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Chaos generated in a semiconductor microcavity
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The dynamics of chaos in quantum systems has attracted much interest in connection with the fundamental
aspects of quantum mechanics. We study the chaotic dynamics of both the excitonic mode and the cavity mode
in a microcavity containing a quantum well driven by an external field. We investigate how the chaotic dynamics
is influenced by the frequencies of the exciton and the cavity, the coupling constant between the exciton and
cavity, the Coulomb interaction between excitons, and the response of the exciton to the cavity and the external
field. We show that chaos can be generated synchronously in both the cavity and the excitonic mode by choosing
appropriate parameters. Moreover, this kind of chaos can be controlled by the coupling constant, the strength of
the interaction between excitons, the external field, the response of the excitons to the cavity, and the detuning
between the cavity field and the excitonic field. The present study may have applications in chaos-based neural
networks and extreme event statistics.
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I. INTRODUCTION

The quantum properties of light interacting with a non-
linear medium are a basic research area of modern quantum
optics and many-body physics. Chaos, as a nonlinear phe-
nomenon, has been extensively researched in neural networks
[1], extreme event statistics [2,3], and biophysics of chaos
self-organization [4]. The investigation of chaos and the as-
sociated nonlinear dynamics has promoted the development
of science and technology [5]. It has been verified that chaos
can be used as a powerful tool to suppress decoherence
[6,7]. Quantum chaos is also a very important technique to
guarantee the high bandwidths communicating masked in-
formation [8,9] and high-speed long-distance communication
[10]. Moreover, good quality random bit sequences can be
generated at very fast bit rates using physical chaos [11–13].

Generally, nonlinear dynamics originates from the cou-
pling between the optical and mechanical modes and thus can
lead to the system evolving from periodic to chaotic oscilla-
tions. Recently, cavity optomechanics has gained widespread
usage in studying quantum optical and nonlinear optical phe-
nomena [14–22]. Beyond cavity optomechanics physics, due
to the strongly nonlinear interaction between the exciton and
the cavity in semiconductor microcavities, the semiconductor
microcavity system has drawn the attention of several theoret-
ical and experimental researchers [23–35], for example, given
their potential application in the dynamical behavior of Rabi
splitting [27], quantum correlations [28,35–41], the squeezed
state of light [42–46], entanglement [47,48], electromag-
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netically induced transparency[49], the Autler-Townes effect
[50,51], and Coulomb-assisted terahertz transitions [52].

It is well known that a strong driving field can induce
period doubling and chaotic dynamics. Due to the similar
formulations of the cavity-exciton system and the cavity-
oscillator system, a strongly nonlinear interaction between
the exciton and the cavity in semiconductor microcavities
can also exist. Thus, it can be argued that a semiconduc-
tor microcavity should also give rise to period doubling and
chaos. However, only Eleuch and Prasad have considered
the nonlinear dynamical behavior of the cavity field for a
microcavity semiconductor containing a quantum well [53],
which in special circumstances allows, for example, weak
excitation so that the collective response of the many-exciton
system to the cavity [the term f (b̂†b̂†b̂â + â†b̂†b̂b̂) in Eq. (1)]
is omitted. In this paper we will show that this ignored term
is essential in the chaotic phenomenon considered here. They
also consider only chaos of the cavity field rather than chaos
of phonons in a microcavity semiconductor containing a quan-
tum well. Different from previous studies, we consider a more
comprehensive formula where the collective response of the
many-exciton system to the cavity is investigated. Moreover,
we thoroughly study chaotic dynamics not only for the cavity
but also for excitons. This scheme is achieved using a mi-
crocavity containing a quantum well driven by an external
field. The exciton-cavity system is made to behave as two
intrinsic parts, and the behaviors of the chaotic dynamics of
the two subsystems are studied. The present research shows
that the exciton and the cavity field are simultaneously chaotic
by taking appropriate system parameters. We find that the
strength of the chaos can be tuned by adjustable parameters
f , g, ε, ξ , and �. According to the present experiments, the
feasible experimental parameters are analyzed.
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II. EFFECTIVE HAMILTONIAN

A microcavity containing a two-band semiconductor em-
bedded between two highly reflecting Bragg mirrors is
investigated. The semiconductor is excited optically by the
microcavity, resulting in the appearance of many conduction
electrons which leave behind holes in the valence band. The
distance between the mirrors is of the order of the wavelength.
An electron can be excited by the electromagnetic field from
the valence band to the conduction band by creating a hole in
the valence band. The electron-hole system possesses bound
states and excitonic states. As the state 1s is the lowest state
which has the greatest oscillator strength, we only consider
this state for the exciton-photon interaction. The effective
Hamiltonian of the coupled exciton-photon system is given
by [43,54]

H = ωphâ†â + ωexb̂†b̂ + ig(â†b̂ − âb̂†) + ξ b̂†b̂†b̂b̂

+ f (b̂†b̂†b̂â + â†b̂†b̂b̂) + iε(â†e−iωt − âeiωt ), (1)

where â (â†) and b̂ (b̂†) represent the annihilation (creation)
operators of the cavity field and the exciton, respectively.
The first two terms of Eq. (1) are the proper energies of the
cavity field and the excitonic field with the frequencies ωph

and ωex, respectively. The third term describes the coupling
between the exciton and the cavity with the coupling con-
stant g (g is a real). The fourth term is the nonlinearity due
to the Coulomb interaction between excitons, in which the
coefficient ξ describes the strength of the interaction between
excitons. The fifth term means a kind of collective response
of the many-exciton system to the cavity: A photon can be
absorbed (emitted) to generate (by destroying) an exciton with
the assistance of another exciton coexisting in the medium
with the former [43]. This kind of process allows excitons
with many angular momentum combinations to interact with

light [43]. The coefficient satisfies f = 16πgλ2
x

7 , with λx the
radius of Bohr of the bidimensional exciton. The last term is
the pump term of the laser field, with ε and ω the amplitude
and the frequency of the pumping laser, respectively. Note that
the fourth and fifth terms in the Hamiltonian (1) can yield
coherent nonlinear interaction between the specific mode of
interest and the pump mode directly excited by the outside
field [55]. Moreover, the damping Hamiltonian is

Hdam = γ1â† + γ
†
1 â + γ2b̂† + γ

†
2 b̂, (2)

where γ1 and γ2 are the decay rates of the cavity field and the
exciton, respectively. By solving the Heisenberg equations of
motion, stochastic differential equations are employed in the
positive-P representation. Based on the conditions of zero
temperature and the Born approximation, the equations of the
c-numbers α (α+) and β (β+) can be obtained:

α̇ = −(γ1 + iωph)α + gβ − i f |β|2β + ε exp (−iωt ),

α̇+ = −(γ1 − iωph)α+ + gβ+ + i f |β|2β+ + ε exp (iωt ),

β̇ = −(γ2 + iωex )β + gα − 2iχ |β|2β (3)

− 2i f |β|2α − i f β2α+,

β̇+ = −(γ2 − iωex )β+ + gα+ + 2iχ |β|2β+

+ 2i f |β|2α+ + i f β+2
α.

These equations allow us to further numerically simulate our
analysis of the system. Note that the relationship between the
annihilation operators and the quadrature operators is b̂(a) =
X̂1 (2) + iP̂1 (2), corresponding to the c-number cases β(α) =
X1 (2) + iP1 (2), that is, Re(β )(α) = X1 (2) and Im(β )(α) =
P1 (2).

III. QUANTUM CHAOS

In this section it will be proved that this system can simul-
taneously produce two chaotic motions for both the excitonic
mode and the cavity mode. We numerically simulate the evo-
lution of the excitonic mode and the cavity mode from two
cases in the phase space and frequency domain in Figs. 1 and
2. As shown from Figs. 1(a) and 2(a), the evolutions of the
exciton and cavity field are both aperiodic, corresponding to
chaotic motion. To get a better view of the chaotic dynam-
ics, the ladder evolution of log10 S(ω) is clearly shown in
Figs. 1(b) and 2(b). The oblique evolution in the frequency
domain signifies exponentially fast separation of neighboring
trajectories and that the dynamic evolution of the system is
chaotic [21]. The strange attractors can be seen in the phase
space in Figs. 1(c) and 2(c). This means that the initial ad-
jacent trajectories eventually become unpredictable diverse
states [19,56]. To elucidate the structure of the phase space,
we plot the surface of section in Figs. 1(d) and 2(d), which
records the quadratures Re(β )(α) and Im(β )(α) each time
the excitonic (cavity) mode impinges on the cavity boundary,
where the unstable periodic orbits are visible.

Another excellent tool for detecting deterministic chaos
is characterized by the maximal Lyapunov exponent (LE),
which is the signature of the sensitivity of a system to the
initial conditions and can measure the divergence of nearby
trajectories in phase space [7]. A negative LE shows that the
trajectories tend to a common fixed point, while a positive
LE indicates that the trajectories diffuse to initial conditions
and corresponds to the chaotic system. Another scenario is a
zero LE, which indicates a stable attractor of the orbits. In
Figs. 1(e) and 2(e) LEs for the excitonic mode and the cavity
mode with time evolutions are presented, respectively. As is
shown, for the selection of appropriate parameters, the LEs
evolve into positive values, which means the chaotic system
for both the excitonic and cavity modes, that is, the dynamic
evolution of the system is extremely sensitive to the minor
changes of the initial conditions.

In the following numerical simulations, we investigate the
influence of the controllable parameters f , g, ε, ξ , and �

on the chaotic dynamics under the time evolution from 0 to
40. Contour maps with different parameters are plotted under
relatively stable chaotic dynamics from time 20 to 40.

To explore the influence of the parameter f that denotes the
collective response of the many-exciton system to the cavity
on the chaotic dynamics, we show the evolution of Re(β )(α)
and the LEs with different f in Fig. 3. We can see that initially
the parameter f has very little impact on the chaotic dynamics
of both the excitons and the cavity field. However, it has a
significant influence on the chaotic dynamics for long times.
A negative LE for the excitons [green solid line in Fig. 3(c)]
corresponding to the periodic system dynamics for f = 0 can
change into chaotic dynamics [blue dotted line in Fig. 3(c)] for
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FIG. 1. Oscillation of the excitons plotted in (a) the temporal domain and (b) the frequency domain. Also plotted are (c) the stroboscopic
phase space of the quantum trajectories and (d) Poincaré surface sections projected in the X1[Re(β )]-P1[Im(β )] plane. (e) The LE for the
excitons as time t . The initial conditions are α = 0.1 and β = 0.1. The parameters are γ1 = γ2 = 0.001, g = 0.1, ε = 0.4, f = 0.3, ωph = 2,
ωex = 1, χ = 0.1, and ω = 4. The unit of t is set equal to 1/ωex .

f = 1 with time from 14 to 22. Moreover, the intensity of the
chaos of the cavity increases with f from 0 to 1 [see Fig. 3(d)].
Physically, the chaos of the system originally comes from the
optoexcitonic nonlinearity, while the nonlinear strength will
be enhanced with increasing f . It is worth noting at this mo-
ment that the f interaction results from the dipole-dipole–like
nature of the exciton-exciton nonlinear interaction. We can
also see in Figs. 3(e) and 3(f) that chaotic behavior persists
even when f is approximately 0 with the long-time evolution.
The main reason is that the chaos in this system arises as a
result of not only f , but also the exciton nonlinearity terms ξ

and the external laser term ε.

In Fig. 4 we investigate the effect of the coupling constant
g between the excitons and the cavity on the chaotic dynamics
of the system. Taking the same parameters as before, g has a
dramatic effect on the chaotic dynamics of the exciton and the
cavity. The chaotic intensities of the excitons and the cavity
field both increase with g from 0 to 0.2. We also note that
intermittent chaos appears for excitons with the time evolution
when g = 0 [see the green solid line in Fig. 4(c)]. However,
consistent chaos exists for the cavity with time when g = 0
[see the green solid line in Fig. 4(d)] because the chaoticity
in the cavity arises not only as the coupling term, but also as
the pump field. It has been verified that the transmitted pump
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FIG. 2. Oscillation of the cavity plotted in (a) the temporal domain and (b) the frequency domain. Also plotted are (c) the stroboscopic
phase space of the quantum trajectories and (d) Poincaré surface sections projected in the X2[Re(β )]-P2[Im(β )] plane. (e) Largest Lyapunov
exponent for the cavity field as time t . The initial conditions and choice of the parameters are the same as in Fig. 1.
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FIG. 3. Time evolution of the Re(β )(α) and LEs of the excitons and the cavity with different f . The parameters are the same as in Fig. 1.

light is observed to transit from a fixed state to a region of
periodic oscillations and finally to the chaotic regime through
period-doubling bifurcation [7]. We also note that chaos for
both the cavity and the excitons will disappear when g is
too big (not shown here). While a larger g will lead to the
linear term playing a major role, the nonlinear interaction
that arises from the interaction between the excitons and the
cavity is negligible compared to that of the light intensity and
eliminates the chaotic dynamics.

In this system, another controllable parameter is ε, which is
related to the strength of the pump field. From Fig. 5 we can
see that both the excitons and the cavity experience regular
to chaotic behavior when the external laser increases from
ε = 0 to 0.5. Moreover, independently chaotic motions will
appear for both the excitons and the cavity with time evolution
from about 5 to 7 even when ε = 0. However, after the time
reaches about 9, the chaos of the excitons and the cavity will
fade away because of the energy dissipation, as shown in

FIG. 4. Time evolution of the Re(β )(α) and LEs of the excitons and the cavity with different f . The parameters are the same as in Fig. 1.

024220-4



CHAOS GENERATED IN A SEMICONDUCTOR … PHYSICAL REVIEW E 107, 024220 (2023)

FIG. 5. Time evolution of the Re(β )(α) and LEs of the excitons and the cavity with different ε. The parameters are the same as in Fig. 1.

Fig. 5 (green solid lines). Fortunately, the chaos of both the
exciton and the cavity can be recovered with the appearance of
the external field. The values of the LE for the cavity are
increased slightly but are greatly enhanced with the increase
of the parameter ε, as shown in Figs. 5(c) and 5(d). The results
agree with previous studies [7]: With the help of the pump
field, the transmitted pump light is observed to transit from a
fixed state to a region of periodic oscillations and finally to the
chaotic regime through period-doubling bifurcation [7]. The
main cause of this phenomenon is that the nonlinear coupling
strength between the excitonic mode and the cavity mode
can be enhanced with the help of the pump field. Hence, the
controllable parameter ε allows us to control chaos generation
in our system.

In Fig. 6 we investigate the influence of ξ on the chaotic
dynamics of this system. It can be seen that the parameter
ξ , which is related to the strength of the interaction between
excitons, has a great influence on the chaotic dynamics of
the excitons but little effect on the cavity mode. As shown
in Figs. 6(c) and 6(d), the strength of the chaos for the cavity
greatly increases but there is only a slightly change for the
cavity with ξ . This phenomenon can be observed from the
fourth term ξ b̂†b̂†b̂b̂ in Eq. (1): The nonlinear effect between
excitons increases with the enhancement of the parameter
ξ . We also note that chaos still exists for both the exci-
ton and the cavity when ξ = 0. According to the previous
analysis, the generation of chaos is not only related to the
parameter ξ but also depends on the strength of the inter-
action between excitons as well as the strength of the pump
field.

To further explore the influence of the detuning � = ωph −
ωex on the chaotic dynamics, we present the evolution of
the Re(β )(α) and LEs in Fig. 7 with different detunings.
We can see clearly that the excitons are nearly periodic for
blue detuning when � = 1 [see Fig. 7(a)], which means no

chaos can be generated. However, chaos gradually appears
with decreasing �. This shows that small detuning induces
a considerable exciton-cavity nonlinearity and increases the
chaotic dynamics in both the excitonic mode and the cavity.
We also find that the resonance case (detuning � = 0) can
create optimal chaos in both the excitonic mode and the cavity
mode. Physically, here the optical chaos mainly originates in
the optoexcitonic nonlinearity, which is determined by the
excitation of the excitons. The excitons are easily excited
when the cavity and the excitons are resonant. Otherwise,
the excitons cannot be excited and have no nonlinear effects.
Notably, the appearance of regular or chaotic motion is very
susceptible to the value of �. By changing the optoexcitonic
detuning, one can easily tune the semiconductor microcavity
system in and out of chaos.

IV. DISCUSSION

Here we summarize the experimental implementation of
our scenario. The microcavity sample can be excited using a
Ti:Sa laser. The samples have been described in Refs. [46,57].
The quarter waveplate in front of the sample is used to ex-
cite with a circular polarization. A spatial filter is embodied
in the near field of the reflected beam. Using the movable
mirror mounted on a piezoelectric ceramic, the beam can
be detected on a CCD camera, again in the near field. Thus
we can study the spatial effects and choose the desirable
position from which to observe. By means of a homodyne
detection system, the frequency spectrum of the light emitted
by the microcavity is detected. Thus, according to the result
of the frequency spectrum, we can determine whether the
cavity field is chaotic. However, the excitonic mode cannot
be measured straightforwardly. To measure the quadratures
of the exciton, we can use a method similar to that proposed
by Giacobino et al. [55,58] and introduce another laser beam
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FIG. 6. Time evolution of the Re(β )(α) and LEs of the excitons and the cavity with different ξ . The parameters are the same as in Fig. 1.

which is mixed with the pump and signal beam on a beam
splitter. The frequency spectrum of the photocurrents is an-
alyzed with an rf spectrum analyzer. The reflected laser and
the light scattered at the laser frequency yield a large peak
at zero frequency which is filtered out. The signal given by
the spectrum analyzer can be shown [58] to be proportional
to the beat signal between the local oscillator and the light
fluctuations emitted by the sample.

In our paper the system parameters are in units of ωex. The

related parameters in Eq. (1) are defined as g = −ωph

√
ε0�L
2ωex

,

ξ = 26π
3V Ryr3

x , and f = − 7π
V gr3

x , where Ry is the exciton Ry-
dberg with Ry = 1.096 775 8 × 107 m−1, �L is the exciton
longitudinal-transverse splitting, rx is the exciton Bohr radius,
and V is the volume of a finite-size sample. For CdS, the
experimental parameters are Eg = 2.586 eV, ωex = 2.553 eV,

FIG. 7. Time evolution of the Re(β )(α) and LEs of the excitons and the cavity with different detuning � = ωph − ωex . The parameters are
the same as in Fig. 1.
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�L = 1 meV, ε0 = 8, and rx = 25.5Å. According to these
parameters, we can calculate the values g ≈ −101 meV, ξV ≈
1.5 × 10−17 meV cm3, and f V ≈ 3.7 × 10−17 meV cm3 with
V/vex = 4 × 103 (vex = 7 × 10−20 cm3 is the volume of an
exciton). We can also use GaAs, whose parameters are Eg =
1.5 eV, ωex = 1.495 eV, �L = 0.1 meV, ε0 = 12, and rx =
100 Å, given the values g ≈ −30 meV, ξV ≈ 1.4 × 10−16

meV cm3, and f V ≈ 6.6 × 10−16 meV cm3 with V/vex = 4 ×
103 [43,59]. In addition, the Rabi frequency of oscillation is
ε = 20ωm = 500 GHz for a given energy level transition in
a given light field. This denotes a form of electromagnetic
radiation with frequencies ranging from 0.3 to 3000 GHz.

V. CONCLUSION

We have studied a quantum well in a microcavity driven
by an external classical field. Using a linearized fluctuation
analysis, we investigated the chaotic dynamics of the exci-
tonic mode and the cavity through numerical calculations.
The related experimental parameters affecting the chaos of
the system were examined. It has been shown that strong
chaotic dynamics can be achieved by choosing the appropriate
parameters. Moreover, chaos can be controlled for this scheme

by tuning the strength of the laser field ε, nonlinear coeffi-
cients ξ and f , the coupling constant g, and the frequencies
of the exciton ωex and the cavity ωph. The results of this
research can be used to control the optical-excitonic chaotic
dynamics in microcavity systems with a quantum well. Our
study may contribute to the chaotic transfer of information and
to improve the detection of otherwise undetectable signals in
optical-excitonic systems.

It is worth mentioning that our calculations follow semi-
classical motion. We expect this study about the chaotic
behavior of a microcavity semiconductor containing a quan-
tum well to be extended in the future. One may consider the
quantum dynamics of the present system using the quantum
state diffusion method [60,61].
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