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Binary Apollonian networks
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There is a well-known relationship between the binary Pascal’s triangle and the Sierpinski triangle, in which
the latter is obtained from the former by successive modulo 2 additions starting from a corner. Inspired by
that, we define a binary Apollonian network and obtain two structures featuring a kind of dendritic growth.
They are found to inherit the small-world and scale-free properties from the original network but display no
clustering. Other key network properties are explored as well. Our results reveal that the structure contained in
the Apollonian network may be employed to model an even wider class of real-world systems.
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I. INTRODUCTION

Network theory has brought significant advances to the
field of complex systems, being applied to the spread of dis-
eases and information, author collaboration networks, engi-
neering, condensed-matter physics, transport, and much more
[1,2]. While many types of networks are used to model the dy-
namics of those and other classes of systems, they often share
a lot in common. To bypass complexity and reach for perspec-
tive, it is thus valuable to explore their universal properties.
For instance, real-world networks are neither fully random nor
fully regular but fit somewhere in between. As such, many of
them display features belonging to the class of small-world
networks [3]. These are graphs where it is often possible to
go from one node to another by taking a small number of
steps. Formally, it means the characteristic path length grows
logarithmically with the number of nodes, while retaining a
clustering coefficient well above that of a random graph.

A paradigmatic example of a graph displaying the small-
world property is the Apollonian network (AN) [4] (see
Fig. 2), named after Apollonius’ circle-packing ideas. This
class of networks is also scale free (the degree distribution
follows a power law) and can be embedded in the Euclidean
plane, which is quite relevant to condensed-matter physics.
ANs have since been used in the context of strongly correlated
electron systems [5], Bose-Einstein condensation [6], local-
ization [7], quantum dynamics [8,9], and other fields [10–13].
In particular, their topology yields ubiquitous transport prop-
erties as the spectrum is made up of discrete, localized modes
as well as extended modes, with a high level of degeneracy
due to the node degree distribution and 2π/3 rotational sym-
metry [9].

The primary goal of investigating complex networks is
to provide insights into the behavior of real-world systems,
either natural or manufactured. In order to do that, one should
be able to identify them accurately, something not always con-
sidered. On the other hand, seemingly distinct structures may
display very similar behavior. From a more fundamental level,
we may ask ourselves what main ingredients are responsible

for that. Following this direction, in this work we set out to
take a better look into the building blocks of the AN. We
derive subnetworks inspired by the well known relationship
between the binary Pascal’s triangle and the Sierpinski trian-
gle. The latter is a fascinating fractal structure that emerges
from various systems in nature and is connected to many areas
of mathematics. It can be obtained, for example, from the
Pascal’s triangle by assigning a binary number, 0 or 1, to each
element based on its even or odd parity, respectively. It is easy
to see that the larger the triangle is (see Fig. 1), the more its
binary structure converges to the Sierpinski fractal. It can also
be generated from scratch by performing successive modulo
2 additions in the Pascal’s triangle.

Based on such a construction we define a binary AN
where to each node is assigned a bit that is the result of
the modulo 2 addition of the three nodes (from the previous
generation) surrounding it. Two subnetworks arise from such
a procedure and we will address them in detail by evaluating
standard measures such as the degree distribution, clustering
coefficient, mean distance, and spectrum of the adjacency
matrix.

II. APOLLONIAN SUBNETWORKS

The regular AN is built starting out with a triangle (zeroth
generation, n = 0) as depicted in Fig. 2. In the following
generation (n = 1), a new node is added within it and the
edges now form three triangles. Subsequent generations are
obtained by repeating this process for each triangle to render
a self-similar network. To build a binary version of the AN
we assign a bit to each node. Consider the blue circles (red
squares) to represent bit 0 (1) in Fig. 2. Subsequent nodes are
defined according to the modulo 2 addition of the bits that
form their respective triangle. From generation n = 0 we note
that out of the many possibilities to set the three initial bits,
they will either deliver the standard network or amount to
the construction seen in Fig. 2. This summarizes the output
whenever one bit is different from the other two.
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FIG. 1. A structure resembling the Sierpinski fractal triangle can
be obtained from the famous Pascal’s triangle by carrying out suc-
cessive modulo 2 additions downward. Red (light) circles stand for
bit 1 and blue (dark) circles represent bit 0.

We have obtained two groups of nodes in the AN. If we
now split them up keeping only their own links (edges con-
necting different bits are destroyed), a couple of subnetworks
emerge. Figures 3 and 4 show each one of them in detail from
a clearer perspective starting from n = 2. For convenience, we
will refer to those as 0-AsN and 1-AsN, respectively, from
now on. Both structures can be easily treated by their own
growth rules without looking back at the original AN. For
each new generation, every node is joined by a number of
new others equal to the number of edges it had in the previous

(a) (c)

(b) (d)

FIG. 2. Apollonian network from the (a) zeroth generation (n =
0) through the (d) third (n = 3). The total number of sites is Nn =
(3n + 5)/2, and the number of edges is Bn = 3Nn − 6. To build its
binary version we assign a bit to each one of the nodes. Here, blue
circles (red squares) represent bit 0 (1). Each node belonging to
subsequent generations is set according to the modulo 2 sum of
the three nodes surrounding it that form a triangle. The Apollonian
subnetworks are defined by detaching both groups of bits keeping
their own bonds.

(a)

(b)

(c)

FIG. 3. Apollonian subnetwork made up by the bit-0 nodes (0-
AsN) for generations (a) n = 2 (b) n = 3, and (c) n = 4. Empty
circles represent both nodes located at the bottom corners of the
original network.

generation, with a few exceptions. In the 0-AsN, the nodes
located at the bottom corners of the original network (see
Fig. 2), represented by the empty circles in Fig. 3, acquire
one bond less when going from an even to an odd generation.
In the 1-AsN, the node located at the top corner of the AN,
tagged as the empty square in Fig. 4, gets an extra neighbor
when going from an even to an odd generation and one less
otherwise. Aside from these exceptions, both subnetworks
follow construction rules commonly set for general treelike
graphs [14]. Ours are particularly homogeneously weighted
and are built such that a new node is attached to each edge end

(a)

(b)

(c)

FIG. 4. Apollonian subnetwork made up by the bit-1 nodes (1-
AsN) for generations (a) n = 2 (b) n = 3, and (c) n = 4. An empty
square represents the node located at the top corner of the original
network.
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from the previous generation [15]. Also note that the growth
process of such networks resembles those seen in deposition
of materials that develop a dendritic pattern [16].

The total number of sites in the standard, nth generation
AN is Nn = (3n + 5)/2 and the number of edges Bn = 3Nn −
6 [4]. For the 0-AsN and 1-AsN, it is straightforward to obtain
that Nn = [3n + (−1)n + 6]/4 and Nn = [3n − (−1)n + 4]/4,
respectively. The number of edges is Bn = Nn − 1 for both
cases.

III. PROPERTIES

We now move on to evaluate some fundamental properties
of both subnetworks and compare them with the original AN
[4]. Let us start with the degree of a node, that is the number of
edges connected to it, ki = ∑

j Ai, j , where Ai, j are the entries
of the corresponding adjacency matrix A (Ai, j = 1 if there is
an edge between nodes i and j, with Ai, j = 0 otherwise). Here
any node can be fully assigned by the generation ν that gave
rise to it and thus k = k(ν, n). Also, let m = m(k, n) be the
number of nodes with degree k at a given generation n. In
the AN the three nodes arranged at the corners (present since
ν = 0) have degree k = 2n + 1. A set of m = 3n−1 nodes is
introduced at every new generation n � 1 with degree k = 3.
Therefore m = 3ν−1 nodes that surged in generation ν � n
acquire k = 3 × 2n−ν edges. Note that the hub corresponds
to ν = 1. Now, the 0-AsN has two hubs—depicted as empty
circles in Fig. 3—satisfying k = [2n+1 + (−1)n + 3]/6 (n �
0). Every other node that takes place at ν � 2 is part of a
group of m = [3ν−1 + (−1)ν]/2 nodes with the same hierar-
chy featuring k = 2n−ν edges. The 1-AsN features a single
hub instead (located at the right of the empty square in Fig. 3),
with k = 2n−1, whereas the node that stands for the top corner
of the original AN has [2n + (−1)n−1]/3. For the remaining
network, one gets m = [3ν−1 + (−1)ν−1]/2 nodes with degree
k = 2n−ν (ν � 2).

Using the information above we can show the subnetworks
are scale free, just like the AN. This property can be confirmed
through the cumulative distribution

P(k) =
∑

k′�k

m(k′, n)

Nn
, (1)

which is displayed in Fig. 5. For n � 1, we get the typical
asymptotic power-law decay P(k) ∝ k−γ . The exponent can
be evaluated directly from the expressions for m(k, n), Nn,
resulting in γ = ln 3/ ln 2 = 1.585 for all the networks. Note
that this value is exactly the Hausdorff dimension of the
Sierpinski triangle [17], which is not a mere coincidence,
since it has the same combinatorial structure as the Apollonian
gasket.

Let us now check their connectance, defined by ρ =
2Bn/N (N − 1) = ∑

i, j Ai, j/N (N − 1), where N (N − 1)/2 is
the maximum number of edges for an N-site network. Note
that ρ ∈ [0, 1] and basically quantifies how sparse a network
is. Figure 6 shows this measure for the three networks. They
all yield ρ ∝ N−α , with α = 1, thus becoming increasingly
sparse with N . In that regime the average degree tends to a
constant, namely 〈k〉 = Bn/Nn = 1 − 1/Nn → 1 (0-AsN and
1-AsN) and 〈k〉 = 3 − 6/Nn → 3 (AN).

FIG. 5. Degree distribution P(k) for the AN (black triangles), 0-
AsN (blue circles), and 1-AsN (red squares). All of them display the
scale-free property, P(k) ∝ k−γ , with γ = ln 3/ ln 2.

The AN is specially known for its small-world property.
To account for this the average length of the shortest path is
usually employed:

L = 1

N (N − 1)

∑

i 	= j

di, j, (2)

where di, j is the length of the shortest path between nodes
i and j. In Fig. 7 we evaluate it for both subnetworks and
the AN, and note that L ∝ (ln N )β , with β = 3/4 signal-
ing the intermediate behavior between small- (L ∝ ln N) and
ultrasmall-world [L ∝ ln(ln N )] networks found in [4] for
the AN. Now, the network diameter dn = Lmax, that is the
maximum shortest path among all the pairs of sites, is dn =
2n/3 for the AN [18], considering n � 1 and dn = 2n + 1
(dn = 2n) for the 0-AsN (1-AsN). Hence, for large N we
have that Lmax ≈ 2 log(N )/(3 log(3)) in the AN and Lmax ≈
2 log(N )/ log(3) in both subnetworks.

One striking difference between the AN and the subnet-
works comes from the local clustering coefficient C. It is
known that a high value of C is another signature of the
small-world property. However, while the in AN it tends to
C = 0.828 for large N [4], the subnetworks yield C = 0. As

FIG. 6. Connectance ρ = ∑
i, j Ai, j/N (N − 1) vs network size N

for the AN (black triangles), 0-AsN (blue circles), and 1-AsN (red
squares). In each of these ρ ∝ N−1.
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FIG. 7. Logarithm of average length of the shortest path versus
ln(ln N ) for the AN (black triangles), 0-AsN (blue circles), and 1-
AsN (red squares). Each gives L ∝ (ln N )β , with β = 3/4.

mentioned before, they are tree-like structures and given C
is proportional to the number of triangles in a network, one
readily concludes that C = 0. Nevertheless, their small-world
character is due to the presence of hubs (see Figs. 3 and 4).

We now move on to study some spectral properties of the
adjacency matrix A of each of the subnetworks. Its spectrum
is equivalent to that of a tight-binding model defined on it,
that is a Hamiltonian of the form H = JA, with J ≡ 1 being
the hopping strength. As such, a lot can be inferred from the
degree of localization of the single-particle states. Note that
both subnetworks have undirected edges. That is to say, their
adjacency matrices are symmetric and therefore have spectral
decomposition. Both 0-AsN and 1-AsN networks have the
bipartite property, meaning that the set of nodes in each of
them is divided into two disjoint subsets (S1 and S2). As
a consequence, the eigenvalue spectrum {λi} is symmetric,
λN+1−i = −λi for all i. In Fig. 8 we show the density of states
DOS(λ) = 1

N

∑
i δ(λ − λi), δ being Dirac delta function, for

the ninth generation. In both the 0-AsN and 1-AsN most of the

FIG. 8. Density of states of the adjacency matrix of the 0-AsN
and 1-AsN for generation n = 9.

FIG. 9. Probability amplitude of the hub node phub vs N (and
generation n; see inset) considering the eigenvector having largest
eigenvalue. The 0-AsN (1-AsN) is depicted by blue circles (red
squares).

states populate the center of the band. One clear difference is
that the 1-AsN is able to span more extreme modes. In the
regular AN, modes lying far away from the center of the band
carry a high degree of localization, mostly due to the nodes
having highest number of connections [7,9]. To see how it
goes for the subnetworks let us analyze the eigenvector with
largest eigenvalue |λmax〉 = [v1, v2, . . . , vN ]T , with pi = |vi|2
being the probability amplitude for node i. Figure 9 shows
such amplitude for the nodes having the maximum degree
against size N . Note from Figs. 3 and 4 that the 0-AsN con-
tains two equivalent hubs whereas the 1-AsN holds the hub of
the original AN (cf. Fig. 2). We observe that phub converges to
1/4 (1/2) as N grows on the 0-AsN (1-AsN).

Just like in the AN [7,9], here we find a high degree of
localization in nodes having the highest number of connec-
tions. Thus, for large N we get a 50% chance to find the
quantum particle at the hub nodes. Indeed, in [19] it was
proved analytically that the probability of finding the particle
in any of the sets S1 and S2 is equal for any bipartite lattice.
As such, both subnetworks fulfill

∑
i∈S1

pi = ∑
i∈S2

pi = 1/2.
Recall that the 0-AsN has two hubs, one at each S1 and S2

set of nodes. As these are equivalent, both hubs share nearly
half of the total available probability amplitude. Now, the
two sets are not equivalent in the 1-AsN. If we consider the
subset to which the (single) hub belongs, it is observed that
the eigenvector is almost fully localized at it and does not
overlap with any node from the other subset, as expected.

IV. FINAL REMARKS

As seen above, the treelike subnetworks inherit many traits
of the original AN, including its rich spectral structure with
the onset of gaps and strong localization at the hubs. It is
therefore expected that they also display a variety of trans-
port regimes [8,9] and distinct condensed-matter properties in
the light of a tight-binding approach [5,6,12]. The fact that
connectivity of the nodes from younger generations diverges
as N increases is associated with a power-law scaling of the
energy gap between ground and first excited levels with N of
the form 
λ ∝ Nθ [20,21]. Then if we think, for instance, of
noninteracting bosons hopping across such networks, at low
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FIG. 10. Gap between the ground and first excited states 
λ (in
units of J) for the AN (black triangles), 0-AsN (blue circles), and
1-AsN (red squares).

temperatures the particles will be mostly concentrated in the
sites from earlier generations, especially the hubs. In [6] a
topology-induced Bose-Einstein condensation was addressed
in the AN and the transition temperature was found to obey
Tc ∝ N1/3, thus reflecting the scaling of the gap 
λ. In Fig. 10
we display the behavior of the gap against the system size
N for the AN and its spawned subnetworks. For large N
the former indeed exhibits θ = 1/3, with the 0-AsN (1-AsN)
rendering θ = 0.06 (0.26). Note that the 1-AsN carries nearly
the same scaling exponent as the AN and this is due to the
presence of the original hub in it. It would thus be interesting
to conduct further investigations regarding the degree of simi-
larity between each of the subnetworks and the AN in that and
other contexts.

We have obtained two subnetworks from the standard AN
by assigning a bit to each one of the nodes and setting its
growth to follow successive modulo 2 additions on a binary

TABLE I. Main properties of the Apollonian subnetworks in
comparison with the original AN. 〈k〉 is the average degree, CN→∞
is the clustering coefficient, dn is the network diameter, α is related
to the connectance ρ ∝ N−α , β is the small-world exponent, γ is
the degree distribution exponent, and θ comes from the power-law
scaling for the gap between ground and first excited states, 
λ ∝ N θ .

AN 0-AsN 1-AsN

〈k〉 3 − 6
Nn

1 − 1
Nn

1 − 1
Nn

Cn→∞ 0.828 0 0
dn x 2n + 1 2n
α 1.0 1.0 1.0
β 3/4 3/4 3/4
γ ln(3/2) ln(3/2) ln(3/2)
θ 0.34 0.06 0.26

version of it. Those novel structures happen to feature their
own growth rules, developing a dendritic pattern. We found
that both subnetworks share many characteristics with their
original AN, including the small-world property. However, the
clustering coefficient is zero due to the fact that no triangles
can be formed among the nodes. Table I summarizes our main
findings in comparison with the original AN.

They reveal that many emerging structures found in nature
as well as in manufactured systems, such those that feature
multi-branch tree growth, may share more similarities with
the deterministic AN [4] than one would think.
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