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Inferring synchronizability of networked heterogeneous oscillators with machine learning
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In the study of network synchronization, an outstanding question of both theoretical and practical significance
is how to allocate a given set of heterogeneous oscillators on a complex network in order to improve the
synchronization performance. Whereas methods have been proposed to address this question in the literature,
the methods are all based on accurate models describing the system dynamics, which, however, are normally
unavailable in realistic situations. Here, we show that this question can be addressed by the model-free technique
of a feed-forward neural network (FNN) in machine learning. Specifically, we measure the synchronization
performance of a number of allocation schemes and use the measured data to train a machine. It is found that
the trained machine is able to not only infer the synchronization performance of any new allocation scheme, but
also find from a huge amount of candidates the optimal allocation scheme for synchronization.
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I. BACKGROUND

Many real-world systems can be represented by complex
networks of coupled oscillators [1], in which an interesting
phenomenon is that in some circumstances the oscillators
can be self-organized into coherent states of synchronized
motions [2]. For its important implications in the functionality
and performance of many realistic systems, network synchro-
nization has been broadly interested and extensively studied
by researchers from different fields in the past decades [3–5].
In exploring network synchronization, one of the central
questions concerns the improvement of network synchro-
nization performance, namely synchronizability, by a slight
change of the system properties [6], e.g., introducing shortcut
links or adjusting the coupling schemes [7–14]. For complex
networks consisting of heterogeneous oscillators, an addi-
tional approach to improve the network synchronizability is
reallocating the oscillators according to the network topol-
ogy [14–21]. Whereas strategies have been proposed in the
literature on how to reallocate the oscillators optimally and
the efficiency of the strategies have been justified in differ-
ent systems, the existing studies rely on prior knowledge of
the network models [15–21], including the network structure,
the coupling function, and the oscillator dynamics, which is
normally unattainable in practice. Moreover, while evidence
suggests that there might exist a one-to-one correspondence
between oscillator allocation and network synchronizability,
the mapping function is too complicated to be given explic-
itly, and the search for the optimal allocation still relies on
large-scale simulations. The purpose of our present paper is to
introduce a model-free technique in machine learning, namely
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the feed-forward neural network (FNN) [22–24], to learn from
measured data the mapping function between oscillator allo-
cation and network synchronizability, and utilize the trained
machine to find the optimal allocation for synchronization.

II. PROBLEM DESCRIPTION

We study the synchronization behaviors of coupled non-
identical phase oscillators described by the generalized
Kuramoto model [2]

θ̇i = ωi + ε

di

N∑

j=1

ai j sin(θ j − θi ), (1)

with i, j = 1, ..., N the oscillator (node) indices and N the
network size. θi and ωi represent, respectively, the phase and
natural frequency of the ith oscillator. The coupling relation-
ship of the oscillators, i.e., the network structure, is encoded
in the adjacency matrix A = {ai j}N×N , with ai j = a ji = 1 if
there is a link between nodes i and j, and ai j = a ji = 0
otherwise. di = ∑

j ai j denotes the degree of node i, and ε

is the uniform coupling strength. The network structure is
generated by the Erdös-Rényi model with connecting prob-
ability p [1]. In our studies, we set N = 20 and p = 0.5. The
natural frequencies of the oscillators are randomly chosen
within the range (−1, 1), which, once chosen, will be fixed,
but the oscillators are allowed to be reallocated freely on
the network. The total number of allocation schemes is huge
(N!), and different allocations give different synchronization
performance [14–21]. The central question we ask is, given
that the synchronization performance of a number of alloca-
tion schemes is known, can we predict the synchronization
performance of a new allocation scheme without knowing the
network dynamics?
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FIG. 1. Dependence of network synchronization performance on
oscillator allocation. Shown are the transitions from desynchroniza-
tion to phase (a) and frequency (b) synchronization for two random
oscillator allocations on a random network containing N = 20 nodes.
r: the synchronization order parameter; εp: the critical coupling
where r > rc = 0.9; ε f : the critical coupling where the effective
frequencies of the oscillators {ω̃i} become identical.

To show the influences of oscillator allocation on synchro-
nization performance, we choose two random allocations and,
by solving Eq. (1) numerically, plot in Fig. 1(a) the varia-
tion of the synchronization order parameter r with respect
to the coupling strength ε. Here, the synchronization order
parameter is defined as r = |∑ j eiθ j |/N , with j = 1, . . . , N
the oscillator index. We have r ∈ (0, 1), with larger r repre-
senting stronger synchronization [1]. Figure 1(a) shows that
the two order parameters are close for weak couplings (ε <

0.5), but are separated from each other for strong couplings
[ε ∈ (0.5, 2.0)]. Defining phase synchronization as the point
where r exceeds rc = 0.9, the critical couplings for phase
synchronization are ε

p
1 ≈ 1.47 and ε

p
2 ≈ 1.64 for the first and

second allocations, respectively. Clearly, in terms of phase
synchronization, the first allocation outperforms the second
one. Denoting �l as a specific allocation of the oscillators
and ε

p
l the corresponding critical coupling for phase synchro-

nization, we have for each allocation a synchronization pair
(data point) (�l , ε

p
l ). Assuming that a number (M̃ � 1) of

such synchronization pairs are available (obtained by model

simulations or experiments), our first objective is to infer by
machine the critical coupling for a new allocation to reach
phase synchronization.

By the same allocation schemes studied in Fig. 1(a), we
plot in Fig. 1(b) the transitions of the network dynamics from
the perspective of frequency synchronization [1]. Frequency
synchronization is featured by the identical effective frequen-
cies of the oscillators. The effective frequency of oscillator i is
ω̃i = 〈θ̇i〉T , with θ̇i the instant angular frequency of oscillator
i and 〈· · · 〉T the time-average function. Figure 1(b) shows that
for the first allocation, the effective frequencies of the oscilla-
tors become identical at the critical coupling ε

f
1 ≈ 1.21, while

for the second allocation the critical coupling is ε
f
2 ≈ 1.32.

Comparing to the results of phase synchronization shown in
Fig. 1(a), we have ε f < εp for both allocations. This phe-
nomenon is understandable, as the motions of the oscillators
are more strongly correlated in phase synchronization than in
frequency synchronization [4]. Assuming that a large number
of frequency-based synchronization pairs of the form (�l , ε

f
l )

are available, the second objective of our present work is to
infer by machine the critical coupling ε f for a new allocation
scheme to achieve frequency synchronization.

Once the capability of the machine in inferring the syn-
chronization performance of new allocation schemes has been
confirmed, we shall then utilize the machine to find from a
large number of candidates the optimal allocation giving the
best synchronization performance, which is the third objec-
tive of our present work. In addition to the critical couplings
(εp and ε f ), another approach to evaluate the synchroniza-
tion performance of different allocations is comparing their
synchronization order parameters under the same coupling
strength. Taking the results in Fig. 1(a) as an example, at the
intermediate-coupling strength ε = 1.2, the order parameter
of the first allocation is about 0.8, while for the second alloca-
tion the order parameter is only about 0.5. Denoting (�l , rl )ε
as the measured data in this case and assuming that a number
of such measurements are available, the fourth objective of our
present work is to infer by machine the order parameter of a
new allocation scheme under a specific coupling strength.

III. FNN TECHNIQUE

The FNN adopted in our studies consists of three mod-
ules [22–24]: an input layer, a series of L hidden layers,
and an output layer. The input layer is characterized by the
matrix W in ∈ Rn1×N , which couples the input vector �l =
[ω1, . . . , ωN ]T (i.e., a specific allocation of the oscillators on
the network) to the first hidden layer by the operation

x1 = f (W in�l + bin). (2)

Here, x1 ∈ Rn1 is the state vector of the first hidden layer, n1

denotes the size of the first hidden layer, bin ∈ Rn1 is the bias
vector associated to the input layer, and f (x) is the activation
function. The signals are then propagated to the other hidden
layers in sequence as

xh = f (W hxh−1 + bh), (3)

where h = 2, . . . , L is the index of the hidden layers, W h ∈
Rnh×nh−1 is the coupling matrix between layers h − 1 and h,
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nh is the size of the hth hidden layer, and bh ∈ Rnh is the bias
vector associated to the hth hidden layer. After the Lth hidden
layer is activated, we generate the output

y = f (W outxL + bout), (4)

with y a scalar, W out ∈ R1×nL the output matrix, and bout the
output bias. The hyperparameters of FNN are the number of
hidden layers L and the number of nodes contained in each
hidden layer {nh} with h = 1, . . . , L. The model parameters
of FNN include the coupling matrices (W in, W h, and W out)
and the bias vectors (bin, bh, and bout), which are to be learned
from the measured data through a training process. In our
studies, we adopt the all-to-all coupling strategy for nodes in
the neighboring layers, and use the rectified linear activation
function (ReLU) to update the node states [23].

The implementation of FNN consists of three phases: the
training phase, the validation phase, and the prediction phase.
In the training phase, the input data are the oscillator alloca-
tions {�}M

l=1, and the mission of the training is to obtain the
set of model parameters (i.e., the coupling matrices and bias
vectors) such that the outputs given by Eq. (4) are as close
as possible to the true values, which are the critical couplings
(εp or ε f ) for objectives 1 and 2 and is the synchronization
order parameter (r) for objective 4. In our studies, this is done
by the conventional back propagation algorithm with the help
of the ADAM (adaptive moment estimation) optimizer in TEN-
SORFLOW [25]. After training, the performance of the machine
is validated by a new data set different from the one used
in the training phase. This process of training and evaluation
is repeated for a number of rounds, while in each round the
structure of FNN is reconstructed according to a unique set
of hyperparameters. By the strategy of Bayesian optimiza-
tion [23], we then find the set of hyperparameters giving the
best performance on the validating data set, which completes
the validation phase. Finally, in the prediction phase, with
the optimal hyperparameters obtained in the validation phase
and the model parameters obtained in the training phase, we
drive the machine with a completely new oscillator allocation,
and the output of the machine gives the prediction. (See Sup-
plemental Material [26] for more details about FNN.)

IV. RESULTS

We start by showing the performance of FNN in inferring
the critical coupling εp for phase synchronization. For sim-
plicity, we consider here the scenario of constrained frequency
allocations [19]. That is, only a fraction of the oscillators are
reallocated on the network, while the locations of the other
oscillators are fixed. The m relocatable oscillators are chosen
by random, and the exchange of any pair of them generates
a new allocation. In our studies, we set m = 10 and generate
in total M̃ = 800 random allocations. For each allocation, we
first obtain by simulations the variation of the order parameter
r with respect to the coupling strength ε by the increment
�ε = 0.02, and then find the critical coupling εp where r ex-
ceeds rc = 0.9. We obtain in total M̃ = 800 data points of the
form (�l , ε

p
l ), among which M = 500 points are used in the

training phase for obtaining the model parameters and M ′ =
300 points are used in the validation phase for optimizing the
machine hyperparameters (see Supplemental Material [26] for

FIG. 2. Inferring network synchronizability with machine. (a) In-
ference of the critical coupling εp for phase synchronization.
(b) Inference of the critical coupling ε f for frequency synchroniza-
tion. (c) Inference of the synchronization order parameter for the
coupling strength ε = 1.2. εfnn and εmod denote, respectively, the
results predicted by the machine and the results obtained by model
simulations. Red dashed lines are diagonal lines. (d) Synchronization
performance of the optimal allocations obtained by FNN (black
squares) and by the method of alignment function (red disks).

the statistical properties of the data set and the influence of the
data properties on machine performance). In this application,
the optimal hyperparameters are L = 1 and n1 = 100. That
is, the FNN contains only one hidden layer and the size of
the hidden layer is 100. Shown in Fig. 2(a) are the critical
couplings predicted by the machine for 100 new allocations
that are not included in the training and validating data set. We
see that the results predicted by the machine are in good agree-
ment with the results of model simulations. To evaluate the
overall predicting performance of the machine, we introduce
the normalized error ep = |1 − ε

p
fnn/ε

p
mod| for each prediction,

with ε
p
fnn and ε

p
mod denoting, respectively, the critical couplings

predicted by the machine and obtained by model simulation,
and calculate the averaged predicting error 〈ep〉 for K = 1000
new random allocations. We have 〈ep〉 ≈ 7 × 10−3. Indeed,
the machine is able to infer the critical coupling for phase
synchronization with a high precision.

We next employ the FNN technique to predict the critical
coupling for frequency synchronization. In doing this, we first
regenerate the data set by model simulations, and then use the
measured data to construct and train a new machine. The data
point has the form (�l , ε

f
l ), with �l the lth allocation scheme

and ε
f
l the corresponding critical coupling. Again, we gener-

ate in total M̃ = 800 data points (M = 500 points for training
the model parameters and M ′ = 300 points for finding the
optimal hyperparameters). In this application, the optimal
hyperparameters are L = 1 and n1 = 100. We consider still
the scenario of constrained allocations, with the number of
relocatable oscillators being m = 10. Figure 2(b) shows the
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TABLE I. The performance of FNN in other network models. N : the network size. m: the number of relocatable oscillators. M̃: the number
of data points obtained by model simulations in inferring phase synchronization. M: the number of data points used in machine training. 〈ep〉:
averaged prediction error for phase synchronization. 〈e f 〉: averaged prediction error for frequency synchronization. 〈e〉r : averaged prediction
error for synchronization order parameter under the coupling strength εr . Errors are averaged over K = 1000 random allocations.

Models Nodal dynamics N/m M̃/M 〈ep〉 〈e f 〉 (〈e〉r, εr )

Scale-free network [27] Phase oscillator 100/10 1000/700 3.3 × 10−3 4 × 10−3 (6 × 10−2, 1.38)
Nepal power grid [28] Phase oscillator 15/15 1500/1000 2.2 × 10−2 3 × 10−2 (5 × 10−2, 1.0)
Cat brain network [29] Phase oscillator 53/10 1200/800 5 × 10−3 6 × 10−3 (1.6 × 10−2, 1.3)
Nematode neuronal network [30] Phase oscillator 297/10 2000/1500 3.3 × 10−3 2.2 × 10−3 (1.7 × 10−2, 1.48)
Complex random network Rössler oscillator [31] 20/10 2000/1500 1.1 × 10−2 2.2 × 10−2 (2.7 × 10−2, 0.025)
Complex ecological network [32] Foodweb oscillator [33] 82/10 2500/2000 2.2 × 10−2 2.2 × 10−2 (1.2 × 10−2, 0.5)

prediction performance of the new machine for 100 random
allocations. We see that the critical couplings are accurately
predicted by the machine in all cases. In this application, the
predicting error averaged over K = 1000 random allocations
is about 〈e f 〉 = 1 × 10−2, justifying hence the capability of
the machine in inferring frequency synchronization.

Having shown the capability of the FNN technique in
predicting phase and frequency synchronization, we continue
to employ the technique as an efficient tool to find the opti-
mal allocation for synchronization among a huge amount of
candidates (objective 3 in our present work). To study, we
first generate 10 000 allocations by exchanging the (m = 10)
relocatable oscillators randomly, and then use the machine
trained for predicting phase synchronization to estimate the
critical coupling εp for each allocation. The optimal alloca-
tion is identified as the one with the smallest εp, which is
about 1.32 among the 10 000 candidates. As the machine has
been trained already and predictions are made by a mapping
function, the search for the optimal allocation is accomplished
in seconds. By numerical simulations, we plot in Fig. 2(d)
the variation of r with respect to ε for the optimal allocation
identified by the machine. It is seen that r exceeds rc = 0.9
at εp ≈ 1.32, which is exactly the critical coupling predicted
by the machine. As a benchmark to evaluate the synchroniza-
tion performance of the optimal allocation, we compare it to
the optimal allocation obtained by the method of synchrony
alignment function proposed in Ref. [19]. The alignment
function is calculated as J (�, L) = (1/N )

∑N
i=2 λ−2

i 〈νi,�〉2,
with L = D − A the Laplacian matrix, D the diagonal matrix
encoding the node degrees, {λ}N

i=2 the nonzero eigenvalues of
L, and {νi}N

i=2 the corresponding eigenvectors. We apply the
function to the same set of candidates, and the one with the
smallest value of J is identified as the optimal allocation. The
synchronization performance of the new optimal allocation
is also shown in Fig. 2(d). We see that the order parameters
of the two optimal allocations are close for weak couplings
(ε < 1.2) and are identical for strong couplings (ε > 1.2). An
additional analysis has been conducted to check the properties
of the optimal allocation identified by the machine, which
shows that, similar to the results of the alignment function,
the degrees and frequencies are positively correlated and the
frequencies of the neighboring nodes are negatively correlated
(see Supplemental Material [26] for details).

We finally employ the FNN technique to infer the syn-
chronization order parameter (objective 4). Fixing ε = 1.2,

we obtain by simulations the order parameter for M̃ = 1000
random allocations and, using (�l , rl )M̃

l=1 as the inputs, op-
timize (M ′ = 300) and train (M = 700) a new machine.
The hyperparameters of this new machine are L = 3 and
(n1, n2, n3) = (150, 200, 50). The performance of the new
machine in predicting the synchronization order parameter of
100 new random allocations is shown in Fig. 2(c). We see that
the order parameters predicted by the machine agree with the
true results very well. The normalized prediction error aver-
aged over K = 1000 random allocations is 〈e〉r ≈ 3.7 × 10−2,
which is slightly larger than the prediction errors of the critical
couplings (7 × 10−3 for εp and 1 × 10−2 for ε f ). This arouses
our interest about the dependence of prediction performance
on network synchronization degree. Intuitively, the larger the
order parameter, the stronger is the correlation between the
oscillators, the easier it is for the machine to learn from
the data the mapping function between oscillator allocation
and network synchronizability, and the more accurate is the
inference. To verify this conjecture, we analyze again the
simulating results obtained in inferring phase synchroniza-
tion (i.e., the synchronization transitions of M̃ = 800 random
allocations) and find the critical couplings where r exceeds
rc = 0.6. With the newly obtained data set, we construct and
train a new machine (the hyperparameters are L = 2 and n1 =
n2 = 100), and then use the trained machine to predict the
order parameters for K = 1000 new random allocations. The
averaged prediction error is 〈e〉r ≈ 3 × 10−2. To verify the
conjecture further, we set rc = 0.3 and check again the pre-
diction performance (the hyperparameters are L = 1 and n1 =
100). In this case, we have 〈e〉r ≈ 0.2. Indeed, the prediction
performance is improved by increasing the synchronization
degree.

V. DISCUSSIONS

The capability and performance of the FNN technique have
been verified in other network models, including networks of
different sizes and topological features, networks consisting
of heterogeneous chaotic oscillators, and also the scenario
of unconstrained allocations. The results are summarized in
Table I (details are given in Supplemental Material [26]).
We see that, while FNN performs well in all the models, its
performance is dependent on the complexity of the system
dynamics. Generally, the larger the network size, the larger
is the FNN; the lower the synchronization degree, the worse
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are the predictions; and, comparing to phase oscillators, the
inference of chaotic oscillators is more difficult. In addition
to inferring the synchronization performance of relocated
oscillators, the trained machine is also capable of inferring
the synchronization performance of a new set of oscillators
with different natural frequencies, showing preliminarily the
feature of transfer learning (please see Supplemental Ma-
terial [26] for the details). We finally note that the FNN
technique is distinguished from the existing methods by its
model-free feature, but not the computational efficiency, as
the acquisition of the training data still relies on simulations.
In addition, while evidence indicates that the machine has

learned successfully from data the mapping function between
oscillator allocation and synchronization performance, the
function is not explicitly given, i.e., the machine is working
as a “black box.”
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