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Providing an abstract representation of natural and human complex structures is a challenging problem. Ac-
counting for the system heterogenous components while allowing for analytical tractability is a difficult balance.
Here I introduce complex hypergraphs (chygraphs), bringing together concepts from hypergraphs, multilayer
networks, simplicial complexes, and hyperstructures. To illustrate the applicability of this combinatorial structure
I calculate the component sizes statistics and identify the transition to a giant component. To this end I introduce
a vectorization technique that tackles the multilevel nature of chygraphs. I conclude that chygraphs are a unifying
representation of complex systems allowing for analytical insight.
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I. INTRODUCTION

Graphs are structural abstractions of many-particle sys-
tems, with vertices representing particles and edges the
pairwise interactions between them [1]. Hypergraphs are
an extension allowing for interactions between two or
more vertices [2–6]. Multiplex networks introduce layers
accounting for different interaction types [7]. Simplicial
complexes extend connectivity to hierarchical structures of
inclusion [8–10].

There are self-referential constructions as well. Joslyn and
Nowak introduced ubergraphs [11], a combinatorial structure
where edges can contain other edges. Ubergraphs has been
used to organize relations in knowledge databases [12]. At
a higher level of abstraction, Baas introduced higher order
structures, also called hyperstructures, using concepts from
category theory [13].

In practice what is a suitable representation is a matter
of balance. We would like the flexibility of hypergraphs to
go beyond pairwise interactions, the possibility of multiple
layers, and the hierarchical inclusion structure of simplicial
complexes and hyperstructures. In turn we would like the
simplicity of graphs to calculate aggregate properties, such as
the size of the giant component.

Here I introduce complex hypergraphs as a flexible com-
binatorial structure—general enough to include a big volume
of previous work and new applications and simple enough to
allow for analytical calculations. The work is organized as
follows. In Sec. II I define complex hypergraphs and comment
on its relation with other structures. In Secs. III and IV I
provide analytical methods to characterize the emergence of
the chygraph giant component, using a generating function
formalism. I discuss particular cases and provide numerical
examples validating the analytical results. I finish with some
key conclusions in Sec. V.

*alexei@nodeslinks.com

II. KEY DEFINITIONS

A. Motivation

Complex systems are simplified to facilitate their analy-
sis. Gradually we remove some of the simplifications and
move closer to the real system. For example, the system
of scientific publications has been represented by different
network structures depending on the question asked [14,15].
Citation networks indicate the flow of knowledge along pub-
lications [16,17]. In citation networks nodes are publications
and citations are represented by directed links. Coauthorship
networks are better suited when focusing on collaborations.
Authors-publications networks can be further expanded to
explicitly represent authors and publications, resulting in
the bipartite graph [14]. The same authors-publications re-
lations can be represented as an authors hypergraph, where
publications are hyperedges associating one, two, or more
authors [18]. These networks and hypergraphs are simplifi-
cations losing some aspects of the original system. We need
a more complete representation with a richer combinatorial
structure. A scientific publication contains both authors and
references. The document internal structure can be repre-
sented by a hypergraph with two edges—the list of authors
and references. On top of that, the publication is a vertex in
a higher order structure where the building blocks are authors
and publications. Informally speaking, a hypergraph of hyper-
graphs, a complex hypergraph.

B. Complex systems

Here I use the term complex in the structural sense: made
of different parts. I make a distinction between the parts that
are not decomposable into other parts, the atoms, and the
complexes that are made of other parts, including atoms. The
atoms could have a finer structure, but they have been chosen
as the primary building blocks. These preliminaries lead to the
self-consistent definition of complex system.

Definition. A complex system is a set of atoms and
complexes, where complexes are made of atoms and other
complexes.
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The latter serves as a philosophical definition of complex
system. For practical applications we need a precise math-
ematical construction. The choice depends on the internal
structure of the complex.

C. Hypergraphs

A hypergraph H(V, E ) is a vertex set V and a hyperedge
set E , where a hyperedge is a subset of V . Just for the sake
of illustration, I rewrite this definition based on the wording
of complex systems introduced above. A hypergraph H(A,C)
is an atom set A and a complex set C, where the complexes
are subsets (hyperedges) of A. Obviously hypergraphs do not
possess the self-referential property of complex systems. They
are simple structures.

D. Ubergraphs

To make hypergraphs self-referential, Joslyn and Nowak
introduced ubergraphs [11], a combinatorial structure where
hyperedges can contain other hyperedges. Here I redefine
them using the wording of complex systems introduced above.

Definition. An ubergraph U (A,C) is a set of atoms A and a
set of complexes C, where the complexes are subsets (hyper-
edges) of A ∪ C.

E. Complex hypergraphs

To add more internal structure I choose hypergraphs. That
leads to the definition of complex hypergraphs.

Definition. A complex hypergraph (chygraph) χ (A,C) is a
set of atoms A and a set of complexes C, where the complexes
are hypergraphs with vertex sets in A ∪ C.

Let us unravel this definition with some examples. A
graph G(V, E ) is represented by the chygraph χ (V, E ) where
the complexes are edges. A multiplex graph [7] with layer
graphs Gl (V, El ), l = 1, . . . , L, is represented by the chy-
graph χ (V,∪L

l=1El ) plus some partition structure discussed
below. The system of scientific publications is represented
by the chygraph χ (A, {Hi(Ai ∪ Ri, {Ai, Ri})}), where atoms
are authors, complexes are publications, the publications are
represented by a hypergraph with two edges (Ai for the authors
and Ri for the references), and the index i runs across all
publications. The two edges have no overlap and therefore
the complexes representing scientific publications have two
internal components (Fig. 1).

We can think of chygraphs as ubergraphs with two edge
types: the edges in the complexes associated hypergraphs and
the complexes. The complex acts as a special edge that we
designate as the basic unit of inclusion. In turn, ubergraphs
are chygraphs where all intracomplex hypergraphs contain
a single edge. Obviously in this case the intracomplex hy-
pergraph has only one component with a size equal to the
hyperedge cardinality. Therefore, all results derived in the
following sections are valid for ubergraphs, after replacing
component size by hyperedge cardinality.

F. Chygraphs properties

Many properties of graphs and hypergraphs are carried on
to chygraphs. To make a distinction from the metrics asso-

citation (inclusion)

publications (complexes)

authors (atoms)

reference list (hyperedge)

author list (hyperedge)

authorship (inclusion)

FIG. 1. Chygraph example. This chygraph is a representation
of the system of scientific publications, with atoms representing
authors, complexes publications, and inclusions citations.

ciated with the complexes hypergraph structure, I will use
greek letters to name quantities at the chygraph level. Given
a complex j, let H(Vj, Ej ) be its associated hypergraph. Let
i ∈ A ∪ C be an atom or complex, where i = 1, . . . , n and
n = |A ∪ C|. I will use the notation i ∈ Cj as equivalent to
i ∈ Vj . The chy-adjacency matrix α is the n×n matrix with
matrix elements

αi j =
{

1 if i ∈ Cj,

0 otherwise,
(1)

where i, j ∈ A ∪ C. The associated vertex chydegrees

κi =
∑

j

αi j . (2)

Additional metrics are needed to characterize potential mul-
tilevel structure. Chygraphs may contain multiple levels of
inclusion. At the lower level we have atoms, whose fine
structure is null or not specified. One level above we have
complexes, their internal structure being specified as hyper-
graph containing atoms and/or other complexes as vertices.
In some systems it makes sense to define higher levels of
inclusions. For example, when describing human populations
by location, we speak of neighborhoods, cities, countries,
continents, and the world. This inclusion hierarchy leads to
the definition of chygraph length.

Definition: chygraph length L(χ ). Let χ (A,C =
{Hi(Vi, Ei )}) be a chygraph. Let � = �1 ∪ . . . ∪ �l be a
partition of C that is nonintercepting (�i ∩ � j = ∅ for i �= j),
hierarchical [if Ci ∈ � j , then Vi ⊂ A ∪ (∪k� j�k )], and
complexes within the same partition have similar statistical
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properties. The chygraph length, denoted by L(χ ), is the
maximum l among all such partitions.

The differentiation of partitions by statistical properties
allows for the specification of multitype structures. This is the
case in multiplex graphs and hypergraphs. In this context two
layers may have the same vertex set but the complexes may
have different statistical properties depending on the layer.

As in the case of higher order networks [19], we could
extend other metrics such as the clustering coefficient and
the entropy to chygraphs. Here I have limited my attention
to metrics that are needed in the following sections.

III. PERCOLATION THEORY I:
NO INTRALAYER INCLUSIONS

In spite of its complexity the chygraph combinatorial struc-
ture is suitable for analytical treatment. I focus on percolation,
which is a central problem in graph theory.

The generating functions technique has been used to solve
percolation problems in graphs and hypergraphs [2,4,6,20]. It
follows a simple recipe: express the generating function of
the component sizes distribution as a recursive function of
itself, modulated by the generating functions of other relevant
distributions. In the context of chygraphs, the key quantities
are the component sizes σ l and excess component sizes σ̄ ml

when the components are sampled from layer l at random or
coming from another layer m, respectively. Here we need to
be precise about how we arrive from another layer.

We can arrive at a reference complex in two different ways.
From the complexes it includes (coming from below) or from
the complexes where it is included (coming from above). If
there are no intralayer connections the notation σ̄ ml does not
require any further specification. When m < l it is clear we are
arriving from below. In contrast, when m > l we are arriving
from above. In this section I assume there are no intralayer
connections. The case with intralayer connections will be the
subject of the next section.

The component sizes depend on the joint distribution of
chydegrees κ̂l , in-complex hypergraph component sizes šl ,
and their excess equivalents ˇ̄κm

l and ˇ̄sm
l when reached from

layer m. The notation šl = (sl0, sl1 . . . , sll−1) indicates that
a component within a complex at layer l is composed of
vertices from A,�1, . . . ,�l−1. In turn, κ̂l = (κll+1, . . . , κlL )
indicates that the chydegree of a vertex at layer l is decom-
posed into chydegrees to vertices in layers �l+1, . . . ,�L. The
probability generating functions of κ̂l , ˇ̄κml , šl , ˇ̄sml , σ l , and
σ̄ ml are denoted by �l (x̂l ), �ml (x̂l ), Gl (x̌l ), U ml (x̌l ), 	l (x),
and ϒml (x), respectively. Since they are generating functions
of probability distributions, they are all equal to 1 when
evaluated at x = 1 and their first derivatives are equal to the
corresponding expected values.

A. Mean component size

The definition of chygraph is translated into a set of
self-consistent equations for the component size generating
functions. As a guideline, we arrive at a reference complex
and from the complex we navigate the chygraph. Follow-
ing the chygraph adjacency matrix leads us to complexes
including the reference complex or goes through the com-

plexes included in the reference complex hypergraph. More
precisely,

	l (x) = x�l [ϒ ll+1(x), . . . , ϒ lL(x)]

× Gl [ϒ l0(x), . . . , ϒ ll−1(x)], (3)

ϒml (x) = x�ml [ϒ ll+1(x), . . . , ϒ lL(x)]

× U ml [ϒ l0(x), . . . , ϒ ll−1(x)], (4)

where l = 0, . . . , L(χ ). Note that the first x in the right hand
side of these equations corresponds to the reference complex,
the terms containing �l [· · · ] and �ml [· · · ] to navigations
using the chygraph adjacency matrix (complexes including
the reference complex), and the terms containing Gl [· · · ] and
U ml [· · · ] to navigations through the complexes in the refer-
ence complex hypergraph.

B. Mean component size

The mean excess component sizes 〈σ̄ 〉ml = ϒ̇ml (1) can be
calculated from Eq. (4), resulting in

〈σ̄ 〉ml = 1 +
L∑

k=l+1

〈κ̄〉m
lk〈σ̄ 〉lk +

l−1∑
k=0

〈s̄〉m
lk〈σ̄ 〉lk, (5)

where l, m = 0, . . . , L. Note that 〈κ̄〉m
lk �= 〈κ〉lk and 〈s̄〉m

lk �=
〈s〉lk only when k = m. When we come from a layer m into
a layer l , we then return to layer m. Now comes the vectoriza-
tion trick.

The matrix equation (5) can be solved by the vectorization
method for matrix equations [21]. The vectorization operator
vecX transforms a (M, N ) matrix into an M×N column vector
by stacking the columns of X . For example,

vecX (2,2) =

⎡
⎢⎢⎢⎢⎣

X 00

X 10

X 01

X 11

⎤
⎥⎥⎥⎥⎦. (6)

To handle tensors with four indexes I generalize the vectoriza-
tion operator. The vectorization operator acting on the X (M,N )

(O,P)
tensor creates a (M×N, O×P) matrix by stacking the upper
indexes along columns and lower indexes along rows. For
example,

vecX (2,2)
(2,2) =

⎡
⎢⎢⎢⎢⎢⎣

X 00
00 X 00

01 X 00
10 X 00

11

X 01
00 X 01

01 X 01
10 X 01

11

X 10
00 X 10

01 X 10
10 X 10

11

X 11
00 X 11

01 X 11
10 X 11

11

⎤
⎥⎥⎥⎥⎥⎦. (7)

Applying vectorization Eq. (5) is transformed to

vec{A}vec{〈σ̄ 〉} = vec{B}, (8)

where

Aml
nk = δmnδlk − 〈κ̄〉m

nk�k−nδnl − 〈s̄〉m
nk�n−kδnl , (9)

Bml = 1, (10)
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and �i is an integer Heaviside step function (�i = 1 if
i > 0 or 0 otherwise). The linear system of equations (8) has
Cramer’s rule as a formal solution

vec{〈σ̄ 〉}i = det(vec{A}i)

det(vec{A})
, (11)

where vec{A}i is derived from vec{A} by replacing the ith
column by vec{B}. This solution is valid provided that A is
not singular. When det(A) → 0+ the mean component sizes
diverge and the system achieves percolation. Therefore, the
chygraph critical percolation condition is given by

det(vec{A}) = 0. (12)

C. Giant component

The equation for the mean component sizes (8) is valid
provided det(vec{A}) > 0. In the following I demonstrate that
det(vec{A}) > 0 corresponds with the subcritical phase. Let
Pl be the probability that a vertex from layer l selected at
random does not belong to the giant component and let Qml be
the probability that a vertex at layer l selected from a complex
at layer m does not belong to the giant component. These
probabilities satisfy the self-consistent equations

Pl = �l [Qll+1, . . . , QlL] Gl [Q0l , . . . , Ql−1l ], (13)

Qml = �ml [Qll+1, . . . , QlL] U ml [Q0l , . . . , Ql−1l ]. (14)

This system of equations does not have an explicit analytic so-
lution. A solution can be found by successive approximations,
where the left hand side is interpreted as the t + 1 iteration
after plugging iteration t into the right hand side. In particular,
in the absence of a giant component, Eqs. (13) and (14) admit
the solution Pl = Qml = 1. Let us assume that Qlm = 1 − xml ,
where xml → 0. Keeping terms up to first order in xml in
Eq. (14) results in the recursive approximation equations

vec{x}(t + 1) = (I − vec{A})vec{x}(t ). (15)

The linear map (15) converges to vec{x} = 0 if and only if

(vec{A}) > 0, where 
(vec{A}) is the largest eigenvalue
of vec{A}. Therefore, 
(vec{A}) is the control parameter for
the existence of a giant component. In the subcritical (super-
critical) phase 
 > 0 (
 < 0) there is not (there is) a giant
component and Pl = 1 (Pl < 1). The percolation transition
takes place at the criticality condition 
(vec{A}) = 0, which
is equivalent to Eq. (12).

D. L = 1

When there is only one complex layer [L(χ ) = 1] then
vec{A} in Eq. (9) is reduced to

vec{A} =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 A01
10 0

0 A10
01 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (16)

with determinant

det(vec{A}) = 1 − A10
01A01

10 = 1 − k̄1
01s̄0

10. (17)

A hypergraph H(V, E ) is mapped to a one layer chy-
graph where the complexes are the hypergraph edges:
χ (V, {H(V, el ), el ∈ E}). In this case the excess component
sizes s̄0

10 are the excess hyperedges cardinality 〈c̄〉 and the
excess atoms degree k̄1

01 is the vertices excess degree 〈k̄〉.
Substituting into Eq. (17) one obtains the critical condition
for hypergraphs: 〈c̄〉〈k̄〉 = 1, in agreement with the result of
Coutinho et al. [4]. Furthermore, graphs are hypergraphs with
excess cardinality 1 and, therefore, the criticality condition
reduces to 〈k̄〉 = 1, as previously reported by Molloy and
Reed [22] and Callaway et al. [20].

E. L = 2

When there are two complex layers [L(χ ) = 2], then
vec{A} in Eq. (9) is reduced to

vec{A}=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 1 0 A01
10 0 A01

12 0 0 0

0 0 1 0 0 0 A02
20 A02

21 0

0 A10
01 A10

02 1 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 A12
20 A12

21 0

0 A20
01 A20

02 0 0 1 0 0

0 0 0 A21
10 0 A21

12 0 1 0

0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(18)

with determinant

det(vec{A}) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 A01
10 A01

12 0 0

0 1 0 0 A02
20 A02

21

A10
01 A10

02 1 0 0 0

0 0 0 1 A12
20 A12

21

A20
01 A20

02 0 0 1 0

0 0 A21
10 A21

12 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (19)

We could expand the determinant but it would lead to a com-
plicated algebraic expression. For most practical purposes it
is best to work with the explicit matrix form in Eq. (19),
including numerical calculations. Further simplifications are
obtained when we consider combinatorial constructions with
additional constraints.

F. Hierarchical inclusion

There are many systems where inclusion follows a hi-
erarchy. Geographical zooming, for example [23]. It is
straightforward to build hierarchical inclusion in chygraphs:
atoms included in layer 1 complexes, layer 1 complexes
included in layer 2 complexes,..., layer L − 1 complexes
included in layer L complexes. In this context the tensor
elements of Aml

nk are zero if |m − l| �= 1 or |n − k| �= 1. For
the case L = 2 this constraint leads to the elimination of
the second and fifth row and the second and fifth column in
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Eq. (19), resulting in

det(vec{A}) =

∣∣∣∣∣∣∣∣∣∣

1 A01
10 A01

12 0

A10
01 1 0 0

0 0 1 A12
21

0 A21
10 A21

12 1

∣∣∣∣∣∣∣∣∣∣
. (20)

Expanding the latter determinant and substituting the explicit
form of the tensor A [Eq. (9)] we obtain

det(vec{A}) = (
1 − 〈κ̄〉1

01〈s̄〉0
10

)(
1 − 〈κ̄〉2

12〈s̄〉1
21

)
− 〈κ̄〉0

12〈s̄〉2
10〈κ̄〉1

01〈s̄〉1
21. (21)

Within the parentheses we have the criticality condition for
each layer alone. The last term represents the interactions
including both layers. The latter is the bona fide complexity of
hierarchical inclusion. The terms within the first two parenthe-
ses can be positive, meaning no standard 1 layer percolation,
and det(vec{A}) can become 0 due to the last interaction term.

G. Multiplex hypergraphs

Multiplex hypergraphs are another type of multilayer struc-
ture [6]. A multiplex hypergraph is a set of hypergraphs
{Hl (V, El ), l = 1, . . . , L} with the same set of vertices. Note
that when the statistical properties of the hypergraphs Hl

are different the multiplex hypergraph is not statistically
equivalent to H(V,∪L

l=1El ). A multiplex hypergraph can be
mapped to the chygraph χ (V,∪L

l=1El ,� = E1 . . . , EL ), where
all edges are represented by complexes and the complexes are
partitioned according to the hypergraph they originated from.
For the case L = 2, the absence of inclusion of complexes into
complexes leads to the elimination of the fourth and sixth row
and the fourth and sixth column of (19), resulting in

det(vec{A}) =

∣∣∣∣∣∣∣∣∣∣

1 0 A01
10 0

0 1 0 A02
20

A10
01 A10

02 1 0

A20
01 A20

02 0 1

∣∣∣∣∣∣∣∣∣∣
. (22)

Expanding the latter determinant and substituting the explicit
form of the tensor A [Eq. (9)] we obtain

det(vec{A}) = (
1 − k̄1

01s̄0
10

)(
1 − k̄2

02s̄0
20

) − k̄2
01s̄0

10k̄1
02s̄0

20. (23)

Within the first two parentheses there is the contribution of
each hypergraph layer alone. The last term represents the
interaction between the two hypergraphs via the vertices. The
latter is the bona fide complexity of multiplex hypergraphs.
The terms within the first two parentheses can be positive,
meaning no standard hypergraph percolation, and det(vec{A})
can become 0 due to the last interaction term.

H. Numerical example

To test the analytical results I will use a random chygraph
model with a multiplex structure: one layer of n0 atoms,
two layers of complexes with n1 and n2 complexes, and mi

inclusions of a randomly chosen atom into a randomly chosen
complex in layer i, i = 1, 2. Since inclusions are random

(a)

(b)

FIG. 2. Without intralayer inclusions. Numerical estimation of
(a) the giant component fraction and (b) the mean component size as
a function of − det(vec{A}) for a random chygraph with a multiplex
structure: one layer of n0 atoms, two layers of complexes with n1

and n2 complexes, and mi inclusions of a randomly chosen atom
into a randomly chosen complex in layer i, i = 1, 2. The model pa-
rameters are n0 = n1 = n2 = 106, with two values of θ1 = m2

1/(n0n1)
indicated in the legend and θ2 = m2

2/(n0n2) in the interval [0.01,4].
Average was taken over 10 random chygraphs.

both the chydegrees and the component sizes have Poisson
distributions with averages k0i = mi/ni and si0 = mi/n0, i =
1, 2. For the Poisson distribution the excess average coincides
with the average and therefore k̄ j

0i = mi/ni and s̄ j
i0 = mi/n0,

i = 1, 2. Substituting these values into Eq. (23) we arrive at
the criticality condition

det(vec{A}) = (1 − θ1)(1 − θ2) − θ1θ2, (24)

where θi = m2
i /nin0, i = 1, 2.

To test this expression I computed the giant component
fraction and the mean component size excluding the giant
component numerically. To this end I project the chygraph
into a network where nodes represent atoms and complexes,
while links represent inclusion relations. Figure 2 reports the
numerical estimation of the giant component fraction and
the mean component size as a function of − det(vec{A}),
computed using Eq. (24). There is a phase transition at
− det(vec{A}) = 0, with the emergence of a giant component
and a maximum of the mean component size excluding the
giant component. The agreement demonstrates the validity of
the analytical results for multiplex chygraphs.

It turns out this example is a validation for the hierarchical
inclusion as well. Consider another random chygraph model
with the following inclusion structure: one layer of n0 atoms,
a layer labeled 1 with n1 complexes and m1 inclusions of
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a randomly chosen atom into a randomly chosen complex
from layer 1, and a layer labeled 2 with n2 complexes and
m2 inclusions of a randomly chosen complex from layer 1
into a randomly chosen complex from layer 2. One can check
that the criticality condition for chygraphs with hierarchical
inclusion in Eq. (21) is reduced to Eq. (24). Furthermore,
projecting the chygraph into a network, where nodes repre-
sent atoms and complexes, while links represent inclusion
relations, we obtain the same network as for the multiplex
chygraph described above. Note that this equivalence holds
for L = 2. For L > 2 there is no equivalence between random
chygraphs with a multiplex or hierarchical inclusion structure.
For the multiplex structure the network projection has one
layer connected to L − 1 layers. For the hierarchical inclu-
sion the network projection has L ordered layers with links
between adjacent layers only.

IV. PERCOLATION THEORY II:
WITH INTRALAYER INCLUSIONS

We can arrive at a reference complex from the complexes
it includes (from below) or where it is included (from above).
When there are no intralayer connections the pair of indexes
ml is sufficient to distinguish how we arrived at the reference
complex. If m < l we came from below. If m > l we came
from above. However, when there are intralayer inclusions the
two indexes are not sufficient to specify how we arrived at a
complex for the case m = l . We need an extra index. In the
context of the generating function formalism that means we
need two component size generating functions when arriving
at a complex from an atom or another complex. I will denote
them by ϒml

− when arriving from below and ϒml
+ when ar-

riving from above. With this distinction Eqs. (3) and (4) are
rewritten as

	l (x) = x�l [ϒ ll
− (x), . . . , ϒ lL

− (x)]

×Gl [ϒ l0
+ (x), . . . , ϒ ll

+ (x)], (25)

ϒml
i (x) = x�ml

i [ϒ ll
− (x), . . . , ϒ lL

− (x)]

× U ml
i [ϒ l0

+ (x), . . . , ϒ ll
+ (x)], (26)

where l = 0, . . . , L(χ ) and

�ml
i (x) =

{
�l (x) for i = −,

�ml (x) for i = +,
(27)

U ml
i (x) =

{
Gl (x) for i = −,

U ml (x) for i = +.
(28)

Note I have implicitly assumed that the chydegrees and the
intracomplex hypergraph components are independent.

The mean excess component sizes 〈σ̄ 〉ml
i = ϒ̇ml

i (1), i=−,

+, can be calculated from Eq. (26), resulting in

〈σ̄ 〉ml
i = 1 +

L∑
k=l

〈κ̄〉m
ilk〈σ̄ 〉lk

− +
l∑

k=0

〈s̄〉m
ilk〈σ̄ 〉lk

+, (29)

where

〈κ̄〉m
ilk =

{
〈κ〉lk for i = −,

〈κ̄〉m
lk for i = +,

(30)

〈s̄〉m
ilk =

{
〈s̄〉m

lk for i = −,

〈s〉lk for i = +.
(31)

We can apply the vectorization trick to transform Eq. (29)
into a standard linear system of equations. To do so we need
to apply the vectorization trick twice. Once as done before for
the indexes (m, l, k) and another one for the index i. After the
first vectorization Eq. (29) can be rewritten as[

vec{A−−} vec{A−+}
vec{A+−} vec{A++}

][
vec{〈σ̄ 〉−}
vec{〈σ̄ 〉+}

]
=

[
vec{B−}
vec{B+}

]
(32)

and after the second vectorization as

vec2{A}vec2{σ̄ } = vec2{B}, (33)

where

(A−−)ml
nk = δmnδlk − 〈κ〉nk�k−n+1δnl ,

(A−+)ml
nk = −〈s̄〉m

nk�n−k+1δnl ,

(A+−)ml
nk = −〈κ̄〉m

nk�k−n+1δnl ,

(A++)ml
nk = δmnδlk − 〈s〉nk�n−k+1δnl , (34)

Bml
+ = Bml

− = 1. (35)

Finally, the criticality condition is

det(vec2{A}) = 0. (36)

A. L = 1

When there is only one complex layer [L(χ ) = 1] from
Eq. (34) we obtain

det(vec2{A}) =

∣∣∣∣∣∣∣∣∣∣

1 −〈k〉11 −〈s̄〉0
10 −〈s〉11

0 1 − 〈k〉11 −〈s〉10 −〈s̄〉1
11

−〈k̄〉1
01 0 1 0

0 −〈k̄〉1
11 −〈s〉10 1 − 〈s〉11

∣∣∣∣∣∣∣∣∣∣
.

(37)

One can go ahead and expand the determinant. However, I
have not found any grouping of the terms that leads to a
compact algebraic equation. Therefore, I will work straight
with Eq. (37).

B. Numerical example

To test Eq. (37) I consider a random chygraph with a layer
of n0 atoms, a layer of n1 complexes, m0 inclusions of a
randomly selected atom into a randomly selected complex,
and m1 inclusions of a randomly selected complex into a ran-
domly selected complex. A possible realization of this model
is illustrated in Fig. 1.

Since inclusions are random both the chydegrees and
the component sizes have Poisson distributions with av-
erages 〈κ〉01 = m0/n0, 〈κ〉11 = m1/n1, 〈s〉10 = m0/n1, and
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(a)

(b)

FIG. 3. With intralayer inclusions. Numerical estimation of
(a) the giant component fraction and (b) the mean component size
as a function of − det(vec{vec{A}}) for a random chygraph with one
layer of n0 atoms, one layer of n1 complexes, m0 inclusions of a
randomly selected atom into a randomly selected complex, and m1

inclusions of a randomly selected complex into a randomly selected
complex. The model parameters are n0 = n1 = 106, with two values
of θ0 = m0/n0 as indicated in the legend and θ2 = m1/n1 in the
interval [0.1,2]. Average was taken over 10 random chygraphs.

〈s〉11=m1/n1. For the Poisson distribution the excess aver-
age coincides with the average and therefore 〈κ̄〉1

01 = m0/n0,
〈κ̄〉1

11 = m1/n1, 〈s̄〉0
10 = m0/n1, and 〈s̄〉1

11 = m1/n1. Substitut-
ing these values into Eq. (37) we obtain

det(vec2{A}) =

∣∣∣∣∣∣∣∣∣∣

1 −θ1 −rθ0 −θ1

0 1 − θ1 −rθ0 −θ1

−θ0 0 1 0

0 −θ1 −rθ0 1 − θ1

∣∣∣∣∣∣∣∣∣∣
, (38)

where r = n0/n1 and θi = mi/ni, i = 0, 1.
Figure 3 reports the numerical estimation of the giant com-

ponent fraction and the mean component size as a function
of − det(vec2{A}) = 0, computed using Eq. (38). There is a
phase transition at − det(vec2{A}) = 0, with the emergence
of a giant component and a maximum of the mean component
size excluding the giant component. The agreement demon-
strates the validity of the analytical results for chygraphs with
intralayer connections.

V. CONCLUSIONS

In conclusion, chygraphs are a versatile combinatorial
structure to represent complex systems. They allow for
encoding different types of structural heterogeneities and hier-
archical constructions. The key ingredient is the fractal nature
of the chygraph: a complex is composed of atoms and other
complexes and it can be part of other complexes as well. I
have calculated the component sizes statistics of chygraphs
using vectorization. Future work is required to extend this
formalism to other problems.
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