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In the analysis of complex ecosystems it is common to use random interaction coefficients, which are
often assumed to be such that all species are statistically equivalent. In this work we relax this assumption
by imposing hierarchical interspecies interactions. These are incorporated into a generalized Lotka-Volterra
dynamical system. In a hierarchical community species benefit more, on average, from interactions with species
further below them in the hierarchy than from interactions with those above. Using dynamic mean-field theory,
we demonstrate that a strong hierarchical structure is stabilizing, but that it reduces the number of species in
the surviving community, as well as their abundances. Additionally, we show that increased heterogeneity in the
variances of the interaction coefficients across positions in the hierarchy is destabilizing. We also comment on
the structure of the surviving community and demonstrate that the abundance and probability of survival of a
species are dependent on its position in the hierarchy.
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I. INTRODUCTION

The study of complex ecosystems has been an active re-
search area in theoretical ecology since the 1970s, when
evidence emerged of a sharp transition from stability to in-
stability in model ecosystems of increasing complexity [1,2].
By suggesting fundamental limits on the size, connectedness,
and interaction variability of a stable ecosystem, these results
appeared to contradict the prevailing ecological view of the
time. Many ecological networks are both large and highly
interconnected [3,4], leading to an a priori expectation that
a more complex and well-connected ecosystem ought to be
more stable than its simpler, more sparsely connected coun-
terpart [5,6]. Such an apparent contradiction has led to an
increasingly detailed and nuanced search for consistent def-
initions of ecological stability and complexity across theory
and experiment [6–10].

One powerful theoretical tool for analyzing which factors
contribute to the stability of a large system of many interacting
constituents, such as a complex ecosystem, is random matrix
theory (RMT). This is the method that was employed by May
in his seminal work [2]. May started from the Jacobian of
a hypothetical ecosystem, linearized about an “equilibrium.”
He assumed that the entries of this Jacobian matrix were in-
dependent and identically distributed random variables. This
allowed for the deduction of a stability criterion using a result
from RMT: Girko’s circular law for the distribution of eigen-
values of large independent and identically distributed random
matrices [11]. May’s initial and somewhat austere model has
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been extended in recent years, accounting for additional fea-
tures of ecosystems such as food web structure [12,13], spatial
dispersal [14,15], alternative interpretations of “interaction
strength” [16,17], and varying self-regulation [18].

Despite providing a great deal of insight, the RMT ap-
proaches to determining the stability of complex ecological
communities suffer from one crucial drawback: There is no
guarantee that the random matrix under consideration corre-
sponds to the Jacobian matrix of any real dynamics linearized
about a feasible equilibrium [19,20], that is, an equilibrium
at which all species abundances are non-negative. To remedy
this, recent works [21–25] have instead studied the stability
of complex ecosystems using the generalized Lotka-Volterra
equations, which produce feasible equilibria by construction.
In such models, the interactions between an initial pool of
species are chosen randomly, but certain species are allowed
to go extinct as the system evolves towards a stable equilib-
rium. The stability of the surviving community is dependent
on which species survive and their equilibrium abundances
and cannot be determined from the eigenvalues of the initial
random interaction matrix. Therefore, RMT alone cannot de-
termine the stability of a surviving feasible community. We
must use alternative methods to find the properties of the
surviving community and subsequently its stability.

In this work we extend a recent study [26], which used
RMT to study the stability of a linear model (in the style of
May) with hierarchical interactions (referred to in [26] as the
cascade model [4,27]). Here we incorporate such hierarchical
interactions in the generalized Lotka-Volterra equations. We
obtain analytical results for both stability and the composition
of surviving communities using techniques from statistical
physics and the theory of disordered systems, specifically
dynamic mean-field theory [28,29]. Our approach has several
advantages. Foremost, as mentioned above, the equilibria we
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FIG. 1. Illustration of the block-structured interaction matrix Aab
i j . The figure shows the mean value (indicated by color) of interaction

matrix elements Aab
i j in three cases. (a) General block-structured interaction matrix with B = 4 subcommunities. (b) Example of an interaction

matrix with hierarchical statistics, again with B = 4. All blocks above the diagonal blocks have the same mean and variance, and similarly for
blocks below the diagonal. (c) Model with an infinite number of subcommunities (B → ∞) and hierarchical statistics [see Eq. (4)].

study are feasible by construction. Further, we are able to
study the effects of hierarchical interactions not only on stabil-
ity, but also on the emergent properties of the community, such
as species abundances and survival probabilities. Finally, we
are also able to identify not only when the ecosystem becomes
unstable, but also the nature of the instability.

More specifically, we show that increasing the severity
of hierarchical interaction in the community is a stabilizing
force, as is increasing the proportion of interactions which
are of predator-prey type (in agreement with, for example,
[8,23,27,30]). We also demonstrate that larger asymmetry in
the variance of species’ interactions decreases stability. Fur-
ther, we look at the properties of stable equilibria produced
in such a hierarchical community. We find that the presence
of hierarchical interactions leads to communities with non-
Gaussian species abundance distributions and that species
lower in the hierarchy (i.e., species that benefit less from
interactions) are both less likely to survive and less abundant.

This remainder of the paper is structured as follows. In
Sec. II we describe the generalized Lotka-Volterra model
with hierarchical interactions. In Sec. III we outline how
dynamic mean-field theory is used to trade the set of
coupled differential equations with random interaction co-
efficients constituting the generalized Lotka-Volterra model
for a smaller number of statistically equivalent coupled
stochastic differential equations. We then analyze the fixed-
point solution found in Sec. IV, noting that the fixed-point
equations were also obtained with the cavity method in
Refs. [31,32] [Eq. (13)], but no stability analysis was per-
formed in these references. We then discuss the effect of
hierarchical interactions on the distribution of species abun-
dances and the fraction of surviving species in Sec. V. In
Sec. VI we study the stability of the fixed-point solution. We
summarize in Sec. VII.

II. MODEL DEFINITION

A. General block-structured interactions

Consider a community of N species, partitioned into B
distinct subcommunities, indexed with a = 1, . . . , B. Sub-
community a contains Na species, so N = ∑

a Na. We first

describe a more general model before specifically introducing
hierarchical interactions.

We denote the abundance of the ith species in group a by
xa

i (t ), so i = 1, . . . , Na when we are referring to species in
group a. Species abundances evolve according to generalized
Lotka-Volterra (GLV) dynamics [21,23,31,33–35]

ẋa
i (t ) = xa

i (t )

⎡
⎣1 − xa

i (t ) +
B∑

b=1

Nb∑
j=1

Aab
i j xb

j (t )

⎤
⎦, (1)

where the block-structured interaction matrix (Aab)i j dictates
the influence of the jth species in group b on the ith species
in group a. The coefficients Aab

i j are correlated random vari-
ables with statistics to be specified (which may vary between
between blocks). The diagonal elements Aaa

ii are set to zero.
This general setup is illustrated in Fig. 1(a).

The statistics of the interactions between species depend
only on their respective subcommunities. We write

Aab
i j = μab

N
+ σ ab

√
N

wab
i j , (2)

where the wab
i j are random variables with the first and second

moments

wab
i j = 0,

(
wab

i j

)2 = 1,

wab
i j w

ba
ji = γ ab. (3)

We have indicated the average over realizations of the matrix
wab

i j with an overbar.
The model is thus fully specified by the parameters μab,

σ ab, and γ ab. More specifically, μab is the average influence
of species in group b on those in group a, (σ ab)2 is the vari-
ance of those interactions, and γ ab ∈ [−1, 1] is a correlation
coefficient controlling the proportion of interactions between
species in subcommunities a and b which are of a predator-
prey type (i.e., Aab

i j Aba
ji < 0). The factors of 1/N in Eq. (2)

ensure a sensible large-N limit (see, e.g., [36]).
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B. Hierarchical interactions

Hierarchical interactions are obtained through a specific
choice of the model parameters μab, σ ab, and γ ab in Eqs. (2)
and (3). We imagine a ranking of the B subcommunities in
which, on average, species with higher rank gain more from
lower ranked species than vice versa. Hence species higher up
in the hierarchy are increasingly biased towards success.

Similar to Ref. [26], we achieve this with the choice

μab =
⎧⎨
⎩

μ − ν, a < b
μ, a = b
μ + ν, a > b,

σ ab =
⎧⎨
⎩

σ/ρ, a < b
σ, a = b
σρ, a > b,

γ ab = γ , (4)

where we mostly focus on the case ν > 0. In this case species
a = 1 is lowest in the hierarchy and species a = B is high-
est. If we make the transformation ν → −ν and ρ → 1/ρ,
the ranking of species is reversed and we obtain identical
results. We also require ρ > 0, ensuring the variance of all
interactions remains positive. An example of the structure of
the interaction matrix resulting from this choice is illustrated
in Fig. 1(b).

The model parameters μ, ν, σ , ρ, and γ can be separated
into two sets: ν and ρ describe the hierarchy of species,
whereas μ, σ , and γ describe the overall statistics. The param-
eter ν is a measure of the strength of the hierarchy. A larger
value of ν increases the average benefit to species higher in the
hierarchy and correspondingly decreases the average benefit
to species lower in the hierarchy. The parameter ρ is a measure
of the disparity between the variances of interactions (σ ab)2

and (σ ba)2 for a �= b. The parameter μ characterizes the mean
interaction strength across all pairs of species in the commu-
nity, σ is a measure of the overall variability of interactions,
and γ can be related to the proportion of interactions that
are of predator-prey type p via γ = cos(π p) + O(1/

√
N ) [see

Sec. S2 of the Supplemental Material [37] for details]. If ν =
0 and ρ = 1, there is no distinction between any two positions
in the hierarchy and all species are statistically equivalent; this
is the case considered in [21,23].

It is important to note that we distinguish between the
notions of hierarchy, controlled by ν, and the proportion of
predator-prey pairs in the model, controlled by γ . Hierarchy
is present so long as ν �= 0, in which case there is a natural
ordering to the subgroups of species based on the relative
average benefit of species higher up in the hierarchy. The
proportion of predator-prey pairs, on the other hand, is not
affected by hierarchy (i.e., a nonzero value of ν) to leading
order in N (see Sec. S2 in [37]). This is due to the 1/N scaling
of the average value of Aab

i j in Eq. (2) compared to the 1/
√

N
scaling of the random term. Species higher in the hierarchy
are therefore no more likely to predate on species lower down
than species lower down in the hierarchy are to predate on
species higher up. However, species higher in the hierarchy
have higher average interaction coefficients than those lower
in the hierarchy.

III. DYNAMIC MEAN-FIELD THEORY

We use dynamic mean-field theory [28,29,42–47] in or-
der to analyze the stability and community properties of the
GLV system in Eq. (1). Ultimately our analysis will focus
on models with hierarchical interactions, determined by the
parameters μ, ν, σ , ρ, and γ . However, for now, we return
to the more general block-structured general case discussed in
Sec. II A [Fig. 1(a)].

The analysis involves taking the limit N → ∞ while keep-
ing the ratios na ≡ Na/N constant such that∑

a

na = 1. (5)

That is to say, each subcommunity contains a large (formally
infinite) number of species, but the proportions of species in
each group remain fixed as N is varied.

The calculation closely follows the lines of [21,33,42,43],
with modifications made to account for the block structure of
the interactions in the community. Details are given in Sec. S3
in [37].

The dynamic mean-field approach results in the reduction
of the initial set of coupled ordinary equations with random
coefficients [given in Eq. (1) and with N → ∞] to a set
of B stochastic integro-differential equations, one for each
subcommunity. These describe the “typical” time evolution
for the abundance of species in the different groups xa(t ).
Carrying out the steps in Sec. S3 in [37], we arrive at the
effective dynamics for species in subcommunity a,

ẋa(t ) = xa(t )

(
1 − xa(t ) +

B∑
b=1

nbμabMb(t )

+
B∑

b=1

nbγ abσ abσ ba
∫ t

0
dt ′Gb(t, t ′)xa(t ′) + ηa(t )

)
.

(6)

The variables {ηa(t )} are colored Gaussian noise terms with
the statistics

〈ηa(t )〉 = 0,

〈ηa(t )ηb(t ′)〉 = δab
B∑

c=1

(σ ac)2ncCc(t, t ′), (7)

where we have used 〈· · ·〉 to denote averages over realizations
of the effective dynamics in Eq. (6), i.e., over realizations of
the noise {ηa(t )}.

The macroscopic statistics of community a are given by

Ma(t ) ≡ 〈xa(t )〉,
Ca(t, t ′) ≡ 〈xa(t )xa(t ′)〉,

Ga(t, t ′) ≡
〈

δxa(t )

δηa(t ′)

〉
. (8)

The above quantities describe the average abundance of a
species in subcommunity a, the autocorrelations (in time)
of a species abundance in the community, and the response
to perturbations, respectively. The solution of Eqs. (6)–(8)
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determines the macroscopic statistics Ma(t ), Ca(t, t ′), and
Ga(t, t ′) self-consistently.

IV. FIXED-POINT EQUATIONS

A. General block-structured interactions

We now assume that the system reaches a fixed point such
that xa(t ) → xa

∗ as t → ∞, where xa
∗ is a static random vari-

able. We write

Ma ≡ 〈xa
∗〉,

qa ≡ 〈(xa
∗ )2〉 (9)

for the first and second moments of the asymptotic abun-
dances in each group of species a. The noise term ηa(t ) → ηa

∗
also asymptotically loses its time dependence and we write

ηa
∗ = za

√∑
b

(σ ab)2nbqb, (10)

where the za are independent zero-mean static Gaussian ran-
dom variables with unit variance. In this fixed-point regime
the response function Ga(t, t ′) → Ga(t − t ′) only depends
on time differences τ = t − t ′ and causality dictates that
Ga(τ ) = 0 for τ < 0. We then define the integrated response
function for subcommunity a,

χa ≡
∫ ∞

0
dτ Ga(τ ). (11)

With Eqs. (9)–(11) in mind, we find that the nontrivial fixed
point of Eq. (6) is described by

xa
∗ = max

(
0,

1 + ∑
b μabnbMb + za

√∑
b(σ ab)2nbqb

1 − ∑
b γ abσ abσ banbχb

)
.

(12)

A similar expression was found for models without hierarchi-
cal structure in [21,31,33,43]. We note that, depending on the
value that the random variable za takes, some species will be
extinct at the fixed point (xa

∗ = 0), whereas others will have
positive abundance.

The average over realizations of the effective process (de-
noted by angular brackets) is now an average over the static
Gaussian random variables za at the fixed point. This allows
us to obtain self-consistent conditions for the statistics of xa

∗.
We find (see Sec. S4.1 in [37])

χaua = w0(�a),

Maua = w1(�a)

√∑
b

(σ ab)2nbqb,

qa(ua)2 = w2(�a)
∑

b

(σ ab)2nbqb, (13)

where we have abbreviated

ua = 1 −
∑

b

γ abσ abσ banbχb,

�a = 1 + ∑
b μabnbMb√∑

b(σ ab)2nbqb
(14)

and where we have defined the functions

wk (�) = 1√
2π

∫ �

−∞
dz e−z2/2(z − �)k (15)

for k ∈ {0, 1, 2}. Equations (13) are equivalent to those in
Sec. IV.1 of the Supplementary Information of Ref. [31],
derived with the cavity method. They also reduce to the
fixed-point equations for the model without hierarchy found
in Refs. [21,23] if one takes μab = μ/B, σ ab = σ/

√
B, and

γ ab = γ .
Equations (13) can be solved numerically for the quantities

χa, Ma, and qa as functions of the model parameters μab, σ ab,
γ ab, and na. We note that the fraction of surviving species in
subcommunity a, written φa, is given by

φa = w0(�a). (16)

Hence the solution of Eq. (13) also provides the fraction of
surviving species in each subcommunity.

For further analysis, it is useful to introduce the average
over communities

�X �B =
B∑

a=1

naX a (17)

for a quantity X a defined in each community. The overall
fraction of surviving species in the system is then �φ�B and
the average abundance per species is �M�B.

B. Hierarchical interactions

We now analyze the fixed-point solution for a community
with hierarchical interactions, for which the parameters μab,
σ ab, and γ ab are as in Eq. (4). It is convenient to introduce
α = a/B and to work in the limit B → ∞; the resulting inter-
action matrix is illustrated in Fig. 1(c). The index α ∈ [0, 1)
is now continuous and the constraint

∑B
b=1 nb = 1 becomes∫ 1

0 dα n(α) = 1 (see also Sec. S4.1 in [37]). Quantities such
as Ma, φa, and �a are now functions of α and averages over
the index a are integrals, which we write as

�X � ≡ lim
B→∞

�X �B =
∫ 1

0
dα n(α)X (α), (18)

dropping the subscript B in the limit. For example, the first
relation in Eq. (14) is now

u(α) = 1 − γ σ 2�χ�, (19)

informing us that u has no dependence on α in the hierarchical
model when B → ∞.

Recalling the definition of �a in the second relation in
Eq. (14), we also introduce the quantities

�0 ≡ �(α = 0), �1 ≡ �(α = 1). (20)

To proceed, we first find expressions for the quantities u, �0,
and �1, in terms of ν, σ , ρ, and γ using Eq. (13); these
quantities are defined as a mathematical convenience. They
will allow us to write explicit expressions for the macroscopic
quantities of the system in which we are ultimately interested.
Then we will find expressions for �M� and �φ� [we also
discuss expressions for the full functions M(α) and φ(α) in
Sec. V] in terms of u, �0, and �1. In turn, this will enable
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us to calculate the macroscopic statistics of the system for
any μ, ν, σ , ρ, and γ . Details of all remaining calculations
in this section can be found in Sec. S4 in [37]. Manipulation
of Eq. (13) reveals that u satisfies [see Eqs. (S49) and (S57) in
Sec. S4 in [37]]

u2 = �σ 2
∫ 1

0
dα n(α)w2[�(α)],

u(1 − u) = γ σ 2
∫ 1

0
dα n(α)w0[�(α)], (21)

where � is the logarithmic mean [48] of ρ2 and 1/ρ2,

� ≡ ρ2 − 1/ρ2

ln ρ2 − ln 1/ρ2
, (22)

which satisfies � � 1, with equality only if ρ = 1. We now
show that the integrals in Eq. (21) can be written explicitly in
terms of only u, �0, and �1. We achieve this by finding the
separable differential equation for �(α) [Eq. (S67) in Sec. S4
in [37]],

d�

dα
= n(α)

θ (�, u)
, (23)

with initial condition �(0) = �0 and with

θ (�, u) ≡ u2

2uνw1(�) − �σ 2 ln ρ2�w2(�)
. (24)

Self-consistently, the solution to Eq. (23) will further have to
satisfy the constraint �(1) = �1.

One then uses Eq. (23) to change variables in the integrals
in Eq. (21), finding∫ 1

0
dα n(α)w2[�(α)] =

∫ �1

�0

d�θ (�, u)w2(�), (25)

and similarly for the integral over w0[�(α)]. If we also
perform the same change of variables on the condition∫ 1

0 dα n(α) = 1, then we arrive at the simultaneous equa-
tions for u, �0, and �1,

u2 = �σ 2
∫ �1

�0

d�θ (�, u)w2(�),

u(1 − u) = γ σ 2
∫ �1

�0

d�θ (�, u)w0(�),

1 =
∫ �1

�0

d�θ (�, u). (26)

Given the parameters ν, σ , ρ, and γ , Eq. (26) can be solved
numerically to obtain �0, �1, and u. As the parameter μ and
the function n(α) do not appear in Eq. (26), we conclude that
�0, �1, and u are independent of them. That is, �0, �1, and
u are functions of ν, σ , ρ, and γ only.

Once �0, �1, and u are determined, we calculate the
average abundance and fraction of surviving species in the
community with

1

�M�
= �1ρ

2 + �0

�1ρ2 − �0
ν − μ, (27a)

�φ� = u(1 − u)

γ σ 2
. (27b)

Equation (27a) ceases to apply when ν = 0, and a limit must
be taken. Similar care has to be taken when finding �φ� in the
limit γ → 0. Both limits are found in Sec. S4.5.3 in [37].

Inspection of Eqs. (27a) and (27b) reveals that, surpris-
ingly, neither �φ� nor �M� depends on n(α), the relative sizes
of the different subcommunities α. In fact, we will see in
Secs. V and VI that n(α) does not affect any of the properties
of the community that we are interested in (see also Sec. S8 in
[37]). Figure 2 gives us insight into why this is the case. When
the interactions are hierarchical, rather than a generally block
structured as in Fig. 2(a), varying n(α) only affects the size
of the diagonal blocks in the interaction matrix [Fig. 2(b)].
In the large-B limit, varying the sizes of the diagonal blocks
(which are small compared to the size of the matrix) becomes
insignificant [Fig. 2(c)]. We emphasize that the independence
of our results from n(α) is a feature only of the present
hierarchical model in the limit B → ∞ and is not a general
feature of the Lotka-Volterra model with block-structured in-
teractions. One also sees that �φ� is independent of μ.

Our theoretical predictions for the community average
species abundance �M� and the community average survival
fraction �φ� are verified using the results of computer simu-
lation of Eq. (1) in Fig. 2. As an additional test of Eq. (27b)
specifically, we also derive a condition under which only one
species goes extinct in the nonhierarchical limit (ν = 0 and
ρ = 1). A similar calculation was performed in Ref. [49], also
in the absence of hierarchy. The calculation and the results can
be found in Sec. S9 in [37].

V. FIXED-POINT DISTRIBUTIONS

A. Abundance distributions

At a stable equilibrium, we can calculate species abun-
dance distributions (SADs) and rank abundance distributions
(RADs). An SAD is obtained in simulations by binning
species according to their abundances and producing a nor-
malized histogram of the number of species in each bin
[Fig. 3(a)]. An RAD is a plot of abundance against a ranking
of species from 0 to 1, with the highest abundance species
having a rank of 0 [Fig. 3(b)]. For reviews of both SADs and
RADs see Refs. [50,51], for similar calculations without hier-
archical interactions see Ref. [21], and for RADs derived from
random replicator equations rather than the Lotka-Volterra
equation see [52].

We also introduce hierarchical abundance distributions
(HADs). Similar to an RAD, we rank species from 0 to 1,
but this time such that a species with rank r is higher in the
hierarchy than rN species and lower than (1 − r)N species.
An HAD is then a plot of abundance as a function of this
hierarchical rank. The SADs and RADs are both derived from
Prob(x|α), the probability that a species has abundance x,
given that it sits at position α in the hierarchy. This is the
probability density for xa

∗ in Eq. (12). One arrives at (see also
Sec. S5 in [37]) the clipped Gaussian distribution

Prob(x|α) = [1 − φ(α)]δ(x) + H (x)ϕ(x|α), (28)

where H (·) is the Heaviside step function [H (x) = 1 for
x � 0 and H (x) = 0 otherwise],and the delta function δ(x)
represents species that have gone extinct and hence have an
abundance of x = 0. The function ϕ(x|α) is a (normalized)
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FIG. 2. Variation of average abundance �M� and the fraction of surviving species �φ� with ν (the strength of the hierarchy). (a) Dependence
of average abundance on ν. The vertical dashed line indicates a divergence in average abundance when γ = 1 and ν ≈ 0.4. The system does
not converge for ν � 0.4. (b) Dependence of the fraction of surviving species on ν. When abundances diverge (for γ = 1 and ν � 0.4), the
fraction of surviving species cannot be meaningfully calculated and so the lower curve does not extend to the left of the vertical line. Markers
are data from the numerical integration of Eq. (1), with N = B = 250, averaged over 40 runs, and lines are predictions from theory [Eqs. (27b)
and (27a), with u, �0, and �1 determined from Eq. (26)]. The model parameters used in both plots are σ = 0.3, ρ = 1.5, and μ = 1.0.

Gaussian in x such that
∫ ∞

0 dx ϕ(x|α) = φ(α),

ϕ(x|α) = w1[�(α)]

M(α)
√

2π
exp

[
−1

2

(
w1[�(α)]

M(α)
x − �(α)

)2
]
.

(29)

The probability density function Prob(x|α) is the SAD for
species at position α in the hierarchy. We can therefore obtain
the SAD for the whole community by integrating over all
positions

�Prob(x)� ≡
∫ 1

0
dα n(α)Prob(x|α). (30)

To calculate �Prob(x)� explicitly, first Eq. (26) are solved to
obtain �0, �1, and u. We then reexpress Eq. (28) as a function
of �(α) and use the same change of variables as in Eq. (25)

to calculate the integral (30), obtaining

�Prob(x)� = (1 − �φ�)δ(x) + H (x)
∫ �1

�0

d�θ (�, u)ϕ(x|�)

(31)

(details are found in Sec. S5 in [37]). Similarly to �M� and
�φ�, the distribution �Prob(x)� is independent of n(α) (see
Sec. S8 in [37]).

In the case where there is no hierarchy (ν = 0 and
ρ = 1), the underlying unclipped distribution �ϕ(x)� =∫ 1

0 dα n(α)ϕ(x|α) is itself a Gaussian distribution. However,
as demonstrated in Fig. 3(a), this simple form is lost in a
hierarchical community and �ϕ(x)� is no longer Gaussian and
is not even symmetric around its maximum. Broadly speaking,
increasing the value of ν lowers the modal abundance and
increasing the value of ρ increases the spread in abundances.

Rank abundance distributions are also calculated from the
distribution �Prob(x)�. We observe that if species are ranked
on a scale from 0 to 1 by descending abundance, then the rank

FIG. 3. Abundance distributions with and without hierarchical interactions. All plots are for μ = 0.5, σ = 0.15, and γ = −0.3. (a) Two
SADs are plotted; the taller one is for the model without hierarchy (ν = 0 and ρ = 1) and is a clipped Gaussian. The flatter distribution
in (a) is for ν = 1.5 and ρ = 2

3 ; bars are from simulation. Also shown are the corresponding (b) RADs and (c) HADs. Square markers are
from simulations for ν = 0 and ρ = 1 and diamond markers are from simulations for ν = 1.5 and ρ = 2

3 . Simulations are for N = B = 1000
species, averaged over 200 runs. Lines are from the theory.
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of a species with abundance x is
∫ ∞

x �Prob(x′)�dx′. The plot
in Fig. 3(b) shows abundance on the vertical axis and rank
on the horizontal axis. Rank abundance distributions are often
the preferred representation of species abundances as they do
not suffer from loss of information due to species binning, as
SADs do [53].

To compute a hierarchical abundance distribution we rank
species on a scale r ∈ [0, 1]. Species with index α have rank

r(α) =
∫ α

0
dα n(α), (32)

ensuring that rN species are lower in the hierarchy and
(1 − r)N species are higher in the hierarchy. One then pro-
duces an HAD, such as in Fig. 3(c), parametrically, with the
horizontal axis equal to the rank and the vertical axis equal
to the abundance M(α), which is derived from Eq. (13) in
Sec. S5 in [37] and given by

M(α) =A�M�w1[�(α)]

× exp

(
�σ 2 ln ρ

u2

∫ �(α)

�0

d�′θ (�′, u)w2(�′)
)

,

(33)

where the constant A ensures that
∫ 1

0 dα n(α)M(α) = �M� for
�M� given by Eq. (27a). Surprisingly, just like �M�, �φ�, and
�Prob(x)�, HADs are also independent of n(α) (this is shown
in Sec. S8 in [37]).

B. Fraction of surviving species

A given species’ survival probability as a function of the
ranking r(α) can be produced in a similar way to the hier-
archical abundance distributions discussed in Sec. V A. We
simply replace M(α) by φ(α) = w0[�(α)]. By the same rea-
soning, we deduce that a plot of survival probability against
rank r(α) is independent of both μ and n(α) (see Sec. S8
in [37]). The distribution of survival probabilities is flat if
ν = 0 and ρ = 1 and is an increasing function of r in the
presence of hierarchy (see Fig. 4). This is an indication that the
composition of a hierarchical community before the dynamics
are run is vastly different from the resulting stable community;
species lower in the hierarchy are both less abundant and less
likely to survive. On further noting that the area under an
HAD is �M� and the area under the survival curve is �φ�, we
see that introducing hierarchy produces smaller communities
dominated by high ranked species. Further, from Figs. 3 and
4, the mean abundance and the fraction of surviving species
in communities with hierarchy are mostly lower than those in
models without hierarchy (flat curve in both), demonstrating
that few species benefit at all from hierarchical interactions.

VI. STABILITY

A. Stability conditions

In Sec. IV we found the statistics of the surviving species
abundances by presuming a static solution to Eq. (6). In this
section we discuss when this fixed-point solution is valid and
thus under what conditions we have a stable and feasible
equilibrium. As in Refs. [21,23,31,33], we find that instability
can occur either through linear instability against small pertur-

FIG. 4. Survival distributions with and without hierarchical in-
teractions. The parameters used are σ = 0.75, γ = −0.6, and,
from top to bottom along the left edge of the plot, (ν, ρ ) =
(0, 1), (0, 3), (3, 3), (3, 1), (3, 1

3 ). Markers are the average fraction
of survivors for every 40th species in simulations with N = B = 500,
averaged over 400 runs.

bations to the abundances or through a divergence in species
abundances.

1. Linear instability

Following along the lines of [21,43] (see Sec. S6 in [37]),
we use a linear stability analysis to find that the system is
unstable to perturbations in species abundances when

σ 2 � �

(� + γ )2

1

�φ�
, (34)

where the average survival probability �φ� is to be determined
from Eq. (26) and (27b). In the limit of no hierarchy (ν = 0
and ρ = 1), Eq. (34) reduces to the stability condition found
in Refs. [21,23] (Sec. S6.3.3 in [37]). Interestingly, the same
criterion as in Eq. (34) can be obtained with the machinery of
random matrix theory, noting that N∗ = �φ�N species survive
the dynamics asymptotically and reach a fixed point. The bulk
of the eigenvalue spectrum of an N∗ × N∗ random matrix
with hierarchical statistics as in Eq. (4) (cf. Fig. 1) crosses
the imaginary axis precisely when Eq. (34) is satisfied [26].
Similar observations were made in the case without hierarchy
(ν = 0 and ρ = 1) in Ref. [22]. A crucial difference between
the dynamical and random matrix approaches is that the frac-
tion of survivors �φ� = N∗/N is determined from Eq. (27b)
in the dynamical theory, but �φ� is an independent parameter
of the model in the random matrix approach. In particular,
Eq. (34) would lead one to conclude that ν has no effect
on linear stability if a random matrix approach were used.
However, as �φ� is itself a function of the parameters ν, σ ,
ρ, and γ , no such conclusion is drawn here.

2. Diverging abundances

To find the point at which species abundances diverge, we
solve Eq. (26), together with Eq. (27a), for the point at which
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FIG. 5. Hierarchical interactions and stability. (a) Similar to the phase diagrams in Ref. [23], we show the three possible dynamical
behaviors of the system without hierarchy in the μ-σ plane. We have γ = 0.8 (20% predator-prey interactions), ν = 0, and ρ = 1. In (b) and
(c) we choose the points (b) μ = −0.5 and σ = 0.7 and (c) μ = 0.5 and σ = 0.8 and show stability in the ν-ρ plane. The left circle (yellow)
in (a) and the circle in (b) are the same point in parameter space (μ = −0.5, ν = 0, σ = 0.7, ρ = 1, and γ = 0.8) and similarly for the right
(red) circle in (a) and the circle at the center of panel (c) with μ = 0.5, ν = 0, σ = 0.8, ρ = 1, and γ = 0.8.

1/�M� = 0. We find that abundances diverge if

μ � �1ρ
2 + �0

�1ρ2 − �0
ν. (35)

On eliminating �0 and �1 using Eqs. (26), Eq. (35) can be
solved to yield the critical value of one of the parameters (μ,
σ , ν, ρ, and γ ) given the others. The resulting predictions for
the point at which the mean abundance diverges is exact when
the system is stable with respect to small perturbations, but is
only approximate when the system becomes linearly unstable
before the point of divergence is reached (see Sec. S7 in [37]
for numerical justification). We include both cases in Fig. 5.
The stability conditions (34) and (35) provide a comprehen-
sive analytical picture of stability in the hierarchical system.
Similarly to Eq. (34), Eq. (35) reduces to the corresponding
stability criteria of Refs. [21,23] in the nonhierarchical limit
(Sec. S4.5.4 in [37]).

B. Phase diagrams

The phase diagrams in Figs. 5 and 6 illustrate the effects
of hierarchical interaction (ν and ρ) on stability. When ν

is sufficiently large, increasing ν typically decreases average
abundances and the fraction of surviving species (see Fig. 2),
thereby pushing the system away from diverging abundances
and from linear instability. Larger deviations of ρ from unity
push the system both towards linear instability and generally
towards infinite abundances. These effects are demonstrated
in Figs. 5(b) and 5(c), which indicate that a large enough
value of ρ will always result in an unstable system and a
large enough value of ν will always result in a stable one.
We also demonstrate the (separate) effects of changing ν and
ρ in Fig. 6. If our parameters are restricted such that either
ν = 0 or ρ = 1 [shown in Fig. 6(a)], then we can analytically
demonstrate the effects of varying only one parameter (either
ν or ρ) on linear instability. Details can be found in Sec. S6.3
in [37].

FIG. 6. Phase diagrams (horizontal axis shows the proportion of predator-prey pairs). The onset of instability [(a) linear instability and
(b) diverging abundances] are shown as black lines for (ν, ρ ) = (0, 1), as well as for (ν, ρ ) = (3, 1) and (ν, ρ ) = (0, 3) as indicated. Stability
is colored as labeled for the case (ν, ρ ) = (0, 1). The lengths of arrows indicate the effect of increasing the values of ν or ρ by one (ν → ν + 1
or ρ → ρ + 1, respectively).
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Figures 5(b) and 5(c) also reveal how the precise combi-
nation of ν and ρ can affect stability and community compo-
sition. Specifically, communities with ν > 0 and ρ > 1 tend
to have lower abundances than those with ν > 0 and ρ < 1
and are further from the diverging abundances transition.

From Fig. 6 we find that the influence of ν on linear
stability is relatively small compared with its influence on
the point at which abundances diverge. This is reminiscent of
the fact that the overall average interaction strength μ has no
effect on linear stability but affects the average abundance.
Figure 6 also reveals that ρ has a more dramatic effect on sta-
bility in communities with a large proportion of predator-prey
pairs. In particular, any value of ρ �= 1 removes the special
behavior of the model without hierarchy and all interactions
of the predator-prey type (ρ = 1, ν = 0, and γ = −1). In this
special case, there is no linear instability [21,23,31], as indi-
cated in Fig. 6(a). Any value ρ �= 1 will however lead to the
possibility of instability in the system with only predator-prey
interactions. The stabilizing influence of ν, on the contrary, is
only mildly affected by the proportion of predator-prey pairs.

The influence of the remaining parameters μ, σ , and γ

on stability is relatively straightforward and similar to the
model without block structure (ν = 0 and ρ = 1) previously
studied in [21,23,31,33] and in studies of complex ecosystems
based on the spectra of random matrices [2,30]. The parameter
μ has no effect on linear stability, as Eq. (34) has no μ

dependence. Instead, from Eq. (27a) we see that μ increases
average abundances (noting that �0 and �1 are independent
of μ), thereby moving the system towards instability via di-
verging abundances. This can be seen in Figs. 5(a) and 6(b):
A large enough value of μ will always lead to diverging
abundances in the community. Increasing σ , on the other
hand, pushes the system towards both linear instability and
diverging abundances, as demonstrated in Figs. 5(a) and 6(a).
Increasing the correlation parameter γ (i.e., decreasing the
proportion of predator-prey interaction pairs) also pushes the
system towards linear instability and diverging abundances, as
demonstrated in Fig. 6.

VII. CONCLUSION

Our analysis of the generalized Lotka-Volterra model with
hierarchical interactions has focused on the effect of hier-
archy on both stability and structure in complex ecological

communities. We have extended previous work on the stabi-
lizing impact of predator-prey-like relationships [13,21,23,30]
by considering both the average severity of the hierarchy (ν)
and the proportion of interactions of predator-prey type (γ )
in a single dynamical model. We found that increases to both
factors are stabilizing. We also found that increased hetero-
geneity in interaction variances (ρ) is a destabilizing force.

The dynamic mean-field theory approach, unlike an ap-
proach based on the spectra of random matrices, guarantees
a feasible equilibrium and gives access to properties of the
ecosystem other than stability. We found that communities
with a strong hierarchy are dominated by species at the top,
which are both more abundant and more likely to survive
asymptotically. Further, hierarchy leads to more complex,
non-Gaussian abundance distributions.

In order to find fixed-point equations for the hierarchical
model with an infinite number of subcommunities, we first
considered a related and more general community, divided
into a finite number of subcommunities. Fixed-point equa-
tions were then obtained, resulting in an effective abundance
for a representative species xa(t ) in each community. This is
in contrast to most similar studies employing dynamic mean-
field theory [21,43], which do not have a structured population
and accordingly only a single effective species. Our more
general approach could allow for progress to be made in-
vestigating more heterogeneous interaction structures in and
beyond ecology, such as other block-structured interaction
matrices [54], metapopulation models on complex networks
[15,55,56], or trophic levels [14,57,58].

Codes can be found in [59], as well as the method for
simulating the community dynamics with Eq. (1), numerical
solution procedures for solving the hierarchical fixed point
equations (26), and the data and code for producing all figures.
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