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A multiplex is a collection of network layers, each representing a specific type of edges. This appears
to be a genuine representation of many real-world systems. However, due to a variety of potential factors,
such as limited budget and equipment, or physical impossibility, multiplex data can be difficult to observe
directly. Often, only partial information on the layer structure of the system is available, whereas the remaining
information is in the form of a single-layer network. In this work we face the problem of reconstructing the
hidden multiplex structure of an aggregated network from partial information. We propose an algorithm that
leverages the layerwise community structure that can be learned from partial observations to reconstruct the
ground-truth topology of the unobserved part of the multiplex. The algorithm is characterized by a computational
time that grows linearly with the network size. We perform a systematic study of reconstruction problems for
both synthetic and real-world multiplex networks. We show that the ability of the proposed method to solve
the reconstruction problem is affected by the heterogeneity of the individual layers and the similarity among
the layers. On real-world networks, we observe that the accuracy of the reconstruction saturates quickly as the
amount of available information increases. In genetic interaction and scientific collaboration multiplexes, for
example, we find that 10% of ground-truth information yields 70% accuracy, while 30% information allows for
more than 90% accuracy.
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I. INTRODUCTION

Networks have emerged as powerful modeling frameworks
for relational data over the past few decades, boasting an im-
pressive body of supporting research and methodologies [1].
However, it has become clear recently that networks in their
simplest realization are incapable of properly modeling mul-
tidimensional relational data [2–6]. The literature is indeed
plenty with examples of how ignoring the multidimensionality
of systems in network modeling leads to fundamental errors
in the characterization of both their structural and dynamical
properties (see, e.g., Refs. [2,4,7–19]).

A multiplex is probably the simplest network representa-
tion of a multirelational system [2,3,20–22]. A multiplex is
a collection of single-layer networks sharing common nodes;
each layer of a multiplex captures a different type or flavor
of pairwise interaction among nodes. This is a convenient
and meaningful representation of many real-world systems,
including social [23,24] and biological systems [4,25,26].

Even if the system under study is truly a multiplex,
data about its topology are often available in an aggregated
single-layer format. As a matter of fact, obtaining precise
information about the flavor of all edges in a real multiplex
could be prohibitively expensive, too time intensive, or even
physically impossible. For example, it is relatively simple to
detect correlations in coarse-level changes of gene expres-
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sions. Less simple, however, is the observation of fine-grained
coexpression details, being prohibitively expensive for large
genetic interaction systems. Similarly, neural connectomes
can be reconstructed by analyzing correlations in time series
of spiking neuron activity; however, observing the details of
the interactions, i.e., synaptic junction types, is too expen-
sive for large connectomes. Despite the availability of data
describing functional aggregate networks, the dynamics oc-
curring on these functional multiplexes is distinct from the one
happening on their observable aggregate counterparts [27].
In this respect, there is an apparent need for tools to infer
full, true multiplex structure from an associated single-layer
network. In this paper we refer to this classification problem
as the multiplex reconstruction problem (MRP) (see Sec. IV
for its definition).

Only a few attempts to solve the MRP exist in the literature.
In Ref. [28], Bagrow and Lehmann considered the MRP in the
context of temporal networks, i.e., multiplex networks where
layers correspond to different snapshots of the same network
at different instants of time. They obtained good prediction
accuracy leveraging a sparsity-enforced lasso regression tech-
nique. The method requires full knowledge not only of the
aggregated network topology, but also of the node degrees
in the individual layers. Zhang et al. considered the MRP
on two-layer multiplex networks [29]. Their solution of the
MRP corresponds to the maximization of the edge clustering
coefficient of the individual layers, obtained via a simulated-
annealing-like algorithm. The algorithm is applicable only to
small and sufficiently dense multiplex networks, for example,
networks representing trades of different commodities among
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countries. Wu et al. interpreted the MRP as a statistical in-
ference problem based on the hypothesis that network layers
are instances of the configuration model [30]. They devel-
oped an expectation-maximization algorithm for solving the
MRP. The algorithm can be trained on partial knowledge of
the ground-truth topology of a multiplex to make predictions
about the unobserved edges. The method allows one to per-
form prediction and classification of edges of a multiplex
network, and the classification task includes the possibility of
an edge to belong simultaneously to multiple layers. Wu et al.
also provided a theoretical analysis of the MRP, relating the
accuracy of reconstruction of their method to a metric of the
multiplex’s entropy derived under the ansatz of the configura-
tion model. Finally, De Bacco et al. [31] and Tarrés-Deulofeu
et al. [32] introduced inferential methods for the analysis
of multiplex networks with potentially correlated layerwise
community structure. These methods are rather general and
can be used to solve various inference problems, including
link prediction at the level of individual layers. Both papers
consider only a fivefold cross-validation scheme, where their
classifiers are trained on 80% of the ground-truth topology and
the 20% of the remaining links are predicted or classified. The
performance of the classifiers is excellent. Both papers study
only real-world multiplex networks composed of a small num-
ber of nodes but a large number of layers, possibly because
the computational time of these methods scales quadratically
with the number of nodes in the system. Also, the methods
may not be best suited to deal with sparse network layers, as
explicitly noted by Tarrés-Deulofeu et al., who stated that “the
multilayer models outperform the baseline models in almost
all the studied cases, except for the cases in which information
is too sparse for the multilayer model to recover unobserved
interactions with precision” [32].

The above five articles mark the only literature directly
addressing the MRP. Some existing literature deals with
the related problem of determining whether the multiplex
framework is indeed required to properly model an observed
single-layer network. For example, Lacasa et al. showed that
diffusion properties of a single-layer network can be used to
judge whether the network is truly represented by a single
layer or if instead it is better represented by a (hidden) multi-
plex structure [33]. Similar goals were pursued by Santoro and
Nicosia with an approach that leverages Kolmogorov’s com-
plexity [17]. Finally, Vallès-Català et al. developed a method
to determine the reliability of links in multiplex networks
[34]. The method relies on the generalization of the stochastic
block model from single-layer to multilayer networks. Link
reliability consists in determining whether an observed (or
unobserved) edge exists or not. Vallès-Català et al. showed
that accounting for the hidden multiplexity with their gener-
alized stochastic block model indeed increases the ability to
predict the existence and/or nonexistence of edges. However,
they do not directly focus on the MRP, i.e., the classification
of observed edges in types or flavors.

In this paper we introduce an algorithm able to approx-
imate MRP solutions. The computational complexity of the
algorithm grows linearly with the total number of edges
in the multiplex network. Our algorithm is inspired by the
degree-corrected stochastic block model in the sense that the
probability of an observed edge to belong to a specific layer

instead of another is a function of the degree of the nodes
in the layers and the community structure of the layers [35].
The latter ingredients are learned from the partial observation
of the ground-truth structure of the multiplex network. Given
that the two main ingredients of the classifier are the degree
sequence and the community structure of the layers, we refer
to it as the degree- and community-based classifier. From the
systematic study of the MRP on synthetic multiplex networks,
we show that the accuracy of the classification task is strongly
influenced by both the heterogeneity of the individual net-
work layers and the correlation among the structure of the
layers. From the analysis of real-world networks, we show
that the accuracy of the method saturates pretty quickly as
the amount of partial information available on the system
increases. Roughly, having 30% partial knowledge yields 90%
accuracy.

II. RESULTS

In this paper we consider the MRP on multiplex networks
composed of two layers only. We work under the assumption
that all edges in the multiplex network are known. Depending
on the experimental setup considered, we may have access to
some level of ground-truth information. We remark that in our
formulation of the problem edges can belong to one layer only.
The above assumptions lead to a formulation of the MRP as
a binary classification task. We systematically study the MRP
on both synthetic and real networks. Details on the methods,
networks, and experimental setups are reported in Sec. IV.

A. Reconstruction with degree and community information

We begin our analysis under a peculiar experimental setup.
Network layers are instances of the configuration model
[36]. Except from the preimposed degree sequence, network
layers are completely random so that no community struc-
ture characterizes the networks. We work with power-law
degree distributions with a tunable degree exponent. We
assume that the degree-based (D) classifier has full knowl-
edge of the degree sequences of both layers composing the
multiplex network. Except for that, the D classifier is com-
pletely uninformed about the ground-truth topology of the
system; thus the test set is composed of all edges in the
network. Performance is measured as the area under the
receiver operating characteristic curve (ROC AUC) of the
binary classification task concerning edges belonging to the
test set.

We use this experimental setup to understand how difficult
the MRP is on synthetic multiplex networks with variable (i)
degree heterogeneity at the level of individual layers and (ii)
degree-degree correlation among layers. In particular, we note
that network layers are generated according to a model that
is compatible with the assumption made at the basis of the
D classifier; thus results from this set of experiments should
represent a reliable proxy for the intrinsic difficulty of the
MRP.

As the results of Fig. 1 show, we find that the performance
of our method to solve the MRP decreases as the degree
exponent of the preimposed degree distribution increases.
Essentially, solving the MRP is easier on multiplex networks
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FIG. 1. Reconstruction of synthetic multiplex networks. (a) Random multiplex networks with the power-law degree distribution P(k) ∼
k−γ composed of N = 100 000 nodes. The minimum degree is kmin = 3 and the maximum degree is kmax = √

N if γ � 3 and kmax = N1/(γ−1)

if γ � 3. Different curves are obtained for different γ values. We plot the classification metric ROC AUC of the degree-based (D) classifier
as a function of the probability of relabeling nodes; we relabel nodes to control for degree-degree correlation (see Sec. IV). Degrees are
positively correlated when the relabeling probability is zero; they become progressively uncorrelated as the relabeling probability increases.
Results are obtained over a single realization of the model. We do not observe substantial fluctuations from run to run. (b) Same as in (a) but
for multiplex networks with anticorrelated degree sequences. The sequences are maximally anticorrelated for a null relabeling probability and
they become uncorrelated as the relabeling probability increases. (c) Multiplex networks with preimposed community structure and power-
law degree distribution P(k) ∼ k−γ . Graphs with N = 10 000 nodes are generated according to the LFR model (see Sec. IV for details).
We set degree exponent γ = 2.1, maximum degree kmax = √

N , and average degree 〈k〉 = 20. Communities have size obeying a power-law
distribution with exponent τ = 1.0. The strength of the community structure is determined by the mixing parameter μ. We plot the ROC AUC
of the community-based (C) classifier as a function of the probability relabeling the nodes of the multiplex. The classifier is unaware of the
ground-truth degree sequences of the network layers. Different curves are obtained for different values of the mixing parameter μ controlling
for the strength of the community structure of the network layers. The community structure of the two layers is correlated when no nodes are
relabeled; correlation decreases as the relabeling probability increases. (d) Plot of the ROC AUC of the degree- and community-based (DC)
classifier as a function of the relabeling probability for synthetic multiplex networks with preimposed community structure. The networks are
the same networks as in (c). In this case, however, the classifier takes advantage also of the knowledge of the ground-truth degree sequence of
the network layers.

with heterogeneous degree sequences than on multiplex net-
works with homogeneous degree sequences. However, it is
also important that the two layers are sufficiently diverse
from each other. If nodes have the same exact degrees on
both layers, the performance of the D classifier is identical
to that of random guessing [Fig. 1(a)]. As the degree-degree
correlation of the layers decreases, performance improves.
In particular, we find that the best performance is achieved
for maximally anticorrelated degree sequences [Fig. 1(b)].
This is a consequence of the fact that the probability for the
edge to belong to a given layer is proportional to the product
of the layerwise nodes’ degrees [see Eq. (2)]. When degree
sequences are anticorrelated, it likely that nodes with high
degree in one layer have low degree in the other layer and
edges attached to such a type of nodes are relatively easy to
classify correctly.

In addition, we study the performance of the community-
based (C) classifier on network layers generated according to
the Lancichinetti-Fortunato-Radicchi (LFR) model [37]. We
use the LFR model to generate network layers with built-in
community structure; we further control for the amount of
degree and community-structure correlation between the lay-
ers of the multiplex. We test the performance of the classifier
on these networks when informed about their ground-truth
community structure, but no information on their degree
sequence is used. As the results of Fig. 1(c) indicate, the
performance of the C classifier increases as the strength of
the community structure increases; also, the performance in-
creases as the correlation between the community structure
of the layers decreases. The results of Fig. 1(c) are due to
the C classifier of Eq. (4), which expresses the probability for
an edge to belong to a layer of the multiplex as proportional to
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FIG. 2. Reconstruction of synthetic multiplex networks with partial edge information. (a) Plot of the performance metric ROC AUC of
the degree-based (D) classifier as a function of the relative size of the training set. Multiplex networks have size N = 100 000 and power-law
degree distribution P(k) ∼ k−γ . We display results for different γ values. We impose the minimum degree kmin = 3 for all γ values, while the
maximum degree is kmax = √

N for γ � 3 and kmax = N1/(γ−1) for γ > 3. The degree sequences of the layers are uncorrelated. (b) Plot of the
ROC AUC of the degree- and community-based (DC) classifier as a function of the relative size of the training set. Tests are performed on
synthetic multiplex networks with preimposed community structure constructed according to the LFR model with N = 10 000, 〈k〉 = 5.0, and
kmax = √

N for γ � 3 and kmax = N1/(γ−1) for γ > 3. The community power-law exponent is τ = 1.0 and the mixing parameter is μ = 0.1.
The degree sequences and community structures of the layers are uncorrelated. (c) Same as in (b) but for fixed degree exponent γ = 2.1
and different μ values. (d) Comparison of the performance of the different classifiers on a synthetic graph with built-in community structure
(closed symbols and full curves) and without community structure (open symbols and dashed curves). We plot the performance metric of
the DC classifier, the D classifier, and the community-based (C) classifier. Graphs with community structure are constructed using the LFR
multiplex model with N = 10 000, γ = 2.1, kmax = √

N , 〈k〉 = 5.0, τ = 1.0, and μ = 0.1. We use the configuration model with N = 10 000,
γ = 2.1, kmin = 3, and kmax = √

N for the graphs with no community structure. The degree sequences and community structures of the layers
are uncorrelated.

the strength of the layerwise community structure. When the
community structures of the layers are anticorrelated, intra-
community edges have associated a high probability to belong
to the correct layer; the complementary probability is instead
low due to the fact that the edge is seen as an intercommunity
edge in the other layer.

Finally, we apply the degree- and community-based (DC)
classifier to the LFR multiplex networks. We find that the
combination of the two ingredients leads to a significant
boost in classification performance [Fig. 1(d)]. Decreasing
correlation leads to a visible improvement in classification
performance only if the community structure of the layers is
strong enough [Fig. 1(d)].

B. Reconstruction with partial edge information

The experimental setups considered in the preceding sec-
tion are useful to understand intrinsic properties of the MRP.
However, the setups are not very representative of applications
in the real world. For example, it appears unrealistic to have

full and exact knowledge of the layerwise community struc-
ture of the multiplex, but no information about the topology
of the multiplex. From now on, we work using a standard
experimental setup where we assume that the edges in the
multiplex are randomly divided in a training set and a test set.
The relative size of one set over the other is the main control
parameter of our experiments. The classifier is trained from
the knowledge of the ground-truth flavor of the edges within
the training set. Also here performance is measured as the
ROC AUC of the binary classification task concerning edges
belonging to the test set.

We consider the MRP on synthetic multiplex networks (see
Fig. 2). In this set of experiments, the degree sequences and
community structures of the layers are uncorrelated. Similarly
to what was reported in the preceding section, we find that
the accuracy of the DC classifier grows as the heterogeneity
of the degree distribution [Fig. 2(a)] and the strength of the
community structure [Figs. 2(b) and 2(c)] increase. Depend-
ing on whether or not the network layers have an assortative
structure, the classification is enhanced regardless of whether
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TABLE I. Real-world multiplex networks. From left to right, we report the name of the data set and reference where the data set was
introduced, the name of the network layers that compose the multiplex, the number of nodes within the two layers, the number of edges for
each of the two layers, the number of edges shared by the two layers, the modularity of the best Louvain partition of each layer, and the
normalized mutual information between the two partitions of the two layers. Here DLR denotes Docklands Light Railway.

Data set α β N |E (α)| |E (β )| |E (α,β )| Q(α) Q(β ) NMI

arXiv [39] physics.data-an cond-mat.dis-nn 7187 11 929 4785 2556 0.89 0.96 0.77
arXiv [39] physics.data-an cond-mat.stat-mech 5963 13 326 1423 1159 0.86 0.98 0.75
arXiv [39] cond-mat.dis-nn cond-mat.stat-mech 4342 6839 2080 502 0.91 0.97 0.78
D. melanogaster [4] direct suppressive 7519 23 911 1798 66 0.45 0.64 0.49
D. melanogaster [4] direct additive 7486 23 928 1376 49 0.46 0.67 0.48
D. melanogaster [4] suppressive additive 1005 1395 956 469 0.66 0.73 0.59
C. elegans [40] electric chemical monadic 273 406 777 111 0.67 0.51 0.37
C. elegans [40] electric chemical polyadic 277 355 1541 162 0.70 0.44 0.38
C. elegans [40] chemical monadic chemical polyadic 273 258 1073 630 0.70 0.40 0.37
London [41] underground overground 321 301 72 11 0.82 0.78 0.67
London [41] underground DLR 311 312 46 0 0.83 0.70 0.69
London [41] overground DLR 126 83 46 0 0.77 0.69 0.70
S. pombe [4] physical association direct interaction 2577 1038 6622 445 0.87 0.51 0.51
S. pombe [4] physical association colocalization 3009 1431 30 752 52 0.84 0.23 0.44
S. pombe [4] direct interaction colocalization 3782 6940 30 677 127 0.52 0.23 0.40
H. sapiens [4] physical association direct interaction 17 415 37 361 72 004 12 284 0.53 0.41 0.32
H. sapiens [4] physical association colocalization 15 254 82 050 16 189 1386 0.42 0.64 0.35
H. sapiens [4] direct interaction colocalization 3782 6940 30 677 2238 0.52 0.23 0.40
R. norvegicus [4] physical association direct interaction 2520 2610 832 178 0.70 0.93 0.63
R. norvegicus [4] physical association colocalization 2065 2757 88 31 0.71 0.91 0.59
R. norvegicus [4] direct interaction colocalization 1074 991 100 19 0.92 0.91 0.78

the classifier takes advantage of its community-based com-
ponent [Fig. 2(d)]. If the graph has no community structure,
the DC classifier may also display lower performance than
the simple D classifier. However, this seems to happen only
if the size of the training set is sufficiently small; further, if
the system size is increased, an apparent gap in performance
is no longer visible (see Fig. 5). In all the experiments con-
sidered in Fig. 2, the accuracy of the classifier saturates quite
quickly with the amount of partial information used to train
the classifier. These general observations on the performance
of the DC classifier to solve the MRP on synthetic networks
are only mildly affected by the average degree of the network
and its size. Specifically, we find that the performance of
the classifier is almost unaffected by the average degree of
multiplex network [see Fig. 6(a)]. Also, we find that, as the
system size is increased, the performance of the reconstruction
algorithm mildly increases [see Figs. 6(b) and 6(c)].

C. Time complexity of the reconstruction algorithms

The proposed DC classifier generates solutions of the MRP
in a time that grows almost linearly with the total number
of edges in the multiplex. The classifier benefits from the
scalability of the Louvain algorithm, i.e., the method used
to detect communities in the network layers [38]. We stress
that the DC classifier can leverage any suitable community
detection method to produce solutions of the MRP; however,
the time complexity of the classifier may be dramatically
increased by that of the community detection method. The fact

FIG. 3. Computational complexity of algorithms for multiplex
reconstruction. We generate multiplex networks with variable size
N . Tests are performed on synthetic multiplex networks with preim-
posed community structure constructed according to the LFR model
with γ = 2.1, τ = 1.0, kmax = √

N , 〈k〉 = 5.0, and μ = 0.1. Tests
are also performed on networks without community structure that
were generated using the configuration model (CM) with γ = 2.1,
kmin = 3, and kmax = √

N . No correlation at the level of degree se-
quence and/or community structure is present between the layers of
the multiplex. Given a network, we provide 50% of partial informa-
tion to the degree- and community-based (DC) classifier and measure
the time required by the algorithm to reconstruct the multiplex.
Computational time is measured in seconds. Simulations were run
on an Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60 GHz. As guide-
lines, we display lines denoting the scalings N (dotted) and N log N
(dashed).
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that the DC method is able to reconstruct multiplex networks
in linear time is verified in Fig. 3. There we systematically
apply the DC method in the reconstruction of the topology of
multiplex networks composed of synthetic network layers of
variable size. By construction, these networks are sparse, so
the total number of edges is proportional to the total number
of nodes. In the same spirit as in the analysis of Fig. 2, we
use the DC classifier to generate solutions of the MRP for a
given amount of partial information. Note that even networks
that do not have preimposed community structure are still
analyzed according to the full pipeline of the DC classifier.
The quasilinear scaling of the time of computation is apparent
from our results.

D. Applications to real-world multiplex networks

Finally, we study the MRP with partial edge information on
real-world multiplex networks (see Table I for the complete
list of data sets analyzed). In Fig. 4 we report results for
four data sets. Results for three additional data sets can be
found in Fig. 7. Although some data sets include information
about multiplex networks with more than two layers, we study
only multiplexes formed by two layers at a time. Overall, we
find a mixed behavior of the DC classifier. There are cases
where the classifier is able to correctly identify the flavor of
a large portion of edges even if the size of the training set is
small. This fact happens for multiplex networks representing
scientific collaborations [Fig. 4(a)] and genetic interactions
in organisms [Figs. 4(b) and 7]. In other situations instead,
for example, for a connectome multiplex network [Fig. 4(c)]
and for a multiplex transportation network [Fig. 4(d)], the
performance of the classifier is not exceptional.

We compare the performance of the DC classifier with a
suitably modified version of the classifier by Wu et al. [30]
(see Sec. IV for details). The classifier by Wu et al. relies
on the configuration model and the classification of edges
is obtained via the expectation-maximization algorithm. No
information on the network community structure is used by
the method. The classifier by Wu et al. excels on the London
multiplex transportation network [Fig. 4(d)]. It produces a
performance comparable to the one of the DC classifier in
all other multiplex networks, except for those characterized
by layers with sufficiently strong but uncorrelated community
structure, for example, the genetic interaction multiplex of
the Drosophila melanogaster [Fig. 4(a)]. The strength of the
community structure of a network layer is measured in terms
of modularity; see Table I for modularity values of the best
partitions for the various multiplex networks. In the same table
we also report the normalized mutual information between
the best partitions of the two layers, which provides us with
a quantitative proxy to judge the level of similarity between
pairwise community structures.

In Fig. 8 we replicate the analysis for real networks by
finding communities with Infomap [42] rather than Louvain.
Although the two community detection algorithms typically
find different partitions of the network layers, the performance
of the DC classifier is similar in the two cases, indicating
that the use of assortative structure, irrespective of its de-
tails, enhances the reconstruction of a multiplex ground-truth
topology.

III. CONCLUSION

In this paper we studied the multiplex reconstruction prob-
lem (MRP), i.e., the identification of the flavor of edges in
multiplex networks composed of two layers.

First, we characterized facets of the reconstruction prob-
lem. We showed that the intrinsic difficulty of the MRP
depends on the level of heterogeneity of the individual layers,
in the sense that multiplex networks with broad degree distri-
butions are easier to reconstruct than multiplex networks with
homogeneous degree distributions. If layers are characterized
by community structure, then the stronger such a structure
is, the easier the MRP is. However, within-layer structural
diversity is not the only important ingredient that determines
the hardness of the MRP. The type and strength of structural
correlation among layers are essential too. We showed that
multiplex networks that have noncorrelated or anticorrelated
layers, at the level of degree sequences and/or community
structure, can be reconstructed quite well. On the other hand,
positively correlated layers do not allow for an easy recon-
struction.

Second, we presented an algorithm for solving the MRP.
The method is inspired by the degree-corrected stochastic
block model, in the sense that the probability of two nodes to
be connected is proportional to the product of their degrees
and a factor that accounts for the community structure of
the network. In our experiments, the classifier is trained on
a portion of edges whose ground-truth layer is revealed. Its
performance is measured in terms of the ability of classifica-
tion of the remaining edges whose ground-truth layer is not
revealed. We systematically studied the performance of the
classifier on both synthetic and real multiplex networks as a
function of the relative size of the training set of edges. We
found that the performance of the classifier saturates quite
quickly as the amount of information used to train the classi-
fier increases. Roughly, 30% of known edges are sufficient to
let the classifier reach 90% performance. There are, however,
also multiplex networks that are not easily reconstructed by
our method.

Our main results are based on community partitions iden-
tified via the modularity maximization algorithm Louvain.
However, we showed that a comparable performance can be
achieved using Infomap, which determines community struc-
ture solving a different optimization problem. This means that
assortative structure learned from partial observation is useful
for the reconstruction task irrespective of its details.

The present work can be extended in multiple directions.
The generalization of the MRP to multiplex networks com-
posed of more than two layers is one of these directions.
Considering mechanisms of aggregation different from the
exclusive OR that we addressed in this paper is another po-
tentially relevant direction. Also, the two main ingredients
of the reconstruction algorithm developed in this paper can
be used in more sophisticated, maybe more effective ways.
For example, one could think of treating the MRP as a
maximum likelihood problem where the network layers of
the multiplex are fitted by degree-corrected stochastic block
models and edges’s flavors are treated as the tunable pa-
rameters of the fit. Such an extension could also involve
the use of more sophisticated models such as the multilayer
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FIG. 4. Reconstruction of real-world multiplex networks. (a) Plot of the ROC AUC as a function of the relative size of the training set.
We report results for the arXiv multiplex collaboration network [39]. We compare the results achieved with the degree- and community-based
(DC, closed symbols and solid curves) classifier with those of the classifier of Wu et al. (open symbols and dashed curves) [30]. Results are
averaged over ten realizations. (b) Same as in (a) but for the genetic interactions multiplex network of the Drosophila melanogaster [4]. Results
are averaged over 100 realizations. (c) Same as in (a) but for the Caenorhabditis elegans multiplex connectome [40]. (d) Same as in (a) but for
the London multiplex transportation network [41]. Results are averaged over 100 realizations.

degree-corrected stochastic block model [34]. Potential so-
lutions of the MRP could be then obtained by means of
likelihood maximization using standard optimization tech-
niques such as the expectation-maximization algorithm or
simulated annealing.

IV. METHODS

A. Multiplex reconstruction problem

We consider multiplex networks composed of two layers,
namely, α and β. The graph representing layer α is denoted by
G (α) = {N (α), E (α)}, where N (α) is the set of nodes of the layer
and E (α) is the set of its edges. The same notation is used for
layer β. Being a multiplex, we assume that N (α) = N (β ) and
we indicate the size of the network with N = |N (α)| = |N (β )|.
Further, we exclude the possibility that the edge (i, j) belongs
simultaneously to both layers, meaning that E (α) ∩ E (β ) = ∅.
This choice is mainly dictated by simplicity. We stress, how-
ever, that ours is a quite reasonable assumption. All synthetic
networks considered in our analysis are indeed characterized
by a negligible number of edges shared by the layers. The
same observation can be made also for several real-world
networks studied in this paper (see Table I).

We indicate the degree sequence of the layer α with �k(α) =
(k(α)

1 , k(α)
2 , . . . , k(α)

N ), where k(α)
i is the degree of node i in layer

α defined as

k(α)
i =

∑

(r,s)∈E (α)

δ(i, r) + δ(i, s). (1)

In the above expression, δ(x, y) is the Kronecker delta func-
tion, i.e., δ(x, y) = 1 if x = y and δ(x, y) = 0 if x 
= y. A
similar expression is used to relate the degree sequence �k(β )

to the set E (β ).
The community memberships of the nodes in the two lay-

ers are denoted by �σ (α) and �σ (β ), respectively. Community
structure is either a priori known based on the generative
network model of the multiplex layers or inferred by the
Louvain [38] or the Infomap [42] algorithm. Potentially, other
community detection algorithms can be used as well.

We define the multiplex reconstruction problem as the
binary classification of the individual edges in the multiplex
layers, i.e., predicting whether the generic edge (i, j) belongs
to either E (α) or E (β ). We perform the classification using
partial knowledge of the ground-truth multiplex network. We
consider two experimental setups.

(i) We assume to have full knowledge about some of the
features of the individual nodes, i.e., degrees and/or com-
munity memberships, but no direct information about the
sets E (α) and E (β ). We train a classifier using the available
information and apply it to the classification of all edges
(i, j) ∈ E (α) ∪ E (β ).

(ii) We assume to have information about a portion of
the network edges, namely, the training sets E (α)

train ⊆ E (α) and
E (β )

train ⊆ E (β ), respectively. We train a classifier on these sets
and we use it to classify all edges (i, j) ∈ E (α)

test ∪ E (β )
test , with

E (α)
test = E (α) \ E (α)

train and E (β )
test = E (β ) \ E (β )

train.
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In both the above experimental setups, we measure the
performance of the classifier using the ROC AUC, i.e., a
standard metric in binary classification tasks.

B. Degree-based classifier

In the first experimental setup, we assume to have complete
knowledge of the degree sequences �k(α) and �k(β ). We use
a straightforward prediction model, where we pretend that
the networks of layers α and β are random networks gen-
erated according to the configuration model with prescribed
degree sequences �k(α) and �k(α), respectively [36]. Note that
the network topology of each layer is assumed to be generated
independently. According to our classifier, the edge (i, j) ∈
E (α) ∪ E (β ) belongs to layer α with probability

P[(i, j) ∈ E (α)|�k(α), �k(β )] = k(α)
i k(α)

j

k(α)
i k(α)

j + k(β )
i k(β )

j

. (2)

Clearly, we have that

P[(i, j) ∈ E (β )|�k(α), �k(β )] = 1 − P[(i, j) ∈ E (α)|�k(α), �k(β )].
(3)

In the second experimental setup, we first use Eq. (1) to
estimate the degree sequences �k(α)

train and �k(β )
train from the sets

(E (α) ∪ E (β ) ) \ E (β )
train and (E (α) ∪ E (β ) ) \ E (α)

train, respectively. Es-
sentially, we pretend that a layer is formed by all edges in the
aggregate except those edges that we know for sure belong to
the other layer. Then we apply the classifier of Eq. (2), where
�k(α)

train and �k(β )
train replace the unknown ground-truth vectors �k(α)

and �k(β ), respectively, to the edges in the test set E (α)
test ∪ E (β )

test .

C. Community-based classifier

In the first experimental setup, we assume to have complete
knowledge of the community memberships �σ (α) and �σ (β ). We
use a straightforward prediction model, where we pretend that
the networks of layers α and β are random networks generated
according to the homogeneous stochastic block model with
prescribed community memberships �σ (α) and �σ (α), respec-
tively. Note that the network topology of each layer is assumed
to be generated independently. According to our classifier, the
edge (i, j) ∈ E (α) ∪ E (β ) belongs to layer α with probability

P[(i, j) ∈ E (α)|�σ (α), �σ (β )] = C(σ (α)
i , σ

(α)
j )

C
(
σ

(α)
i , σ

(α)
j

) + C
(
σ

(β )
i , σ

(β )
j

) .

(4)
Clearly, we have that

P[(i, j) ∈ E (β )|�σ (α), �σ (β )] = 1 − P[(i, j) ∈ E (α)|�σ (α), �σ (β )].
(5)

In Eq. (4), C(σi, σ j ) represents the propensity that two nodes
with community memberships σi and σ j are connected. For
simplicity, we assume that such a propensity can be written as

C(σi, σ j ) = ν[1 − δ(σi, σ j )] + (1 − ν)δ(σi, σ j ), (6)

with 0 � ν � 1. Note that the value of the parameter ν is
known to the classifier. The assumption of Eq. (6) is similar
to the one underlying the Lancichinetti-Fortunato-Radicchi

model [37], with the caveat ν 
 μ, where μ is the mixing
parameter of the LFR model.

In the second experimental setup, we apply a community
detection algorithm to the network formed by the edges in the
set (E (α) ∪ E (β ) ) \ E (β )

train to infer the community structure �σ (α)
train

of layer α. A similar procedure is used to infer the vector �σ (β )
train.

Finally, we use the classifier of Eq. (4), where �σ (α)
train and �σ (β )

train
are used in place of �σ (α) and �σ (β ), respectively. The parameter
ν of Eq. (6) is estimated as

νtrain = 1 − R(α)
train + R(β )

train∣∣(E (α) ∪ E (β ) ) \ E (β )
train

∣∣ + ∣∣(E (α) ∪ E (β ) ) \ E (α)
train

∣∣ ,

(7)
where

R(α)
train =

∑

(i, j)∈(E (α)∪E (β ) )\E (β )
train

δ
(
(�σ (α)

train)i, (�σ (α)
train) j

)
.

A similar definition is used for R(β )
train.

It is important to note that the goal of the classifier is
not to infer meaningful community structure in the layers of
the multiplex. Rather, we are solely concerned with leverag-
ing assortative group structure in the reconstruction process.
Therefore, the above choice of using Louvain (or Infomap) is
a pragmatic one; Louvain (or Infomap) is a fast algorithm to
discover assortative communities. If the communities found
are spurious, then this fact will be accounted for in the param-
eter learned in Eq. (7), which in turn will generate scores in
Eq. (6) that are similar for intra- and intercommunity edges.

D. Degree- and community-based classifier

In the first experimental setup, we assume to have com-
plete knowledge of the degree sequences �k(α) and �k(β ) of the
network layers and of the community memberships �σ (α) and
�σ (β ). We define a score that is inspired by the edge con-
nection probability in the degree-corrected stochastic block
model [35]. Also in this case, we assume that the network
topology of each layer is generated independently of the other.
According to this degree- and community-based classifier, the
edge (i, j) ∈ E (α) ∪ E (β ) belongs to layer α with probability

P[(i, j) ∈ E (α)|�k(α), �k(β ), �σ (α), �σ (β )] = Qk(α)
i k(α)

j C(σ (α)
i , σ

(α)
j ).
(8)

In the above equation, Q is a normalization constant so that

P[(i, j) ∈ E (β )|�k(α), �k(β ), �σ (α), �σ (β )]

= 1 − P[(i, j) ∈ E (α)|�k(α), �k(β ), �σ (α), �σ (β )]. (9)

In Eq. (8), C(σi, σ j ) represents the propensity that two nodes
with community memberships σi and σ j are connected. For
simplicity, we assume that such a propensity can be written as
in Eq. (6) and that the value of the parameter ν is known.

In the second experimental setup, we pretend that layer α

is formed by all edges in the set (E (α) ∪ E (β ) ) \ E (β )
train and layer

β is composed of all edges in the set (E (α) ∪ E (β ) ) \ E (α)
train.

We then use Eq. (1) to estimate the degree sequences �k(α)
train

and �k(β )
train and a community detection algorithm to infer the

layer community structures �σ (α)
train and �σ (β )

train. Finally, we use the
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classifier of Eq. (8), where �k(α)
train and �k(β )

train replace the unknown
ground-truth vectors �k(α) and �k(β ), respectively, and �σ (α)

train and

�σ (β )
train are used in place of �σ (α) and �σ (β ), respectively. The

parameter νtrain of Eq. (6) is estimated with Eq. (7).

E. Modified classifier by Wu et al.

The original algorithm by Wu et al. is conceived to solve a
more complicated problem than the one considered here [30].
Specifically, it aims at predicting the existence of an edge, and
if the edge exists, it aims at classifying the flavor of the edge.
In the classification part of the problem, an edge can belong
to one layer, the other, or both of them.

We modify the algorithm of Wu et al. to solve the classifi-
cation problem considered in this paper. We use this classifier
only in the second experimental setup, where partial infor-
mation on the multiplex edges is provided with the training
sets E (α)

train and E (β )
train. As in its original formulation, also here

the classifier takes advantage of the expectation-maximization
algorithm. First, we define the known degree of node i in layer
α as

z(α)
i =

∑

(r,s)∈E (α)
train

δ(i, r) + δ(i, s). (10)

A similar equation is used to define z(β )
i . Then we initialize

P[(i, j) ∈ E (α)
test |�κ (α), �κ (β )] = P[(i, j) ∈ E (β )

test |�κ (α), �κ (β )] = 1
2

for all edges in the test set. We then iterate the equations

κ
(α)
i = z(α)

i +
∑

(r,s)∈E (α)
test

[δ(i, r) + δ(i, s)]P
[
(r, s) ∈ E (α)

test

∣∣�κ (α), �κ (β )]

(11)

and

P
[
(i, j) ∈ E (α)

test

∣∣�κ (α), �κ (β )
] = κ

(α)
i κ

(α)
j

κ
(α)
i κ

(α)
j + κ

(β )
i κ

(β )
j

. (12)

We use an expression similar to Eq. (11) for κ
(β )
i . Note that

P[(i, j) ∈ E (α)
test |�κ (α), �κ (β )] = 1 − P[(i, j) ∈ E (β )

test |�κ (α), �κ (β )].
At the end of each iteration, we check for convergence
by comparing the predicted values of the probabilities
P[(i, j) ∈ E (α)

test |�κ (α), �κ (β )] with those predicted in the previous
iteration of the algorithm. In our tests, the condition for
convergence is satisfied if the difference between consecutive
values of the estimated probabilities is smaller than ε = 10−3

for all edges in the test set.

F. Multiplex networks

1. Synthetic multiplex networks

We begin by generating a degree sequence from the power-
law distribution P(k) ∼ k−γ for k ∈ [3, kmax] and P(k) = 0
otherwise. As prescribed in Ref. [43], we set kmax = √

N if
2 < γ � 3 and kmax = N1/(γ−1) for γ > 3. We consider vari-
ous values of the degree exponent γ .

To generate positively correlated degree sequences, we sort
the obtained degree sequence and use it for layer α, i.e., k(α)

1 �
k(α)

2 � · · · � k(α)
N . The degree sequence of layer β is a copy

of the one of layer α, i.e., k(β )
i = k(α)

i for all i = 1, . . . , N .

FIG. 5. Reconstruction of synthetic multiplex networks with par-
tial edge information. The figure is the analog of Fig. 4(d) but for
networks of larger size. We compare the performance of the differ-
ent classifiers on synthetic graph with built-in community structure
(closed symbols and solid curves) and without community structure
(open symbols and dashed curves). We plot the performance metric
of the degree- and community-based (DC) classifier, the degree-
based (D) classifier, and the community-based (C) classifier. Graphs
with community structure are constructed using the LFR multiplex
model with N = 100 000, γ = 2.1, kmax = √

N , 〈k〉 = 6, τ = 1.0,
and μ = 0.1. We use the configuration model with N = 100 000,
γ = 2.1, kmin = 3, and kmax = √

N for the graphs with no community
structure. The degree sequences and community structures of the
layers are uncorrelated.

This condition creates perfectly correlated degree sequences.
To decrease correlation between the degree sequences of the
layers, we swap the labels of random pairs of nodes in layer β.
The level of correlation is dependent on the fraction of pairs
that undergo swapping. If enough pairs of node labels are
swapped, the two degree sequences are completely uncorre-
lated. The resulting degree sequences are then independently
used to generate the network layers of the multiplex using the
configuration model [36].

To obtain anticorrelated degree sequences, we start from
a sorted degree sequence for layer α. For layer β, we use
k(β )

i = k(α)
N−i for all i = 1, . . . , N . This fact ensures that the two

degree sequences are maximally anticorrelated. Also, here we
swap the labels of a certain fraction of pairs of nodes in layer
β to decrease the level of correlation between the two degree
sequences. The resulting degree sequences are then indepen-
dently used to generate the network layers of the multiplex
using the configuration model [36].

To study the effect of correlation between the layerwise
community structures on the multiplex reconstruction prob-
lem, we generate network layers using the LFR model [37].
We begin by generating an instance of the LFR model with
given set of parameters. We fix the value of the commu-
nity size power-law exponent τ = 1.0. We consider various
values of the average degree 〈k〉. Also, we vary the degree
exponent γ . We do not impose any constraint on the size
and number of communities. We consider various values
of the mixing parameter μ. The same network instance is
used as the topology for both network layers α and β. To
reduce the edge overlap between the layers to a negligible
value without altering the correlation of the layers’ commu-
nity structure, we swap at random the labels of all pairs of
nodes within the same community in layer β. To reduce the
correlation among the structure of the network layers, we
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swap the labels for a random fraction of pairs of nodes in
layer β.

2. Real multiplex networks

We analyze several real-world multiplex networks. Even
if some data set consists of more than two layers, our tests
are performed considering two layers at a time. For a given
combination of the layers, edges shared by both layers are
deleted and no information on their existence is considered
in the MRP. For completeness, we report the number of
edges shared by the layers of a multiplex network, namely,
|E (α,β )| in Table I. These generally account for a very small
number of edges compared to the total number of edges that
are not shared by the layers. Specifically, the ratio Zshared =
|E (α,β )|/(|E (α)| + |E (β )|) is always smaller than 0.150 except
for two cases: (i) the layers “suppressive” and “additive” for
the Drosophila melanogaster multiplex for which Zshared =
0.166 and (ii) the layers “chemical monadic” and “chemical
polyadic” of the Caenorhabditis elegans multiplex for which
Zshared = 0.321.

Then the set of nodes in the corresponding multiplex is
given by the union of the sets of nodes of the two individual
layers. Details on the data sets analyzed in the paper are
reported in Table I. In the table we report also values of the
modularity value for the best partition detected by the Louvain
algorithm on each layer. We further measure the normalized
mutual information between the layerwise partitions to assess
their similarity.

All results of this paper are reproducible using code
publicly available [44].
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APPENDIX

In Fig. 5 we repeat the analysis of Fig. 2(d) for networks
with size N = 105. For the LFR model, we change the value
of the average degree from 〈k〉 = 5 to 〈k〉 = 6 to bypass
a convergence issue of the algorithm used to generate net-
work instances. All other parameters are identical to those of
Fig. 2(d).

In Fig. 6 we show that the performance of the proposed
classifier improves as the size of the network increases,
whereas it remains almost identical as the average degree of
the network is varied.

The analysis of three additional real-world multiplex net-
works is summarized in Fig. 7.

In Fig. 8 we compare the performance of the DC algo-
rithm based on either Louvain or Infomap. In all networks
considered, we do not appreciate an apparent difference in
performance due to the specific community detection algo-
rithm leveraged.

Finally, in Fig. 9 we study the correlation between the
performance of the DC classifier in the reconstruction of a
given multiplex and the fraction of overlapping edges among
the layers of the multiplex. We consider synthetic [Figs. 9(a)
and 9(b)] and real-world [Figs. 9(c) and 9(d)] networks. In
the case of real networks, we exclude on purpose the London
transportation networks from the analysis because of their
peculiarity of being graphs embedded in physical space. As
the plot shows, there is a clear relationship between the value
of the ROC AUC and the relative fraction of overlapping
edges among the layers of the multiplex for synthetic systems.
The value of the ROC AUC is inversely proportional to the
fraction of edges shared between layers and disregarded by
the classifier. This finding is also confirmed in real networks,
although the dependence between edge overlap and recon-
struction performance appears less apparent than in synthetic
multiplexes.

FIG. 6. Reconstruction of synthetic multiplex networks. (a) Plot of the ROC AUC of the degree- and community-based (DC) classifier as
a function of the relative size of the training set. We consider multiplex networks with preimposed community structure with size N = 10 000
and power-law degree distribution P(k) ∼ k−γ , with γ = 2.1. The strength of the community structure is determined by the mixing parameter
μ = 0.1. Communities have size obeying a power-law distribution with exponent τ = 1.0. Different curves represent different values of
average degree 〈k〉. The maximum degree is kmax = √

N . (b) Same as in (a) but for networks with average degree 〈k〉 = 5. Different curves are
obtained for different N values. (c) Plot of the ROC AUC of the degree-based (D) classifier as a function of the relative size of the training
set. Networks are generated according to the configuration model with γ = 2.1, kmin = 3, and kmax = √

N . Different curves are obtained for
different N values.
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FIG. 7. Reconstruction of real-world multiplex networks. (a) Plot of the ROC AUC as a function of the relative size of the training set.
We report results for the Saccharomyces pombe genetic multiplex network [4]. Results are averaged over ten realizations. We compare the
results achieved with the degree- and community-based classifier (closed symbols and solid curves) with those of the classifier of Wu et al.
(open symbols and dashed curves) [30]. Results are averaged over ten realizations. (b) Same as in (a) but for the genetic interactions multiplex
network of the Homo sapiens [4]. Results are obtained over one realization. (c) Same as in (a) but for the genetic interactions multiplex network
of the Rattus norvegicus [4]. Results are averaged over ten realizations.

FIG. 8. Reconstruction of real-world multiplex networks. (a) Plot of the ROC AUC as a function of the relative size of the training set.
We report results for the arXiv multiplex collaboration network [39]. We compare the results achieved with the degree- and community-based
(DC) classifier relying on two different community detection algorithms: Louvain (closed symbols and solid curves) [38] and Infomap (open
symbols and dashed curves) [42]. Results are averaged over ten realizations. (b) Same as in (a) but for the genetic interactions multiplex
network of the Drosophila melanogaster [4]. Results are averaged over ten realizations. (c) Same as in (a) but for the Caenorhabditis elegans
multiplex connectome [40]. (d) Same as in (a) but for the Saccharomyces pombe genetic multiplex network [4]. Results are averaged over
ten realizations. (e) Same as in (a) but for the genetic interactions multiplex network of the Homo sapiens [4]. Results are obtained over one
realization. (f) Same as in (a) but for the genetic interactions multiplex network of the Rattus norvegicus [4]. Results are averaged over ten
realizations.
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FIG. 9. Sensitivity analysis in the reconstruction of multiplex networks with edge overlap. (a) We consider LFR multiplex networks with
N = 10 000 nodes, average degree 〈k〉 = 10, degree exponent γ = 2.1, maximum degree kmax = √

N = 100, community distribution exponent
τ = 1, mixing parameter μ = 0.1, and minimum size of the communities cmin = 10. The two layers are initially identical; then nodes of
one of the layers are relabeled with probability q to control for the amount of shared edges. For q = 0, the two layers share all edges; for
q = 1, the fraction of edges shared become minimal. We consider various values of the relabeling probability q. We report the values of
the ROC AUC obtained by using our DC classifier as a function of the Jaccard similarity index of the set of edges of the two layers, i.e.,
J = |E (α,β )|/(|E (α)| + |E (β )| + |E (α,β )|). The different curves correspond to different choices of the relative size of the training set |Etrain|/|E |,
namely, (i) |Etrain|/|E | = 0.25, (ii) |Etrain|/|E | = 0.50, and (iii) |Etrain|/|E | = 0.75, where E = E (α) ∪ E (β ). We perform linear regression of the
data points and obtain the following values of the Pearson correlation coefficient (p value): (i) ρ = −0.93(0.00), (ii) ρ = −0.99(0.00), and
(iii) ρ = −0.99(0.00). (b) Same as in (a), but we plot the rank position of the data according to the two metrics. We obtain the following
values of the Spearman correlation coefficient (p value): (i) σ = −0.99(0.00), (ii) σ = −1.00(0.00), and (iii) σ = −1.00(0.00). (c) Same as
in (a) but for the real-world multiplex networks of Fig. 8. We measure (i) ρ = −0.54(0.02), (ii) ρ = −0.55(0.02), and (iii) ρ = −0.56(0.02).
(c) Same as in (b) but for the real-world multiplex networks of Fig. 8. We measure (i) σ = −0.34(0.17), (ii) σ = −0.44(0.07), and (iii)
σ = −0.42(0.08).
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