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Calcium oscillation on homogeneous and heterogeneous networks of ryanodine receptor
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Calcium oscillation is an important calcium homeostasis, imbalance of which is the key mechanism of
initiation and progression of many major diseases. The formation and maintenance of calcium homeostasis are
closely related to the spatial distribution of calcium channels on endoplasmic reticulum, whose complex structure
was unveiled by recent observations with superresolution imaging techniques. In the current paper, a theoretical
framework is established by abstracting the spatial distribution of the calcium channels as a nonlinear biological
complex network with calcium channels as nodes and Ca2+ as edges. A dynamical model for a ryanodine
receptor (RyR) is adopted to investigate the effect of spatial distribution on calcium oscillation. The mean-field
model can be well reproduced from the complete graph and dense Erdös-Rényi network. The synchronization of
RyRs is found important to generate a global calcium oscillation. Below a critical density of the Erdös-Rényi or
BaraBási-Albert network, the amplitude and interspike interval decrease rapidly with the end of disappearance
of oscillation due to the desynchronization. The clique graph with a cluster structure cannot produce a global
oscillation due to the failure of synchronization between clusters. A more realistic geometric network is
constructed in a two-dimensional plane based on the experimental information about the RyR arrangement of
clusters and the frequency distribution of cluster sizes. Different from the clique graph, the global oscillation can
be generated with reasonable parameters on the geometric network. The simulation also suggests that existence
of small clusters and rogue RyRs plays an important role in the maintenance of global calcium oscillation through
keeping synchronization between large clusters. Such results support the heterogeneous distribution of RyRs
with different-size clusters, which is helpful to understand recent observations with superresolution nanoscale
imaging techniques. The current theoretical framework can also be extent to investigate other phenomena in
calcium signal transduction.
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I. INTRODUCTION

Calcium homeostasis is the key mechanism to maintain
life-sustaining activities. Its imbalance is responsible for the
initiation of many major diseases, such as neurodegenerative
and cardiovascular diseases [1–3]. As an important calcium
homeostasis, calcium oscillation is a ubiquitous signal in all
cells, and provides efficient means to transmit intracellular
biological information through its amplitude and frequency,
therefore attracting much attention [4–7]. Many models have
been proposed to study the calcium signaling transduction and
the formation of calcium homeostasis [8–13]. In the existing
models, the calcium channels, such as ryanodine receptors
(RyRs) and inositol 1,4,5-trisphosphate receptors (IP3R), play
an important role in the regulation of intracellular calcium
concentration. After inclusion of other mechanisms, such as
calcium bump, calcium leak, and mitochondrion, the phenom-
ena of calcium homeostasis, including calcium oscillation,
were reproduced from many proposed models to explain ex-
perimental observations [8,9,14–16].
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Most existing models were constructed under the mean-
field ansatz [8–11]. In such models, the calcium concentra-
tions near all calcium channels are set to be the same value,
and all channels behave in the same manner. It requires ho-
mogeneous distribution of the channels on the endoplasmic
reticulum, which obviously conflicts with the experimental
observations that the calcium channels exhibit a cluster struc-
ture composed of several to tens of channels [17–20]. Such
a heterogeneous cluster structure makes the intracellular cal-
cium signaling exhibit obvious hierarchy. Many models have
been proposed to simulate such a structure [12,13,21–23]. For
example, using deterministic-stochastic simulations, Rüdiger
et al. studied local calcium signaling in a cluster with compact
distribution of the channels in a rectangle, and well described
calcium puffs in neuronal cells [12].

These studies about the cluster structure deepen our un-
derstanding of the hierarchy of calcium signaling. However,
recent superresolution observations suggest that the clusters
have a more complex internal structure. In many studies,
the cluster is assumed to be packed compactly [12,21–24],
forming a tight lattice as suggested by early experimental
observations [17,18], which means that the mean-field ansatz
is still suitable to study the local dynamics in a cluster, at most
with some small modifications. However, recent superresolu-
tion nanoscale imaging shows that the accurate characteristics
of calcium-channel arrangement in a cluster are not trivial
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and should be considered seriously [20,25]. The cluster is not
compact, has irregular shape, and different sizes with random-
ness. In Refs. [26,27], activation of RyRs was found to be
sensitive to the arrangement of RyRs in a cluster. Their study
suggests that a regular compact picture of cluster and mean-
field approximation are not suitable for simulation of RyR
arrangement observed experimentally. The RyR arrangement
is also very important in the regulation of calcium-induced
calcium release. The simulations in previous research give
contradictory results [28,29]. Hence, the explicit arrangement
of calcium channels in a cluster needs more investigation.

The cluster size (the number of calcium channels in a
cluster) is another important index of the cluster, and was
found to have a close relationship to the diseases, such as
Niemann-Pick type C1 [25]. In Ref. [30], the local calcium
release from clusters with a few IP3R channels was studied,
and nonlinearity was found for the interpuff interval and the
first puff latency against the inverse cluster size. The effect
of cluster sizes of both RyRs and IP3Rs was also studied
in the literature [21–23,31,32]. In recent years, more exper-
iments were performed to study the frequency distribution of
cluster sizes [18,20,25,33]. Besides clusters with large sizes,
which have been observed in early experiments, many rogue
RyRs, as well as many small clusters, were also found in
recent observations. It has significance to study their roles in
calcium-signaling transduction. A recent study suggests that
rogue RyRs greatly increase the initiation of Ca2+ sparks,
further contributing to the formation and propagation of Ca2+

waves [34]. More interestingly, recent superresolution imag-
ing shows a phenomenon that the frequency distribution is
exponential to the cluster size, that is, it obeys the power law
[18,20]. It means that the clusters with one to several RyRs
constitute the majority of all clusters.

In the existing works, many studies focused on the dynam-
ics in a cluster. However, the effect of the spatial distribution
of calcium channels, such as the frequency distribution of
cluster sizes, are beyond a cluster. With the development of
superresolution imaging techniques, more information about
calcium channel distribution will be achieved in the future. It
is urgent to carry out systematic and appropriate simulation
research beyond the existing models to investigate irregular
and random distributions of channels, which is scarce in the
literature. If we go beyond the local cluster and mean-field
ansatz, a unified description of channel distribution at differ-
ent scales should be constructed. In fact, the effect of channel
distribution on the calcium-signaling transduction can be re-
flected by Ca2+ connections between calcium channels. If we
know the effect of other channels on the calcium concentration
near the channel considered, the channel distribution can be
described without loss of spatial information. The Ca2+ con-
nections between calcium channels can be abstracted as the
edges of a network with the channels as nodes. The connection
strength corresponds to a weighted edge or the probability of
connection by an unweighted edge.

In the literature, there exist some attempts to study the
calcium signal transduction on the network of calcium chan-
nels. In Refs. [22,23], an adjacency matrix was introduced to
model calcium release in the heart. In fact, it equals a net-
work, but only the connections between adjacent RyRs were
considered. Such treatment can be also found in Refs. [26,27]

with more RyRs involved. However, only simulation for a
single cluster was performed to study the calcium spark (blip).
In Ref. [35], with a simple two-state model of the receptor,
a bistable regime can emerge from the network dynamics
with several classical network architectures. By introducing
the Keizer-Levine model [9], where a simplified mechanism
mimicking adaptation has been developed to reproduce ex-
perimental data from cardiac cells under a mean-field ansatz,
in our previous work the Ca2+ induced Ca2+ release was
studied to explore the behavior of signaling networks with
multistates in which nodes are regulated by reaction rates
nonlinearly [36].

The studies suggest that different architectures of the
network will affect the bistable regime [35,36]. However,
the calcium oscillation was not reproduced in these mod-
els because only the state transition of calcium channel was
considered. To reproduce the calcium oscillation, more mech-
anisms, such as store leak and calcium pump, should be
included to form an open-cell model [9]. Influx and efflux of
Ca2+ from an external medium should be also considered to
construct a more realistic model. Under the mean-field ansatz,
the Keizer-Levine model successfully generates the calcium
oscillation with these ingredients [9]. In this paper, we will
establish a theoretical frame to describe channel distribution
by a nonlinear network. The Keizer-Levine model will be
extended to a network model to include the effect of spatial
distribution (Sec. II). The network with full connections, that
is, complete graph, will be introduced to check the model.

Withthe established theoretical frame, three classical net-
works which reflect different sides of spatial distribution of
calcium channels will be introduced to study their effect on
calcium oscillation in Sec. III. The Erdös-Rényi network is
introduced to check the equivalence of a homogeneous net-
work with the mean-field approximation. The heterogeneous
BaraBási-Albert network is known for its scale-free charac-
teristic [37]. It is introduced to reflect the power law of the
frequency distribution of cluster sizes if a cluster is taken as
a node. Another heterogeneous network, a clique graph with
nodes in a clique being fully connected, is also introduced to
simulate the compact clusters which have the same size, and
connect to other clusters weakly due to the large intercluster
distance. In Sec. IV, a more realistic model will be constructed
in a two-dimensional plane based on the experimental infor-
mation about the internal RyR arrangement of the cluster and
the frequency distribution of cluster sizes. The connections
will be determined by calcium concentration gradient. With
such a geometric network, the role of clusters with small
sizes will be investigated. The discussion of the results and
a summary can be found in Sec. V.

II. MECHANISM OF CALCIUM REGULATION

A. General form

First, we present a general form of a calcium regulation
mechanism on a network. The transition of a calcium chan-
nel, RyR or IP3R, between its different states is a kernel
mechanism to reproduce the calcium oscillation. The calcium
channel has two basic states, open and closed. The Ca2+ is
released from a channel in the open state. However, in a

024402-2



CALCIUM OSCILLATION ON HOMOGENEOUS AND … PHYSICAL REVIEW E 107, 024402 (2023)

realistic model, there are often more states required. Here, we
assume that there exist M states for a channel. As in Ref. [36],
we express the state as a vector V = [0, · · · , 1, · · · , 0] with
one of its M elements being 1 and others being 0. Vm = 1
means that the channel is in state m. For a system with N
channels, the total state of the system can be described by a
matrix Rim = V i

m, with i = 1, 2, · · · N and m = 1, 2, · · · , M.
The master equation for the state transition of calcium

channel i can be generally written as

dPi
m(Rim, t )

dt
=

∑
n

T i
mn([Ca2+]i )Pi

n(Rin, t ), (1)

wherePi
m(Rim, t ) is the probability of system in a state Rim at a

time t . The transition rate for node i between states m and n is
described by the element in m row and n column of a transition
rate matrix T i([Ca2+]i ), which is dependent on the calcium
concentration [Ca2+]i at channel i. In different models, the
transition rate matrix T i([Ca2+]i ) can be different.

To determine the transition probability of a channel, the
variation of calcium concentration [Ca2+]i near this channel
is required. The flux from other open channels should be
considered. It will take some time before the calcium ions
released from an open channel diffuse to another channel.
In the literature, the connection between an open channel
and the channel considered was often treated by the diffusion
equation. However, the calcium signaling propagates mainly
with the calcium-induced calcium-release mechanism, that is,
the Ca2+ propagation between two neighbor channels is more
important. Besides, the diffusing Ca2+ may attach into the
buffers, such as calmodulin, and no longer affect the cal-
cium channels until deattaching. The results in our previous
work [38,39] suggest that the Ca2+ released from an open
channel will disperse rapidly with increasing distance. Hence,
the effect of calcium ions released from an open channel is
constrained in a small region. As shown in Refs. [18,20], the
cluster diameter and distance of the nearest-neighbor clusters
have the largest distribution at values of 100 nm and 200 nm,
respectively, and the mean distance between RyRs in a cluster
is about 40 nm. With the diffusion constant DCa = 200 µm2/s,
we can estimate the diffusion time as t = r2/2DCa. The
above distances correspond to times 0.025, 0.1, and 0.000004
ms, respectively. The diffusion delay between the channels
and clusters should be very small compared with the mean
RyR open time, about 2.2 ms [40]. It was also discussed in
Refs. [27,41,42] that the activation of RYRs after an RYR
opening proceeds much slower than the buildup of the cal-
cium gradient. Hence, the diffusion delay between the RyRs
around the open RyR can be safely neglected, especially for
the calcium oscillation considered here. In the current paper,
the variation of calcium concentration [Ca2+]i near a channel
is determined by the calcium gradient induced from open
channels, and the time delay is neglected.

After neglecting the delay, the Ca2+ connections between
channels can be further abstracted as edges of a complex
network with calcium channels as nodes. There exist two
means to describe the Ca2+ connections, the weighted and
unweighted edges. The weight of a weighted edge can be
determined by the calcium concentration directly. In the cur-
rent paper, to introduce classical networks, the unweighted

networks will be adopted in calculation. In such networks, if
a channel pair has possibility p to be connected by Ca2+, the
corresponding element of adjacency matrix Ai j has a possibil-
ity p to be 1. For the channel pair with no Ca2+ connection,
the element is set as 0. The treatment will be explained more
explicitly in Sec. IV. Obviously, such a network is an undi-
rected network. Hence, for a channel i, the Ca2+ flux received
from other open channels can be written as

JR
i ([Ca2+] j ) =

∑
jm

γ j ([Ca2+] j )Ai jR jm. (2)

It is determined by release rate γ j ([Ca2+] j ) of all open chan-
nels j which have connections to channel i, including i itself
if it is open. Such flux leads to the increase of calcium con-
centration near channel i.

In the realistic model, more mechanisms, such as store
leak, calcium pump, and exchange with the external medium,
should be included to form an open-cell model where the
oscillation can occur. The total variation of the calcium con-
centration near channel i can be described as

d[Ca2+]i

dt
= JR

i ([Ca2+] j ) + J ′
i ([Ca2+]i ). (3)

The Ca2+ flux from these mechanisms is denoted as
J ′

i ([Ca2+]i ). In a realistic model, explicit positions about cal-
cium pumps should be introduced, for example, the distance
between the calcium pump and calcium channel. In the current
paper, we focus on the mechanism of the state transition of
calcium channels on network. J ′

i ([Ca2+]i ) is assumed to be
only dependent on the calcium concentration near channel
[Ca2+]i for simplification.

B. Mean-field ansatz

To understand the basic features of network dynamics, we
first provide the approximate results under a simple spatially
homogeneous mean-field ansatz. Under this ansatz, all nodes,
i.e., the calcium channels, are assumed to evolve with time in
the same manner. If starting from a spatially homogeneous
initial calcium concentration, the equation for the variation
of the calcium concentration in Eq. (3) should be the same
for every node, that is, independent on i and j. Therefore, the
calcium concentration [Ca2+]i should evolve homogeneously.
The release rate γ j ([Ca2+] j ) is then deduced to γ ([Ca2+]).
The Ca2+ flux received from other open channels in Eq. (2)
can be rewritten as

JR
i = γ ([Ca2+])

∑
jm

Ai jR jm. (4)

The state matrix Rjm is deduced into R1m for all nodes, that is,
all nodes have the same state m at a time point (here, we take
state of node 1 as representative value). We reach∑

jm

Ai jR jm =
∑

j

Ai j

∑
m

R1m = 〈k〉
∑
m=O

pm. (5)

Here we apply average degree 〈k〉 = 1
N

∑
i j Ai j = ∑

j Ai j

and the faction of channels in state m is defined as pm =
1
N

∑
i Rim = R1m due to the spatial homogeneity under the

mean-field ansatz. Since only the open channel can release
Ca2+, only open states with m = O are kept. Equation (3) for
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TABLE I. Transition rate matrix T ([Ca2+]) with parameters
k+

a = 1500 µM−4s−1, k−
a = 28.8 s−1, k+

b = 1500 µM−3s−1, k−
b =

385.9 s−1, k+
c = 1.75 s−1, and k−

c = 0.1 s−1 [9].

State C1 O1 C2 O2

C1 −k+
a [Ca2+]4 k−

a

O1 k+
a [Ca2+]4 −k−

a − k+
b [Ca2+]3 − k+

c k−
c k−

b

C2 k+
c −k−

c

O2 k+
b [Ca2+]3 −k−

b

the variation of calcium concentration under the mean-field
ansatz can be written as

d[Ca2+]

dt
= γ ([Ca2+])〈k〉

∑
m=O

pm + J ′([Ca2+]). (6)

The master equation for the state transition of the calcium
channel in Eq. (1) is deduced to an equation of the fractions
of channels in different states as

d pm(t )

dt
=

∑
n

Tmn([Ca2+]) pn(t ). (7)

To determine the explicit form of the flux JR([Ca2+]),
J ′([Ca2+]), and transition rate matrix T ([Ca2+]), we com-
pare the general form of the mechanism under the mean-field
ansatz in Eqs. (6) and (7) with the Keizer-Levine model,
which is also under the mean-field ansatz [9]. In the Keizer-
Levine model, four states of the RyR are introduced as C1,
O1, C2, and O2 to describe the experimental phenomena. The
closed state C1 is dominant at a low concentration [Ca2+], for
example, 0.1 µM. If the [Ca2+] increases, the RyR is activated
from the closed state C1 to an open state O1 at a rate of
k+

a [Ca2+]4 and deactivates back to C1 state at a rate of k−
a .

As suggested in Ref. [9], to keep the plateau, the open state
O1 also may be activated to the second open state O2 at a
rate of k+

b [Ca]3 and back to the first open state O1 at a rate
of k−

b . It is also important to obtain the bistable regime [36].
To describe the adaption phenomenon, the transition between
the first open state O1 and the second closed state C2 is also
added. The transition rates between these states are described
by the transition rate matrix T ([Ca2+]) as listed in Table I.
With the experimental data of Györke and Fill [43], the RyR
kinetic constants K±

(a,b,c) have been determined in Ref. [9],

which are also given in Table I.By comparing the Ca2+ flux
from the RyRs in the Keizer-Levine model [9] and that under
the mean-field ansatz in Eq. (6), the transition rate of channels
can be determined as

γ ([Ca2+]) = f ν ′
1

([
Ca2+

s

] − [Ca2+]
)
, (8)

where a factor f = 0.01 is introduced as the fraction of Ca2+

that is free in the cytoplasm [44]. The ν ′
1 is the release rate

constant for the RyRs. We would like to emphasize that the
definitions of release rate under the mean-field ansatz and for
a single channel should be different. The ν ′ is realistic release
rate constant which reflects the ability of a channel receptor.
The ν1 adopted under the mean-field ansatz is, in fact, an
effective quantity, and dependent on the average degree 〈k〉.
In the current work, we relate the release rate for a channel to

that under the mean-field ansatz as ν ′
1 = ν1/〈k〉. The ν1 was

determined as 40 s−1 based on Friel’s analysis of the bullfrog
sympathetic neuron [45]. With such relation, the mean-field
approximation of a network will be deduced to the Keizer-
Levine model.

As in Eq. (8), the release of calcium from the RyRs
is assumed to be proportional to the concentration gap be-
tween cytoplasm and store, i.e., [Ca2+] and [Ca2+

s ]. The
calcium concentration of store is assumed as [Ca2+

s ] = (C0 −
[Ca2+])/c1. The factor c1 is sometimes referred to as the ratio
of effective volume of the store to the cytoplasm, and is deter-
mined as 0.15 based on the experimental data in Ref. [46]. The
C0 is the total free-Ca2+ concentration in the cell. If the cell is
open to external medium, it should not be fixed, but vary with
influx and efflux from the plasma membrane calcium (PMCA)
pump according to the equation [9]

dC0

dt
= f

(
jin − νout

[Ca2+]2

[Ca2+]2 + K2
out

)
, (9)

with jin being the influx rate, which has a value jin = 1µMs−1

obtained from a current of 0.1 pA in a cell with a volume of
1000 µm3. νout and Kout are the maximal rate and dissociation
constant of the PMCA pump, and chosen as 9.0 µMs−1 and
0.6 µMs, respectively [9,47,48].

Besides the exchange of Ca2+ with external medium, the
Ca2+ exchange with the calcium store should be included.
Hence, the flux J ′[Ca2+] can be described as [9]

J ′[Ca2+] = f

(
ν2

([
Ca2+

s

] − [Ca2+]
) − ν3

[Ca2+]2

[Ca2+]2 + K2
3

+ jin − νout
[Ca2+]2

[Ca2+]2 + K2
out

)
. (10)

The first and second terms are for the calcium leak from
calcium store, and returning Ca2+ to the calcium store
through the sarcoplasmic endoplasmic reticular calcium AT-
Pase (SERCA) pump, respectively. The third and fourth terms
are the influx and efflux of Ca2+ exchange with the external
medium, respectively, as in Eq. (9). Here the dissociation
constant of SERCA pump K3 = 0.3 µM [49]. ν2 and ν3 are
the rate constants for store leak and the SERCA pump, and
chosen as 0.1 µMs−1 and 120 µMs−1, respectively [9].

The calcium oscillation produced with a set of the pa-
rameters under the mean-field ansatz is presented in Fig. 1.
Different from the original Keizer-Levine model, in our calcu-
lation, Eqs. (6) and (7) are adopted directly without separation
between fast and slow timescales. As discussed above, in
Eq. (8), the release rate of RyRs under the mean-field ansatz
can be related to the average degree of the network. Here,
we present the results with different release rates under the
mean-field ansatz. As shown in Fig. 1, the calcium oscillation
can be reproduced with the v1 considered, and very close to
the results with separation between fast and slow timescales
[9]. One can find that larger release rates result in the calcium
oscillation with a smaller interspike interval and smaller am-
plitude. With the increase of release rate ν1 from 20 to 50 s−1,
relaxation time of the oscillation becomes small.
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FIG. 1. Calcium oscillation in mean-field ansatz (MF) and on the
complete graph network with different release rate constant of RyRs
under mean field ansatz as ν1 = 50, 40, 30, and 20 s−1 in (a)–(d),
respectively.

C. Calcium oscillation on complete graph network

The complete graph with full connections between nodes is
introduced here to check the network model. Obviously, such
a network is homogeneous and only dependent on the number
of nodes. Since the calcium concentration near a channel will
increase with the total number of channels, the complete graph
is only appropriate to describe a small system, such as a
compact cluster, but cannot be applied to the channel distri-
bution at a large scale. However, it can be well described by
the mean-field approximation and used to check the network
formalism adopted in the current paper. The results on this
network should fit well with the mean-field approximation,
with ν ′

1 = ν1/(N − 1) for large channel number N , which is
chosen as 1000 in the current paper. Under the mean-field
ansatz, the [Ca2+]i, γ j ([Ca2+] j ), and J ′

i ([Ca2+]i) are the same
for all channels. After the network is introduced, these quanti-
ties should be set differently for every channel. After inserting
them into Eqs. (1)–(3), one can reach a formalism for the
calcium signaling on a network.

In the current paper, we adopt the Julia language to perform
simulations. The Gillespie algorithm is employed to deal with
the transition of RyR states. There exist nr = 6 types of tran-
sitions between different states of every channel as shown in

Table I. Hence, at a certain time point, total n = N ∼ nr =
6000 events may occur; the possibility for each event can be
obtained with the transition rate and propensity as αi with i
from 1 to n. As usual with the Gillespie algorithm [50], two
random numbers r1 and r2 are generated. One of them, r2, is
used to judge which event will occur. If

∑ j−1
i=1 � r2α � ∑ j

i=1
with total possibility α = ∑n

i=1 αi, the ith event occurs. An-
other r1 is used to generate the time interval until the next
event as �t = − log r1/α. The calcium concentration [Ca2+]i

and C0i also have variations d[Ca2+]i
dt |t�t and dC0i

dt |t�t . With
such an algorithm, the calcium concentration and the state of
each RyR evolve with time t .

The results with the complete graph are also presented
in Fig. 1. As shown in Eq. (8), to compare the results with
these in the mean-field approximation, the release rate ν1 is
divided by the average degree 〈k〉. Under such definition, the
model with complete graphs corresponds to the mean-field
approximation with the same value of ν1. The global calcium
concentration is defined as the average of all RyRs, [Ca2+] =∑N

i=1[Ca2+]i/N . As expected, the result shows that simulation
of global calcium concentration with complete graphs pro-
duces almost the same interspike time and amplitude as the
mean-field approximation. The interspike time and amplitude
with the mean-field approximation are identical for each pe-
riod while little deviation can be found for the simulation with
the network due to the uncertainties of the random numbers
introduced in the Gillespie algorithm. Decrease of the inter-
spike interval and amplitude can be found with the increase of
the release rate ν1.

III. CALCIUM OSCILLATION
ON CLASSICAL NETWORKS

The complete graph can be related to a compact cluster
in which all channels are connected to each other. The above
calculation suggests that such a structure can be well de-
scribed by the mean-field approximation as in Ref. [26]. In the
current paper, the spatial distribution of the calcium channels
beyond the cluster is considered, which is very complex. The
intracellular space is crowded with various obstructions and
organelles [51]. The diffusing Ca2+ has to navigate between
these complex intracellular structures. Most of the calcium
channels distribute on the smooth endoplasmic reticulum with
a complex three-dimensional network structure [33]. Even
for the rough endoplasmic reticulum with a flat layer shape,
its folding structure in the cytoplasm makes some parts of
different sheets very close to each other [52]. Ca2+ can be
communicated between distant regions of endoplasmic retic-
ulum. Combined with the cluster structure, the connections
between calcium channels should be very complex and suit-
able to be described as a complex network.

With the theoretical frame constructed in the above sec-
tion, in this section, three classic networks will be introduced
to study the effect of different network architectures on the
calcium oscillation. In this section, the homogeneous Erdös-
Rényi network, heterogeneous BaraBási-Albert, and clique
graph networks [53] will be considered to reflect the char-
acteristics of spatial distribution of calcium channels. The
procedure to study these networks is almost the same as the
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FIG. 2. Average amplitude and interspike interval of calcium oscillation on the Erdös-Rényi (ER) network with the variation of possibility
p. The values in the mean-field approximation are given as horizontal lines. Other parameters are chosen as those in Fig. 1 with ν1 = 40 s−1

and N = 1000.

complete graph after the adjacency matrix A is replaced. In the
following simulations, the networks and its adjacency matrix
will be generated with the GRAPHS package of the JULIA

Lagrangian. And the diagonal elements will be set 1 to include
the effect the channel itself.

A. Erdös-Rényi network

The Erdös-Rényi network with N nodes, denoted as
GER(N, p), is generated by adding edges into the node pairs
with a possibility p. It is homogeneous because every node
in the network has equal status. The Erdös-Rényi network
can describe the characteristic of channel distribution at large
scale where the mechanism of calcium regulation can be suc-
cessfully described in the mean-field approximation. Different
from the complete graph, the Erdös-Rényi network is not
completely connected and randomness is introduced. As a
homogeneous network such as the complete graph, the be-
havior of evolution of calcium concentration should also be
analogous to those in the mean-field approximation. In Fig. 2,
an average amplitude of ten spikes and average interspike
interval of ten periods with the variation of possibility p are
presented with the standard deviations.

In Fig. 2, one can find that in a large range of possibility
p larger than 0.1, the amplitude is about 0.8 µM and the
interspike interval is about 25 s, which fit the mean-field
approximation as expected. However, if the possibility p be-
comes very small, both amplitude and interspike intervals
decrease rapidly and the oscillation disappears rapidly. In the
current paper, we fix the release rate constant ν1 in the mean-
field approximation at 40 s−1, and the rate for the network
can be obtained as ν ′

1 = ν1/〈k〉. For the Erdös-Rényi network,
the average degree 〈k〉 = p(N − 1), which means that the
large possibility p leads to small release rate constant ν ′

1 for
calcium channels, which are nodes of the network. Hence, on
a denser network, smaller ability of transporting calcium ions
is required.

To provide a more explicit picture about the oscillation on
the network, in Fig. 3, the evolution of calcium concentration
[Ca2+] on the Erdös-Rényi network is presented. The calcium
concentration [Ca2+]i for every node, i.e., near every channel,
is also illustrated.

Since the dense networks with large p values show sim-
ilar behaviors as suggested in Fig. 2, only some selected
small p values are considered. As expected, on the network
GER(1000, 0.1), the evolution of global calcium concentration
with time t is similar to these in the mean-field approximation
in Fig. 1(b), which can be digitalized as amplitude and inter-
spike interval close to the values in mean-field approximation
in Fig. 2. The evolution of calcium concentration with time for
each channel exhibits almost the same behavior as shown in
Fig. 3(b), which indicates the synchronization of the system,
and results in a wonderful global oscillation.

Increase of sparsity will reduce the homogeneity of net-
work. On the network GER(1000, 0.01), the oscillation is still
reproduced well with a smaller interspike interval and am-
plitude, which deviate from the mean-field approximation.
Moreover, a few nodes do not behave in the same manner
as the majority, which makes the fringes fluffy, as shown
in Fig. 3(d). It reflects the appearance of desynchroniza-
tion. With the decrease of the p value, the network becomes
sparser, and the synchronization of nodes is broken down
gradually. On the network GER(1000, 0.005), more nodes
are out of synchronization, which makes the oscillation of
the global calcium concentration unobvious. On the network
GER(1000, 0.002), where some nodes are even not connected,
the synchronization is almost broken down totally, and the
global oscillation of calcium concentration disappears also, as
shown in Fig. 3(h).

We make a simple check about the effect of node number
of the system. The results are presented in Figs. 2(a), 2(c),
2(e), and 2(f) as dashed red lines. In these simulations, only
500 nodes are considered, which is a half of the node number
in the above simulation. At the same time, the connection
possibility p is doubled to keep the average degree unchanged.
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FIG. 3. Evolution of calcium concentration [Ca2+] with the
variation of time t on the Erdös-Rényi network. Global calcium
concentrations with p=0.1, 0.01, 0.005, 0.002 and N=1000 (full blue
line), with p=0.2, 0.02, 0.01, 0.004 and N=500 (dashed red line) in
(a), (c), (e), (g), respectively. Calcium concentrations for each node
with p=0.1, 0.01, 0.005, 0.002 and N = 1000 are in (b), (d), (f), (h),
respectively. The networks with different p and N = 1000 are also
visualized, and presented in corresponding (a), (c), (e), (g). Other
parameters are chosen as those in Fig. 2.

Under such treatment, the size of the network is reduced,
but the structure is not changed. The results suggest that the
calcium oscillations exhibit almost the same behavior in two
cases.

B. BaraBási-Albert network

Different from the Erdös-Rényi network, the BaraBási-
Albert network is heterogeneous. The BaraBási-Albert net-
work is generated by adding a sequence of m new nodes to
an existing network, so can be denoted as GBA(N, m) [37]. As
a scale-free network, hub nodes will emerge and play a more
important role in the network dynamics. Recent superreso-
lution nanoscale imaging shows that the cluster sizes satisfy
the power law [18,20]. If we take a cluster as a node and
assume that the connection ability of a cluster to other clusters
is proportional to its size, the network should be a scale-free
network. Here we adopt the BaraBási-Albert network to re-
flect such a characteristic of channel distribution. In Fig. 4, the
average amplitude and average interspike interval of calcium
oscillations are presented.

In the case of Erdös-Rényi network, the simulation fits
the mean-field results very well with large p values. The
BaraBási-Albert network exhibits a quite different behavior
with large m values where the network is also dense. The max-
imum can be found at m values of several hundreds, where the
large average degrees of the network can also be found. Both
amplitude and interspike intervals are close but still below the
mean-field results. No stable range such as the Erdös-Rényi
network can be found in the case of the BaraBási-Albert
network. The interspike interval and amplitude vary with the
variation of the m value. If the m value increases further, both
amplitude and interspike intervals decrease with the decrease
of network density, and deviate further from the mean-field
results.

For smaller m, a rapid decrease of the amplitude and in-
terspike interval are found, as in the Erdös-Rényi network.
To provide more explicit details, the evolution of the cal-
cium concentration [Ca2+] with the variation of time t on the

FIG. 4. Average amplitude and interspike interval of calcium oscillations on the BaraBási-Albert (BA) network with the variation of
parameters m. The values in mean-field approximation are given as horizontal lines. Other parameters are chosen as those in Fig. 2.
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FIG. 5. Evolution of calcium concentration [Ca2+] with the vari-
ation of time t on the BaraBási-Albert network. Global calcium
concentrations with m=50, 10, 5, 2 and N = 1000 (full blue line)
or N = 500 (dashed red line) are in (a), (c), (e), (g), respec-
tively. Calcium concentrations for each node with m=50, 10, 5,
2 and N = 1000 are in (b), (d), (f), (h), respectively. The net-
works with different m and N = 1000 are also visualized, and
presented in (a), (c), (e), (g). Other parameters are chosen as those in
Fig. 2.

BaraBási-Albert network is presented in Fig. 5. The calcium
concentration [Ca2+]i for every node is also illustrated.

Since the BaraBási-Albert network with small m value
is more important, here, we perform the simulations with
m=50, 10, 5, 2 and N=1000. For network GBA(1000, 50), the
average degree is 95, which is almost the same as network
GER(1000, 0.1). The simulation on network GER(1000, 0.1)
is almost the same as the mean-field result, while a large de-
viation appears in the simulation on network GBA(1000, 50).
Obviously, a small amplitude and high frequency can be
found, which suggests that the heterogeneous structure
seriously affects the calcium oscillation. However, good syn-
chronization is still observed as in network GER(1000, 0.1),
with clear fringes as shown in Fig. 5(b). Most nodes behave in
the same manner with the variation of time, which results in a
wonderful global oscillation, as shown in Fig. 3(a).

Decreasing the m value will reduce the average degree
of the network, which means an increase of global spar-
sity. With m=10 and 5, the oscillation is still reproduced
witha smaller interspike interval and smaller amplitude, which

deviate further from the results in the mean-field approxi-
mation. The desynchronization also appears, which leads to
stochastic disturbance on the global oscillation and fluffy on
the fringes, as shown in Figs. 3(d) and 3(f). With m=2, some
nodes are not even connected, the synchronization is almost
broken down totally, and the oscillation of global calcium
concentration also disappears, as shown in Fig. 5(h).

The network with small size is also introduced to test the
effect of node number. The results are presented in Figs. 4(a),
4(c), 4(e), and 4(f) as dashed red lines. Different from
the Erdös-Rényi network, the BaraBási-Albert network with
the same m value has the same structure except the scale
of the network. Here, 500 nodes are considered for checking.
The results suggest that the calcium oscillations exhibit almost
the same behaviors in two cases.

C. Clique graph

In the literature, many studies were performed locally un-
der the assumption that the cluster is compact and has a
regular shape [12,30]. In such a picture, in a cluster, an open
channel affects all other channels through calcium releasing.
However, the calcium connections between clusters should be
weak because the distances between the clusters are assumed
to be large. It corresponds to a clique graph, in which several
nodes are completely connected, while there is at most one
connection between two clusters. The clique graph Gcl(kc, n)
consists of n completely connected cliques with kc nodes. In
Fig. 6, we choose four architectures with N=1000 nodes and
kc= 100, 20, 10, 5.

On network Gcl(10, 100), 1000 channels are divided into
ten clusters with 100 channels. The results suggest that in clus-
ters local oscillation is produced due to local synchronization,
as shown in Fig. 6(b). However, weak connections between
the clusters make the synchronization between clusters impos-
sible, as shown in Fig. 6(a). Without global synchronization,
the local oscillations in clusters cannot merge into a global
oscillation. Such results suggest that if the edges of cluster are
distinct and the distances between neighbor clusters are too
large, the lack of global synchronization will prevent global
oscillation.

The current results also contain the information of local
dynamics of clusters with different sizes. A large cluster can
produce local oscillation with local synchronization. If the
size of a cluster is reduced to ten channels, local synchroniza-
tion is still kept in a cluster. However, the oscillation obviously
becomes aperiodic and the interspike interval obviously varies
with the time evolution. If cluster size becomes very small,
local synchronization is even broken down in a cluster due to
the connections with other clusters as shown in Fig. 6(h).

IV. CALCIUM OSCILLATION ON GEOMETRIC
NETWORK WITH CLUSTER STRUCTURE

In the previous section, the calcium oscillations on three
classic networks are studied. The oscillation can be pro-
duced on the homogeneous Erdös-Rényi network with a large
enough degree and coincides with the mean-field approxi-
mation. On the heterogeneous BaraBási-Albert network, the
calcium oscillation can happen, however, it deviates from the
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FIG. 6. Evolution of calcium concentration [Ca2+] with the
variation of time t on the clique graph network. Global calcium
concentrations with kc=100, 20, 10, 5 are in (a), (c), (e), (g), respec-
tively. Calcium concentrations for each node with kc=50, 10, 5, 2
and N=1000 are in (b), (d), (f), (h), respectively. The networks with
different kc values are also visualized and presented in (a), (c), (e),
(g). Other parameters are chosen as those in Fig. 2.

mean-field approximation with most of the parameter val-
ues. The synchronization is found to be important in these
two networks. For a sparse network, the oscillation disap-
pears mainly due to the desynchronization. The results on
the clique graph network show the importance of the syn-
chronization more clearly. In such a network, the oscillation
can be found in every cluster if its size is large enough.
However, the connections between the clusters are very weak,
which makes the synchronization between the clusters hard to
maintain.

The cluster structure has been confirmed by a large amount
of experiments. To recover the synchronization, the connec-
tions between the clusters should be enhanced, which means
that the distances between neighbor clusters should be short-
ened or more clusters should be added between the existing
clusters. However, in the above simulations, the classical net-
works are introduced directly. The geometric characteristics
of the cluster are not included. It makes the understanding
of the effect of clusters difficult. In this section, we will
introduce a more realistic model to study the calcium oscil-
lation. As said above, the real spatial distribution of calcium
channels is very complex. Here, we consider a simple but very

FIG. 7. (a) The frequency distribution of cluster size. The black
dashed, blue full, and red dotted lines are for the experimental result
by Shen et al. [33], fitted accumulated result g(x), and fitted result
f (x). The histogram is for the randomly generated result. (b) The
calcium gradient against the distance. The black dashed and red
full line are for the simulation result in Ref. [39] and fitted result,
respectively.

important picture in which all calcium channels distribute on
a two-dimensional plane with a cluster structure. In a cell,
such spatial distribution can be found in the rough endoplas-
mic reticulum with a flat-layer shape [52]. In the literature,
there exists much information about the cluster structure,
which will be adopted to constrain the model to construct a
more realistic network for the spatial distribution of calcium
channels.

A. Construction of geometric network

The experimental observations suggest that the clusters
with random noncompact irregular shapes scatter randomly
on the endoplasmic reticulum [18,20,33]. Hence, the spatial
distribution of calcium channels should be generated ran-
domly and converted to a network based on experimental
information. The geometric network will be constructed in
the following steps: (1) randomly generate a series of cluster
sizes, (2) randomly generate the clusters with different sizes,
(3) randomly distribute the clusters in a two-dimensional
plane, and (4) convert the spatial distribution of the RyRs into
a geometric network. In the following, the explicit method
will be presented.

The most important characteristic of spatial distribution
of the calcium channels is the cluster structure. To construct
a geometric network reflecting the spatial distribution in a
two-dimensional plane, the clusters should be randomly gen-
erated first. The observations in Refs. [18,20,33] show that the
clusters have different sizes. Hence, the frequency distribution
of cluster sizes is required to generate a series of cluster sizes
for further generation of clusters. There exist several experi-
mental results about the frequency distribution of cluster sizes
in the literature [18,20,33]. Generally speaking, the number of
smaller clusters is much larger than these with large size, and
the frequency distribution exhibits a power law—that is, the
frequency decreases exponentially with the increase of cluster
size. In simulations, we adopt the recent experimental data
for a two-dimensional surface by Shen et al. [33] as a black
dashed line in Fig. 7. To randomly generate the cluster sizes,
we fit the experimental data with an integral of exponential

024402-9



GAO, LI, JIANG, AND HE PHYSICAL REVIEW E 107, 024402 (2023)

FIG. 8. Calcium oscillation on the geometric network. (a), (d) Spatial distribution of RyRs with random connections. (b), (e) Evolution of
the calcium concentration [Ca2+] with variation of time t . (c), (f) Evolution of the calcium concentration [Ca2+] near each RyR with variation
of time t . (a)–(c) The network with all clusters considered. (d)–(f) The network without clusters smaller than 10 RyRs.

functions as

g(x) =
∫ x

0
f (y)dy =

∫ x

0
(ae−by + ce−dy)dy. (11)

The experimental data of the accumulated frequency distri-
bution are well fitted and shown as the blue solid line in
Fig. 7. The normalized function of frequency distribution can
be obtained as

f (x) = 0.991e−0.66x + 0.009e−0.017x. (12)

The first term corresponds to the power law of the frequency
distribution. The second term is for an enhancement of small
size clusters, which has been observed in many experiments
[18,33].

With the obtained frequency distribution, a series of cluster
sizes can be generated. In the current paper, we consider
N = 4000 channels. Two random numbers are introduced as
r1 in [0,1] and r2 in [0,nmax]. Here, we only consider the
cluster sizes which are not too large to avoid the uncertainty
introduced by extremely large cluster in a limited area consid-
ered. A maximum size of the cluster as nmax = 100 is adopted
in simulations. It is also consistent with the experimental
observation, in which the clusters composed of more than 100
RyRs were scarcely observed [18,20,33]. If r1 < f (r2), the r2

will be recorded as a value of cluster size. If not, these two
random numbers are discarded. Then, another two random
numbers are generated and judgement is repeated until the
total number of RyRs reaches the total number of channels
N . The frequency distribution of generated 783 cluster sizes
is also presented and compared with the fitted function f (x)

in Fig. 7 (we would like to note that all clusters with size 0
are discarded). One can find that the experimental frequency
distribution is well generated with the above method.

In the above step, a series of cluster sizes are randomly
generated. In the following, clusters with these sizes will be
generated. In the literature, the structure of a cluster is found
to be complex. In this paper, we adopt the picture suggested
by the superresolution imaging in Ref. [20]. The observations
suggest that the cluster is not compact and the shape is ir-
regular. Fortunately, in that paper, the authors also provided
a method to randomly generate a cluster, which is adopted
directly in the current paper. The simulation starts with an
original position x1 = (0, 0), which is recorded in a vector
as the position of the first RyR. Then, a random direction
θ is generated with a distance r which is varied slightly
around a mean distance of 40 nm according to a Gaussian
distribution with a sigma of 7.4 nm. It closely matches the
observed distance distribution in mean and width in Ref. [20].
The position moves to x2 = x2 + �x with a translation �x =
(r cos θ, r sin θ ). The position x2 is recorded in the vector as
position of the second RyR. Then, another random direction
and distance are generated. The new translation is added into
previous position x2, and a new position x3 is obtained and
recorded again. The steps continue until the RyR position
series of a cluster with certain size is obtained and recorded in
the vector. As shown in Fig. 8(a), this self-assembly process
leads to the appearance of some larger gaps in the clusters
similar to those observed in Ref. [20].

The randomly generated clusters with different sizes need
to be scattered randomly in a two-dimensional plane. In the
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literature [34], the role of the Rogue and clustered RyRs in
a two-dimensional plane was also discussed, and the rogue
RyRs were found important in the generation of calcium
sparks. In that work, the clustered and Rogue RyRs were
grouped into a CRU (Ca2+ release units). However, in many
observations [18,20,33], the clusters with different sizes dis-
tribute randomly, which is adopted in the current paper. A
square region with a length of l = d

√
Ncluster is considered

with d and Ncluster being the mean distance between two neigh-
bor clusters and total number of clusters. The distribution of
nearest-neighbor distances was studied in the literature, and
the largest possibility appears at about 200 nm with a long
tail [20]. In the current paper, we adopt a mean distance
as 250 nm. For a cluster, two random numbers in range
[0, l] are generated as the position of the cluster, which is
added into the positions of all RyRs in the cluster obtained
in the previous step. If the clusters are spread randomly in
the two-dimensional plane directly, some clusters may overlap
to each other. To avoid such overlapping, we divide the two-
dimensional square region into lattices of 30 × 30 nm2. When
the positions of the RyRs in a cluster are determined, the oc-
cupied lattices are marked and cannot be occupied again. With
such treatment, a random spread of the clusters is reached, and
shown in Fig. 8(a).

In our theoretical frame, the connections should be de-
scribed by an adjacency matrix. Hence, the last step to
construct the geometric network is to abstract the RyR dis-
tribution in a two-dimensional plane into nodes and edges of
a network. Obviously, the RyRs should be taken as nodes of
the geometric network. In Sec. III, the edges are introduced
according to the classical networks where only the character-
istics of the RyR distribution are considered. In the current
case, an explicit transition from the distance between a RyR
pair to a edge of network is required. The connection should
reflect the magnitude of variation of calcium concentration.
As discussed in Sec. II, the buildup of calcium gradient be-
tween two RyRs is much faster than the activation of RyRs
[27,41,42]. Hence, the connection of two RyRs can be deter-
mined by the calcium gradient arising from the open channel.
The estimation of the calcium gradient is beyond the scope
of this paper. We adopt the simulation results in Ref. [39] as
shown in Fig. 7. It suggests a rapid decrease of the calcium
concentration with the distance between two channels, which
becomes slower at distance larger than about 100 nm. To make
the further transition, it is fitted in a range from 2 nm to
200 nm by three exponential functions as

c(r) = 77.7e−r/4.3 + 21.7e−r/15.5 + 0.19e−r/300, (13)

where the r is the distance between two channels. Here, we
neglect very small distances where the calcium concentration
is very large. In fact, we connect all channel pairs with a
distance smaller than 50 nm, corresponding to 1 µM, which
is smaller than the size of two channels. For other channel
pairs, the probability to have a connection is determined by the
calcium concentration with the following method. A random
number is generated and compared with c(r), with r being the
distance of two channels. If the random number is smaller, the
two channels will be connected. The results are also presented
in Fig. 8(a).

B. Simulation of oscillations on geometric network

With the method in the above, a spatial distribution of
4000 RyRs in a two-dimensional square region of 7 × 7 µm2

is generated, as shown in Fig. 8(a). The RyRs are grouped
into 783 clusters with different sizes, which are noncompact,
and have irregular shapes as in experimental observations. A
large amount of small clusters and rogue RyRs scatter around
the large clusters. The connections of the RyRs in the large
clusters are dense. However, different from the clique graph,
the RyRs in a large cluster are not fully connected due to the
irregular shape.

The network in Fig. 8(a) can be described with an adja-
cency matrix A in Eq. (2). The average degree of the obtained
network is about 10. Considering the total number of RyRs
of 4000, the geometric network is a sparse network. Such
a network has a sparsity close to those of a Erdös-Rényi
network GER(1000, 0.002) in Fig. 3(g) and a BaraBási-Albert
network GER(1000, 2) in Fig. 5(g), which cannot produce a
calcium oscillation. With the adjacency matrix, the evolution
of the calcium concentration can be simulated with the same
procedure as for the classical networks. With the same pa-
rameters of the calcium transduction mechanism, one can find
that the calcium oscillation can be reproduced, as shown in
Fig. 8(b). The evolution of calcium concentrations near 4000
RyRs are presented in Fig. 8(c). The results suggest that the
synchronization can be kept well. These results suggest that
the geometric network based on the experimental information
has better performance than the Erdös-Rényi or BaraBási-
Albert network with the same sparsity.

To understand the role of small clusters and rogue RyRs,
the connections to RyRs in all clusters with sizes smaller than
10 RyRs are removed, as shown in Fig. 8(d). For comparison
with the results with all clusters, the small clusters and rogue
RyRs are kept in the figure. One can find that the sketch of the
connections between clusters is still kept. Although the large
clusters are still connected, as shown in Fig. 8(e), the calcium
oscillation disappears after removing the small clusters. In
Fig. 8(f), the time revolution of every RyR is illustrated. No
oscillation happens near the rogue RyRs and small clusters
whose connections are removed. The oscillation still can be
seen for a single large cluster, though not so well. However,
the global calcium oscillation fails, as on the clique graph net-
work, due to the desynchronization of different clusters. The
synchronization cannot be maintained only with connections
between the large clusters. The results support the importance
of the small clusters and rogue RyRs in the formation and
maintenance of calcium oscillation.

V. SUMMARY AND DISCUSSION

The calcium oscillation is a physiological phenomenon,
which is very important to regulate intracellular life activity,
and abnormal amplitude and frequency have a close relation-
ship to many diseases. The calcium channel is a key ingredient
in the calcium regulation mechanism to reproduce the cal-
cium oscillation. Though there exist many models which
are successful to reproduce the oscillations, the effect of the
spatial distribution of calcium channels beyond the cluster
is scarcely investigated in existing studies. In this paper, we
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establish a theoretical framework beyond the existing models
to study the effect of the spatial distribution on the calcium
oscillation. The Keizer-Levine model is introduced to de-
scribe the transition of four states of the calcium channel, and
calcium exchange between the cytoplasm and the stores or
external medium. Since the Keizer-Levine model is enough
to successfully generate the calcium oscillation, in the current
paper the mechanism is extended directly from the Keizer-
Levine model under the mean-field ansatz to a network model.
The variation of the calcium concentration induced by the
open channels is described by an adjacency matrix of consid-
ered networks with channels as nodes and Ca2+ connections
as edges. The theoretical frame is checked first by the com-
plete graph, and the mean-field result is well reproduced.

Since the real spatial distribution of the calcium channels
is very complex, several types of classical networks, which
reflect different sides of characteristics of channel distribu-
tion, are introduced to perform simulation. The Erdös-Rényi
network reflects the homogeneous distribution at large scale.
The heterogeneous BaraBási-Albert network reflects a power
law of cluster sizes, in which clusters are taken as nodes. For
the Erdös-Rényi network, if parameter p is chosen larger than
0.1, the interspike interval and amplitude are almost the same
as the results in the mean-field approximation with some un-
certainties from the randomness introduced in the simulation.
Different from the Erdös-Rényi network, the BaraBási-Albert
network deviates from the mean-field approximation in almost
a full range of the parameters. If the parameters are justified,
the BaraBási-Albert network can produce an oscillation with a
similar frequency and amplitude as the Erdös-Rényi network.
It may be the reason why the models under mean-field ansatz
are also successful to describe many experimental observa-
tions. However, the Erdös-Rényi network lacks the regulation
ability of the BaraBási-Albert network by changing the ar-
chitectures. The modulation of frequency and the amplitude
of calcium oscillation is important to intracellular life activity
[54], such as sensitive and specific response of the effector
proteins [55]. For both the Erdös-Rényi and BaraBási-Albert
networks which are not very sparse, the synchronization of the
nodes is very well, which makes global oscillation possible. If
the network becomes sparse, which means that the couplings
between nodes are far from a global coupling, the synchro-
nization is broken down with the increase of the sparsity,
as suggested in Ref. [56]. With the increase of sparsity of
network, the frequency increases and the amplitude decreases.
For a very sparse network, the synchronization, as well as
oscillation, will disappear.

In the clique graph and geometric network, the cluster
structure is considered explicitly. Cluster structure is a well-
known and important characteristic of channel distribution.
Early observations suggest that RyRs in a cluster are packed
compactly, forming a tight lattice [17]. Such a picture was
also adopted in many studies focusing on the local dynamics
[12,21,30]. To reflect such a characteristic, a simulation is per-
formed with a clique graph in which the channels in a cluster
are fully connected. The results suggest that local oscillation
and local synchronization can be reproduced in the cluster if
its size is large enough. The global oscillation does not exist

due to the desynchronization between clusters. It suggests that
a regular compact picture of clusters with a relatively large
distance between the clusters is not suitable to describe the
realistic channel distribution. Besides the clique graph, a geo-
metric network is constructed in a two-dimensional plane with
the experimental information in Refs. [18,20,25]. The cluster
sizes are randomly generated with the experimental frequency
distribution. The RyR arrangements of a series of clusters with
different sizes are simulated randomly with the experimental
mean distance. The calcium oscillation can be well repro-
duced from the geometric network with the cluster structure.
As shown in Fig. 8(f), about two-thirds of the RyRs distribute
in clusters larger than 10 RyRs. However, if the RyRs in
small clusters are removed, the synchronization between the
clusters cannot be maintained, though the sketch of the con-
nections is still kept. Such results suggest the importance of
small clusters in the formation and maintenance of calcium
oscillation.

In summary, a theoretical framework is first established
to study the spatial distribution of calcium channels with
complex structures by simulating the calcium oscillation on
three classical networks and a more realistic geometric net-
work. The mean-field result can be well reproduced in the
simulations on the homogeneous networks. The power law of
cluster sizes is referred to due to more effectivity to modulate
calcium oscillation. The simple cluster model is disfavored
due to the desynchronization between the clusters. However,
with the small clusters included, the calcium oscillation can
be reproduced. The recent superresolution nanoscale imaging
supports such conclusion [18,20,25].

The current research provides a helpful basis to construct
a more realistic model to study the channel distribution, and
can be extended to study other phenomena in calcium signal
transduction. However, in the current paper, the diffusion of
calcium is only included as the connection between calcium
channels while the delay time is neglected. The diffusion
of the free calcium should be compared with the open time
of the RyR. Hence, the time delay between the RyRs can
safely be neglected for free calcium. The buffers, such as
calmodulin, will make calcium diffuse slower than free cal-
cium. Considering that the buffers will carry calcium far from
the endoplasmic reticulum, in the current model we assume
that the calcium once attached to buffers does not affect the
calcium channels. In fact, its effect can be partly absorbed
into the influx and efflux, which exchange calcium with an
external medium. In the current paper, the effect of the diffu-
sion is not fully included. The effectiveness of such treatment
needs further studies, such as simulation of the calcium spark.
In addition, the current paper is based on the Keizer-Levine
model, in which some ingredients are not included, such as the
variation and diffusion of the calcium in endoplasmic reticu-
lum. Also, the mechanism about buffers is also not introduced
explicitly. To extend the current framework to study more
experimental phenomena, a more suitable mechanism should
be included to establish the network model.

ACKNOWLEDGMENT

This project is supported by the National Natural Science
Foundation of China (Grant No. 11675228).

024402-12



CALCIUM OSCILLATION ON HOMOGENEOUS AND … PHYSICAL REVIEW E 107, 024402 (2023)

[1] M. J. Berridge, The inositol trisphosphate/calcium signal-
ing pathway in health and disease, Physiol. Rev. 96, 1261
(2016).

[2] D. Terentyev, I. Györke, A. E. Belevych, R. Terentyeva, A.
Sridhar, Y. Nishijima, E. C. de Blanco, S. Khanna, C. K. Sen, A.
J. Cardounel et al., Redox modification of ryanodine receptors
contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart
failure, Circ. Res. 103, 1466 (2008).

[3] B. Fiedler, S. M. Lohmann, A. Smolenski, S. Linnemüller, B.
Pieske, F. Schröder,J. D. Molkentin, H. Drexler, and K. C.
Wollert, Inhibition of calcineurin-NFAT hypertrophy signaling
by cGMP-dependent protein kinase type I in cardiac myocytes,
Proc. Natl. Acad. Sci. USA 99, 11363 (2002).

[4] O. Cohen and S. A. Safran, Physics of spontaneous calcium
oscillations in cardiac cells and their entrainment, Phys. Rev.
Lett. 122, 198101 (2019).

[5] J. Wei, J. Yao, D. Belke, W. Guo, X. Zhong, B. Sun, R. Wang,
J. P. Estillore, A. Vallmitjana, R. Benitez et al., Ca2+-CaM
dependent inactivation of RyR2 underlies Ca2+ alternans in
intact heart, Circ. Res. 128, e63-e83 (2021).

[6] J. Sneyd, J. M. Han, L. Wang, J. Chen, X. Yang, A. Tanimura,
M. J. Sanderson, V. Kirk, and D. I. Yule, On the dynamical
structure of calcium oscillations, Proc. Natl. Acad. Sci. USA
114, 1456 (2017).

[7] E. Smedler and P. Uhlén, Frequency decoding of calcium
oscillations, Biochim. Biophys. Acta, Gen. Subj. 1840, 964
(2014).

[8] G. W. De Yong and J. Keizer, A single-pool inositol 1,
4, 5-trisphosphate-receptor-based model for agonist-stimulated
oscillations in Ca2+ concentration, Proc. Natl. Acad. Sci. USA
89, 9895 (1992).

[9] J. Keizer and L. Levine, Ryanodine receptor adaptation
and Ca2+-induced Ca2+ release-dependent Ca2+ oscillations,
Biophys. J. 71, 3477 (1996).

[10] J. Sneyd and J. F. Dufour, A dynamic model of the type-2
inositol trisphosphate receptor, Proc. Natl. Acad. Sci. USA 99,
2398 (2002).

[11] H. Cheng and W. J. Lederer, Calcium sparks, Physiol. Rev. 88,
1491 (2008).

[12] S. Rüdiger, J. W. Shuai, and I. M. Sokolov, Law of Mass Action,
Detailed Balance, and the Modeling of Calcium Puffs, Phys.
Rev. Lett. 105, 048103 (2010).

[13] S. Rüdiger, P. Jung, and J. W. Shuai, Termination of Ca2+

release for clustered IP3R channels, PLoS Comput. Biol. 8,
e1002485 (2012).

[14] C. P. Fall and J. E. Keizer, Mitochondrial modulation of intra-
cellular Ca2+ signaling, J. Theor. Biol. 210, 151 (2001).

[15] M. Marhl, T. Haberichter, M. Brumen, and R. Heinrich, Com-
plex calcium oscillations and the role of mitochondria and
cytosolic proteins, Biosystems 57, 75 (2000).

[16] P. Szopa, M. Dyzma, B. Kźmierczak, Membrane associated
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