = 4π , and
�P̄ = 4), relations of Ac/A0 vs κ̄ and 2ψs0 vs κ̄ are given.
Here, 2ψs0 is defined as the central angle of the contact area
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and its geometrical meaning is illustrated in the inset. More-
over, the sign of 2ψs0 is defined as positive and negative on
the concave and convex substrates, respectively (more details
are given in Fig. S1 of the Supplemental Material [42]). We
can see that 2ψs0 first decreases and then increases with κ̄ . On
the convex substrate (κ̄ < 0), generally, the absolute value of
α is much smaller than it is on the concave substrate (κ̄ > 0).
On the one hand, Fig. 8(b) suggests that the concave substrate
facilitates adhesion, while the adhesion is suppressed on the
convex substrate. On the other hand, it is interesting to see
that when the mean curvature of the adhesion region is smaller
than a critical value, there is no solution of the configuration
of the adhering vesicle, which means that adhesion could
hardly happen. Recently, Vellwock and Yao [61] gave the
relation between the dimensions of the effective antifouling
topographies and the dimensions of the prevented bio-
foulers. According to their statistical results, some antifouling
substrates, such as shark skin [62], sea stars [63], and crabs
[64], have the structure of bumps (i.e., convex structures with
negative curvatures) with similar dimensions as their bio-
foulers. Therefore, such antifouling property benefits from the
convex substrate with a much smaller negative mean curva-
ture. In this regard, we hope our perspective would not only
offer greater understanding of some antifouling structured
substrates but also would be helpful to optimize the design
of antifouling materials, which have been widely used in
microfluidics, medical and biotechnology, and marine engi-
neering [12].

V. CONCLUSIONS

In the present work, we have systematically investigated
the influence of the substrate mean curvature on the adhesion
of vesicles with a constant area. It is discovered that the
total energy of an adhering vesicle depends mainly on the
mean curvature of the adhesion region but is insensitive to
the specific shape of the substrate. FEM simulations help us
understand the adhesion behavior of vesicles on substrates
with complex shapes, and the results show that the total
energy monotonously decreases with the mean curvature of
the adhesion region. However, open questions remain to be
further explored. For example, though the effect of the mean
curvature has been illustrated in Fig. 5, it will be valuable to
derive an analytical solution which can explicitly quantify the
relation between the energy and the mean curvature when it is
close to zero. Experiments are critically important and need to
be carried out to provide more evidence for the above conclu-
sions. In addition, shape transformation of vesicles induced
by the substrate curvature on general surfaces also deserves a
dedicated study.
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