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Imprints of log-periodicity in thermoacoustic systems close to lean blowout
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In the context of statistical physics, critical phenomena are accompanied by power laws having a singularity at
the critical point where a sudden change in the state of the system occurs. In this work we show that lean blowout
(LBO) in a turbulent thermoacoustic system is accompanied by a power law leading to finite-time singularity.
As a crucial discovery of the system dynamics approaching LBO, we unravel the existence of the discrete scale
invariance (DSI). In this context, we identify the presence of log-periodic oscillations in the temporal evolution
of the amplitude of the dominant mode of low-frequency oscillations (Af ) existing in pressure fluctuations
preceding LBO. The presence of DSI indicates the recursive development of blowout. Additionally, we find
that Af shows a faster-than-exponential growth and becomes singular when blowout occurs. We then present
a model that depicts the evolution of Af based on log-periodic corrections to the power law associated with its
growth. Using the model, we find that blowouts can be predicted even several seconds earlier. The predicted time
of LBO is in good agreement with the actual time of occurrence of LBO obtained from the experiment.
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I. INTRODUCTION

Lean premixed combustion is one of the most sought-after
technologies in gas turbine engines to satisfy the stringent
emission norms of oxides of nitrogen [1]. The lean fuel-air
mixture results in a significant reduction of the flame tem-
perature inside the combustor near the reactant flame due to
the presence of excess air. However, such lean conditions
make an engine susceptible to a lean-flame blowout. Lean-
flame blowout continues to be detrimental to the operation of
modern gas turbine combustors in the power-production and
aviation industries [2]. Blowout is the state when the flame
fails to stabilize inside the combustor and gets blown out due
to the reduced flame speed in comparison to the high flow
rates of incoming reactants [3,4]. In power plants based on
gas turbine engines, a blowout can lead to unplanned power
outages and increased operational costs [5]. Both military and
commercial aircraft engines are also susceptible to blowout
during lean operation and sudden changes in throttle settings
[6]. Therefore, precursors to blowout are desired to avoid an
unplanned shutdown of engines in aircraft and power plants.

In order to understand the physical mechanism behind
the occurrence of a blowout, a number of studies have ana-
lyzed the flame dynamics prior to its occurrence for different
combustors and different flame-holding mechanisms [5,7–
11]. Nair and Lieuwen [5,7] analyzed flame dynamics in a
turbulent premixed combustor near blowout. They charac-
terized blowout as a consequence of two phenomena: the
emergence of localized flame extinction regions or flame
holes followed by the violent flapping of the flame front or

*ankan1090@gmail.com
†indujap2013@gmail.com
‡sujith@iitm.ac.in

collective extinction of flames. The amplitude of acoustic os-
cillations increases due to such flame behavior. As the system
approached blowout, they observed bursts in the amplitude
of the acoustic pressure field. These bursts correspond to the
extinction and reignition of flames. Later, Chaudhuri et al.
[9] investigated the interaction between flame fronts and shear
layer vortices prior to blowout in a turbulent premixed com-
bustor with a bluff-body stabilized flame and showed that the
interaction leads to local extinction of flames or generation
of local (smaller) flame holes. The number of flame holes
and the frequency of their appearance increase as the system
approaches blowout. The collective behavior of smaller flame
holes leads to the formation of a global flame hole that causes
blowout. The formation of flame holes that are localized in
space can be considered as an intermediate state to blowout.
Such intermediate states have been used to control blowout
and provide warning signals [12]. Several other phenomena,
such as earthquakes and stock market crashes, are found to
be preceded by similar small-scale precursory events. Stud-
ies have shown that large earthquakes [13] or stock market
crashes [14] are forms of self-organized criticality and they
occur as a scaling-up process of its earlier precursory events.
The hierarchical dynamics underlying the precursory events
were utilized to predict the corresponding critical phenomena
based on the property of scale invariance [15].

The property of scale invariance means that the law gov-
erning a physical variable of a system remains invariant under
the change of a scale (in length, time, energy, or some other
variables) by some common factor. The scale-invariance prop-
erty exists in the close vicinity of a critical point. A physical
variable of the system showing such a property follows a
power law with a real exponent in a local neighborhood (the
so-called asymptotic critical region) of the critical point [16].
The variable is said to have the continuous scale-invariance
property if the exponent of the power law is real. Moreover,
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the variable becomes singular at the critical point. In other
words, the scale-invariance property ceases to exist beyond
the critical point following a singularity there [16].

Although the continuous scale-invariance property can ex-
plain a transition occurring at the critical point, it has a limited
scope in detecting precursory signals outside the asymptotic
critical region. This limitation has been overcome by extend-
ing the exponent in the power law from a real-valued exponent
to a complex-valued one. Complex-valued exponents are asso-
ciated with discrete scale invariance and result in log-periodic
oscillations to the scaling law (a detailed discussion is given
in Sec. II). A power law decorated with the log-periodic
correction is called a log-periodic power law (LPPL) [17].
A LPPL has successfully predicted upcoming transitions in
several natural complex systems such as earthquakes [18] and
icequakes [19] as well as in complex human-made systems
such as rupture stresses from acoustic emissions [20], stock
market crashes [14,21], and credit risk estimation [22], to
name a few. The strength of the LPPL formulation is that it
can predict an impending critical transition by detecting its
implicit precursory phenomena, which are not identified by
pure power-law formulation associated with continuous scale
invariance in the critical region.

Detection of precursory signals to an impending blowout
for providing efficient early warnings is highly desirable so
that a combustor can be operated at leaner conditions without
risking blowout. Thermoacoustic systems possess inherent
complexity due to the nonlinear interaction between their
subsystems, namely, the acoustic field, the turbulent hydro-
dynamic field, and the flame [23–25]. The complexity of
the system intrigues researchers to investigate its dynamical
behaviors, which in turn can help identify precursors to an im-
pending blowout. Subjects such as nonlinear dynamics [26],
complex systems theory [27], and pattern formation [28] have
been utilized significantly in this regard.

Gotoda et al. used tools from nonlinear dynamics to ana-
lyze the system behavior prior to lean blowout [29–31]. The
signature of self-affine structures [30] in the dynamics near
lean blowout (LBO) and the translational error [31] were
used as precursors to detect LBO. Mukhopadhyay et al. [32]
proposed a precursor for LBO based on symbolic time series
analysis. Multifractal characteristics of pressure fluctuations
quantified by the Hurst exponent have been used as early
warning signals to impending thermoacoustic instability and
LBO [33,34]. Recurrence quantification analysis is another
technique providing precursor measures that show distinc-
tive signatures toward LBO [35,36]. Recently, Bhattacharya
et al. [37] proposed a fast-Fourier-transform–based single
scalar-valued measure to detect different operational regimes,
namely, stable operation, thermoacoustic instability, and LBO
based on the time series of acoustic pressure. Detailed discus-
sions about the mechanism of LBO, its precursors, and control
are summed up well in the review articles in [38,39].

In earlier experiments [5,7–9,11,12,34], warnings of an
impending blowout and its control were dependent on user-
defined threshold values of an underlying property of the
associated system. Such threshold values are system depen-
dent and act as a constraint in reaching a leaner fuel-air
ratio. Moreover, the control parameter, the fuel-air ratio,
was changed in a quasistatic manner and the system was

let to stabilize for each control parameter. In other words,
those systems were treated as autonomous. However, real-life
combustion systems are mostly nonautonomous. The control
parameter constantly changes at a finite rate, which makes
the analysis of the system much more challenging than an
autonomous one. Therefore, in the case of a nonautonomous
thermoacoustic system, it would be fascinating to investigate
whether there are potential precursory signals for predict-
ing LBO. Additionally, rather than any threshold-dependent
methods, prediction of the time to LBO will be more con-
venient in nonautonomous systems for circumventing LBO.
In the present work, we attempt to address these issues by
interpreting the onset of LBO as a critical point. We then
use the LPPL formulation to predict the time to LBO several
seconds in advance.

II. LOG-PERIODICITY IN DISCRETE SCALE
INVARIANCE

In Euclidean geometry, the dimension of a system or the
number of independent vectors (or bases) representing the
system is a positive integer. Mandelbrot generalized the con-
cept of Euclidean geometry by introducing the concept of
fractals, which are ‘sets consisting of parts similar to the
whole’ [40]. Systems with fractals are said to have noninteger
dimensions. Systems having noninteger dimensions possess
the property of scale invariance, which is represented by the
equation

F (x) = μF (λx), (1)

where x is a variable representing a scale of length, time, en-
ergy, etc. (mathematically x generates a scale), λ is a nonzero
number known as the scale factor, and μ is a function of λ.
Both λ and μ are real numbers and F is a function associated
with a physical variable of the system [or x is a measuring
variable and F (x) is a measured variable]. A power law ex-
pressed as

F (x) = Cxα, (2)

α = − log μ

log λ
, is a solution to Eq. (1). Note that α in this power

law gives the fractal dimension. In the case of continuous-
scale invariance, α is real. The scale invariance is called
continuous since λ can be any arbitrary real number. The
scale-invariance property exists in an abundance of natural
phenomena showing fractals, criticality, or self-organized crit-
icality [41].

If the arbitrariness of scale factors is constrained in such
a way that the scale factors are determined by a unique
nonzero real number λ and belong only to the set S = {λi :
i is an integer, λ �= 0}, then the scale-invariance property (1)
is said to be the discrete scale invariance (DSI). In other
words, the scale-invariance property holds if the scale factors
are in geometric progression in λ and appears periodically
at each scale factor that belongs to S. Note that the unique
value of λ is system dependent. The continuous change of the
variable x in the case of DSI gives the power-law solution to
Eq. (1) of the form

F (x) = CxαP

(
log x

log λ

)
. (3)
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FIG. 1. (a) Schematic of the turbulent combustor used in the present study. Pressure fluctuations are measured using a piezoelectric
transducer. The design of the combustor was adapted from the work of Komarek and Polifke [44]. (b) Temporal variation of the mass flow rate
of air [magenta (light gray) solid line] together with the time series of pressure fluctuations [blue (black) solid curve] for the rate of change of
air flow rate a = 0.6 g/s2. The occurrence of blowout is indicated by the red (dark gray) dashed line.

By expanding the periodic term P( log x
log λ

) into a Fourier series,
we get

F (x) = Cxα
∑

An exp

(
i2nπ

log x

log λ

)

= C
∑

Anxαxi(2nπ/log λ)

= C
∑

Anxα+inω, (4)

where ω = 2π/log λ. Therefore, DSI leads to a complex frac-
tal dimension α + inω. Moreover, it can be shown that the
log-periodic oscillation stems from the imaginary part (nω)
of complex fractal dimensions. For simplicity, we will restrict
ourselves to the first harmonic of the Fourier series. In that
case, Eq. (4) can be rewritten as

F (x) = C
n=1∑

n=−1

Anxα+iωn

= Cxα[A0 + 2A1 cos(ω log x)], (5)

where A1 = A−1 and ω = 2π/log λ. Due to the periodic
term in log x, discrete scale invariance is said to have a
log-periodicity. Here ω is the angular frequency, which is
determined by λ and has a unique value for a specific DSI.
Since scale factors follow a geometric progression, DSI can
represent hierarchical systems. Discrete scale invariance has

been observed in theoretical systems such as Cantor sets, hier-
archical diamond lattices, and idealized Ising models [42,43].
Additionally, DSI has been found to exist in several hetero-
geneous and irreversible phenomena such as earthquakes and
stock market crashes [15].

The presence of DSI in heterogeneous systems implies that
critical phenomena can be viewed as hierarchical phenomena.
For example, Sornette and Sammis [18] proposed that the
occurrence of a large earthquake is a consequence of the
propagation and accumulation of several preceding smaller
earthquakes and ruptures in a large geographical area. Similar
behavior has also been shown to precede stock market crashes.
Johansen et al. [14] hypothesized that stock market crashes are
caused by the slow buildup of long-range correlations leading
to the collapse of the stock market in one critical instant. Thus,
DSI provides additional constraints on a system (in terms of
a preferred scale factor), eventually unraveling the underlying
physical mechanism.

III. EXPERIMENTS

Experiments are performed on a turbulent combustor at
high Reynolds numbers (Re > 14 000) with a circular bluff
body as the flame-holding mechanism. A schematic diagram
of the experimental setup is portrayed in Fig. 1(a). The system
comprises a plenum or settling chamber and a combustion
chamber with extension ducts. Fluctuations in the inlet air
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are diminished in the plenum chamber. A circular disk with
a radius of 47 mm and thickness of 10 mm is mounted on the
central shaft as a bluff body. The fuel, liquefied petroleum gas
(60% butane and 40% propane), is injected 100 mm upstream
of the dump plane. The central shaft is used to deliver fuel into
the combustor through four radial injection holes of diameter
1.7 mm in the central shaft.

The combustion chamber is cuboid in shape with a cross
section of size 90 × 90 mm2 and length 700 mm. A spark
plug driven by a step-up transformer is mounted near the
dump plane for ignition of the fuel-air mixture. Mass flow
controllers (Alicat Scientific, MCR Series) are used to mea-
sure and control mass flow rates of air (ṁa) and fuel (ṁ f )
with an uncertainty of ±(0.8% of the reading +0.2% of the
full scale). The Reynolds number Re for the reactive flow is
obtained as Re = 4ṁ/πμ(D0 + D1), where ṁ = ṁa + ṁ f is
the mass flow rate of the air-flow mixture, D0 is the diam-
eter of the burner, D1 is the diameter of the circular bluff
body, and μ is the dynamic viscosity of the air-fuel mix-
ture in the experimental conditions. The Reynolds number
for the reported experiments is varied within a range from
Re = (1.41 ± 0.08) × 104 to Re = (5.3 ± 0.26) × 104. We
measure the acoustic pressure fluctuations in terms of voltage
V using a piezoelectric sensor (PCB103B02, with sensitiv-
ity of 217.5 mV/kPa, resolution of 0.2 Pa, and uncertainty
of 0.15 Pa) at a sampling rate of 12 kHz. The global heat
release rate is measured from the CH* chemiluminescence
intensity [45], which is captured using a photomultiplier tube
(Hamamatsu H10722-01) outfitted with a bandpass filter (with
a wavelength of 435 nm and a 10-nm full width at half max-
imum). More details of the experimental setup are discussed
in [46].

In the present study, the global equivalence ratio φ [φ =
(ṁ f /ṁa )actual

(ṁ f /ṁa )stoichiometry
] is decreased as we increase the air flow rate

while keeping the fuel flow rate constant, at 1.07 g/s. The air
flow rate (the control parameter) is varied linearly with respect
to time t at a constant rate r. The equivalence ratio is varied
from 1 to 0.25 continuously in time in each experiment. We
perform experiments for different values of r ranging from 0.1
to 2.0 g/s2. The variation of acoustic pressure over time, as we
vary the airflow rate, is shown in Fig. 1(b) for r = 0.6 g/s2.
The blue (black) solid curve in the plot represents acoustic
pressure fluctuations p′ (in Pa), while the change of airflow
rates is exhibited by the magenta (gray) solid curve. Initially,
the thermoacoustic system is in a state of stable operation,
and the amplitude of p′ is close to 100 Pa. The amplitude
of pressure fluctuations p′ increases with the airflow rate
ramping up at a constant rate r. The system experiences
thermoacoustic instability due to positive feedback between
the acoustic oscillations and the unsteady heat release rate
[47]. The amplitude of p′ reaches its maximum value during
thermoacoustic instability. Further increments in airflow rates
(i.e., reducing the equivalence ratio) result in the reduction
of the amplitude of pressure fluctuations, and the combustor
approaches blowout. The occurrence of blowout is determined
as the instance at which heat release rate becomes zero and is
represented by the red (gray) dashed line (Tc) in Fig. 1(b). In
the rest of the paper, we focus on data close to blowout to
serve our purposes.

IV. RESULTS

We observe from experiments the presence of low-
frequency oscillations (approximately equal to 10 Hz) among
other high-frequency fluctuations and aperiodicity, before the
system goes to the blowout state. The appearance of low-
frequency oscillations prior to blowout has been reported
in the literature [5,48] and has been used to characterize
blowout where control parameters were changed in a qua-
sistatic manner. Here, in experiments with a continuously
varying parameter, we also use those low-frequency oscil-
lations to characterize blowout. As a result, we decompose
p′ into Fourier modes and construct a new time series from
Fourier coefficients. Since we are varying the control pa-
rameter continuously, we perform the Fourier transform of
p′ window-wise. We consider 1-s windows with an overlap
of 0.9 s to determine the amplitude spectrum at each time
instance ti (s). During this process, we identify a signifi-
cant presence of a low-frequency spectrum with frequencies
f from 5 to 25 Hz over the entire parameter range (0.1 <

r < 2.0 g/s2) explored in the present article. Therefore, in
order to construct the desired time series, we define a new
variable A f (ti) = max[Cf ( f , ti )], where Cf ( f , ti ) are Fourier
coefficients of f for each ti computed over the time window
[ti − 1, ti].

Blue (black) solid curves in Fig. 2 represent time series of
A f for different values r, the rate of change of airflow rate.
Red dashed lines represent the blowout time Tc obtained from
experiments. We determine Tc by measuring the global heat
release rate. It is evident from those newly constructed time
series that the value of A f remains very small initially and
starts to increase as blowout is approached. The rise in the
value of A f stops adjacent to blowout and experiences a rapid
diminution after that. Such a behavior hints at a singularity
in A f accompanying a critical phenomenon, i.e., blowout.
Note that the time at which the maximum of A f occurs (Tm)
and Tc may not coincide. However, they remain within a
single time window chosen while deriving A f . In other words,
|Tc − Tm| < 1 s because we are dealing with a time window
with a duration of 1 s. Thus, for all practical purposes, we
consider Tc and Tm to be the same.

The system transitions to blowout earlier for a faster rate
of change of airflow rates because the system reaches the
critical equivalence ratio faster. However, the signature of the
increment in A f near blowout persists. The observed rise in A f

preceding blowout itself is an interesting phenomenon having
a significant prognostic value. A similar behavior has been
observed in the stock market index before the market crashes
[17]. The rest of the discussion is based on the analysis of data
segments plotted in Fig. 2.

A. Presence of oscillations preceding blowout
in the time series data

First, we examine whether the A f data preceding blowout
possess log-periodic oscillations intrinsically. Towards this
purpose, we perform a nonparametric test on A f . The ap-
pearance of log-periodicity before blowout is determined
following a method developed by Vandewalle et al. [49] to
detect the log-periodic component preceding a market crash.
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FIG. 2. Time series of the maximum of the amplitude spectrum
Af of low-frequency (5 < f < 25) [blue (black) solid curves] as
obtained from experiments corresponding to different rates of change
of the airflow rates. Red (dark gray) dashed lines represent the critical
time Tc for blowout obtained from the heat release rate.

In their method, log-periodic patterns are confirmed by com-
puting the upper (ymax) and lower (ymin) envelope functions
of the market index y. The upper envelope at any time t is
the maximum of y until time t . Similarly, the lower envelope
at t is the minimum of y from t to the end of the time
series. The two envelopes never meet for a simple oscillation
such as sinusoidal oscillation and their difference is constant.
However, in the case of log-periodic power-law oscillations,

FIG. 3. Characteristics of log-periodic oscillations for rates of
change of airflow rates (a), (c), and (e) 0.4 g/s2 and (b), (d), and (f)
0.8 g/s2 as obtained from experiments: (a) and (b) time series of Af

[blue (black) curves], (c) and (d) oscillations given by the difference
between upper and lower envelope functions [red (dark gray) curves],
and (e) and (f) the Lomb periodogram of log-periodic frequencies ω

[green (dark gray) curves] of these oscillations.

the two envelopes coincide at points where another period of
oscillation begins and their difference becomes zero. More-
over, the appearance of such points increases as a system
approaches a critical point following log-periodic oscillations.
The two envelopes become equal because, at those points,
they simultaneously attain a new value that they did not attain
earlier. The difference between envelopes, also known as the
running difference, comprises oscillations that correspond to
log-periodic oscillations present in the time series. Vandewalle
et al. [49] found that oscillations obtained in this way accel-
erate as the critical time of the crash is approached and fitted
the log-periodic term cos[ω log(tc − t )] to those oscillations.
This method can highlight log-periodic oscillations.

In Fig. 3 we show the time series of A f [Figs. 3(a) and
3(b)] for a rate of change of airflow rates 0.4 g/s2 [Figs. 3(a),
3(c), and 3(e)] and 0.8 g/s2 [Figs. 3(b), 3(d), and 3(f)]. Oscil-
lations, as obtained from the running difference, are shown in
Figs. 3(c) and 3(d). In Figs. 3(a) and 3(b), for the time series
of A f corresponding to the rate of change of airflow rates
0.4 and 0.8 g/s2, oscillations are observed between 51 and
71 s and between 29 and 40 s, respectively. The frequency of
oscillations obtained from the running difference increases as
t → Tc, which indicates the existence of log-periodicity in the
time series of A f prior to blowout. Note that here we treated
the occurrence of the maximum of A f as Tc to uncover the
log-periodic oscillations. Next we perform a spectral analysis
of the computed running difference in log(Tc − t ) to assess
the indicated log-periodicity. The spectral power P of the os-
cillatory components ω is shown in Figs. 3(e) and 3(f), whose
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high peaks confirm the existence of log-periodic oscillations
in thermoacoustic systems prior to blowout.

The computation of the running difference serves as a
sufficient condition for detecting log-periodic oscillations.
Therefore, in order to strengthen our claim of the presence of
log-periodic oscillations in turbulent thermoacoustic systems
prior to blowout, we will perform a power-law detrended mea-
sure of the time series of A f . To serve this purpose, we need to
remove an associated power-law trend from the time series to
analyze the obtained residue. As a first step of the process, we
will determine the power law associated with blowout. Note
that the choice of a power law depends on how the observed
variable evolves as the critical point Tc is approached. To
understand the nature of power law and its exponents, we
examine the growth rate of A f in the next section.

B. Understanding the nature of the growth rate

To understand the growth of a system, we generally plot
the time series of a system variable x in the log-linear or
semilogarithmic scale (log x vs t). It is quite obvious that the
differentiation of log(x) with respect to time t , i.e.,

d

dt
log(x) = 1

x

dx

dt
, (6)

provides the relative growth rate of x. We utilize semiloga-
rithmic plots to retrieve this relative growth rate of x from
slopes of the plotted time series without even knowing its
explicit functional form. A constant slope indicates that the
system grows exponentially. On the other hand, if the slope is
increasing monotonically, the system is said to have a faster-
than-exponential growth. A faster-than-exponential growth is
accompanied by a singularity occurring at the critical time tc
[50]. Such growth can be represented by the equation

dx

dt
= xm, m > 1, (7)

yielding a solution of the form

x(t ) = x(0)

(
1 − t

tc

)−1/(m−1)

. (8)

Another way of quantifying the growth rate is to study
the doubling time intervals (�t )i over which the value of x
doubles [51]. Mathematically, we can say that x[tn + (�t )n] =
2xn, where at the nth time tn, xn = x(tn). In the case of expo-
nential growth of x, (�t )i remains constant for all i. However,
if x doubles faster over a short time, the nth time interval (�t )n

can be written as

(�t )n = 2−n(m−1)(�t )0. (9)

Then (�t )n decreases following a geometric progression with
the common factor r = 2−(m−1) (<1) and shrinks to zero as
t → tc. Note that computing the doubling of x is not the only
way to confirm a faster-than-exponential growth rate. In fact,
this growth rate can be realized for any α times increment of
x over a time interval (�t )i with α > 1. In that case, r can be
generalized as

r = α−(m−1), α > 1, m > 1. (10)

FIG. 4. Semilogarithmic plots of Af as a function of Tc − t for
rates of change of airflow rates (a) 0.4 and (b) 0.8 g/s2. Open blue
(black) squares plotted on the values of Af [magenta (light gray)
closed circles] represent successive α time increments of Af values.
Here Tc stands for the time at which the maximum of Af occurs in
experiments. In the bottom row, the projection of open blue (black)
squares on the Af = 0 [magenta (light gray) dashed] line shows
the gradual diminution of time intervals which in turn quantifies a
faster-than-exponential growth of Af near blowout.

In the present work, we consider A f as the system variable
and set α = 1.25 (1.35) for r = 0.4 g/s2 (0.8 g/s2) portraying
a 25% (35%) increment of A f to inspect (�t )i.

In Fig. 4 we show the semilogarithmic plot of the part of
the time series of A f showing log-periodicity corresponding to
different rates of change of airflow rates, 0.4 g/s2 in Fig. 4(a)
and 0.8 g/s2 in Fig. 4(b). We estimate the growth function
by calculating time intervals (�t )i between each α time in-
crement in the A f value. Open blue (black) squares in Fig. 4
represent time instants forming (�t )i. We then project these
time instances on the line corresponding to A f = 0 [pink (light
gray) dashed line shown in the bottom panel of Fig 4] to reveal
the fact that, for a fixed rate of change of airflow rate, time
intervals (�t )i gradually decrease as the system approaches
blowout. Consequently, A f achieves a higher value in a short
range of time close to blowout and becomes singular there.
In each of these cases, it is apparent from the plot that the
slope of log(A f ) is not a constant but changes as t approaches
the critical time to blowout Tc. Therefore, based on the above
discussion, we approximate A f as

A f ≈ (tc − t )−1/(m−1), (11)

where tc denotes an approximated value of the experimentally
obtained blowout time Tc. Earlier, Johansen and Sornette [52]
showed that the accelerated growth rate of an observable, such
as the world population, gross domestic product of the world,
and financial indices, can be approximated by a similar power
law, leading to a superexponential behavior. Interestingly, the
faster-than-exponential growth has also been realized in the
spread of Covid-19 during the occurrence of the devastating
Delta wave [53].

Based on the approximation given by Eq. (11), we adopt a
generalized power-law representation for A f as

y(t ) = A + B(tc − t )−1/(m−1), (12)

where A and B are the linear parameters and tc and m are the
nonlinear parameters. The variable y and the parameter tc in
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FIG. 5. Power-law fits to Af corresponding to rates of change of
airflow rates (a) 0.4 and (b) 0.8 g/s2. Black markers represent Af

obtained from the experiment. The red (dark gray) curve represents
Eq. (12) fitted to Af . As t → tc, the fitted curve grows to infinity.
The obtained parameter values are (a) tc = 70.8 and m = 2.28 and
(b) tc = 38.7 and m = 2.86. The R2 values for the power-law fit are
(a) 0.54 and (b) 0.55.

Eq. (12) approximates A f and Tc, respectively. In the rest of
the discussion, by tc we refer to the predicted time for blowout
(Tc) obtained by curve fitting.

Next we fit Eq. (12) to the time series of A f for different
values of r. In Fig. 5 we fit Eq. (12) to A f for rates of change
airflow rates 0.4 g/s2 [Fig. 5(a)] and 0.8 g/s2 [Fig. 5(b)].
A power-law fit gives tc = 70.8 and 38.7 s for r = 0.4 and
0.8 g/s2, respectively. Since our purpose here is to identify
the underlying log-periodicity, we choose the set of parame-
ters such that the tc remain very close to the actual time of
occurrence of blowout. It is quite apparent from Fig. 5 that A f

values show oscillations with respect to the power-law curve,
which could be log-periodic oscillations. In the next section,
we discuss these oscillations in detail.

C. Confirmation of log-periodic oscillations

A parametric detrended analysis given by Johansen et al.
[14] can also detect log-periodic oscillations. We use this
method to confirm qualitatively the presence of log-periodic
oscillations already detected by the nonparametric method
(discussed in Sec. II) in the time series of A f . To serve that
purpose, we first subtract the parameter A in Eq. (12) from the
actual A f data. Then we detrend the power law (tc − t )−1/(m−1)

from this subtracted time series and perform Lomb peri-
odogram analysis of the obtained residue s in log(tc − t ). The
residue is given as

s(t ) = (A f − A)/(tc − t )−1/(m−1), (13)

with A, m, and tc discussed in the preceding section. Here μ

and σ are the mean and the standard deviation of s. Plotted
in Fig. 6(a) is the normalized s with log(tc − t ), which shows
some coarse oscillations. The power spectral density of the
residue s is shown in Fig. 6(b). Here ω = 2π f is the log-
angular frequency conjugate to log(tc − t ).

From Fig. 6(b) we find that higher peaks in both cases
occur when ω < 50. Hence, we interpret ω = 50 as an upper
limit for detecting fundamental log-periodic frequency.

Now, from the above discussion, it is evident that the
preceding analysis confirms the presence of log-periodic

FIG. 6. (a) Power-law detrended oscillations for rates of change
of airflow rates 0.4 g/s2 [blue (black) dotted curve] and 0.8 g/s2 [ma-
genta (gray) solid curve]. Normalized s are plotted as a function of
log(tc − t ) to get log-periodic oscillations. (b) Lomb spectral power
of log-periodic frequencies.

oscillations prior to blowout in the A f data corresponding to
different rates of change of airflow rates. These log-periodic
oscillations confirm the presence of discrete scale invariance
in thermoacoustic systems en route to blowout.

D. Log-periodic power-law fitting

Equation (12) with log-periodic correction [21] is given as

y(t ) = A + B(tc − t )−1/(m−1)

+C(tc − t )−1/(m−1) cos[ω log(tc − t ) − τ ], (14)

where ω and τ are the angular frequency and the phase of
the log-periodic oscillations. Equation (14) consists of seven
parameters, out of which three are linear and four are nonlin-
ear. The linear parameters are A, B, and C and the nonlinear
parameters are tc, m, ω, and τ . Due to the presence of a
high number of nonlinear parameters, there are ambiguities
in determining the parameters appropriately. Filiminov and
Sornette [54] proposed a simplification of Eq. (14) by incor-
porating the effect of τ into linear parameters and introduced
two new parameters C1 = C cos(τ ) and C2 = C sin(τ ) instead
of C and τ . In the present study, we follow the modified log-
periodic equation proposed by Filiminov and Sornette [54]
given by

y(t ) = A + B(tc − t )−1/(m−1)

+ (tc − t )−1/(m−1){C1 cos[ω log(tc − t )]

+C2 sin[ω log(tc − t )]}. (15)

This form of log-periodic equation (15) has four linear param-
eters, namely, A, B, C1, and C2, and three nonlinear parameters
tc, m, and ω. The parameters are determined by minimizing
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FIG. 7. Log-periodic power-law fit [red (gray) solid curves] to the experimentally obtained Af data (black markers) for different rates
of change of airflow rates: (a) 0.4 g/s2, (b) 0.8 g/s2, and (c) 1.2 g/s2. The nonlinear parameter values for these curves are (a) tc = 72.6,
m = 1.6, and ω = 10.02; (b) tc = 40.4, m = 1.67, and ω = 7.67; and (c) tc = 25.9, m = 2.54, and ω = 14.5. The R2 values of the log-periodic
power-law fit are (a) 0.62, (b) 0.58, and (c) 0.72.

the cost function

z =
N∑

i=1

(pi − yi )
2 (16)

over a time interval [t1, t2] containing N data points, where
pi = A f (ti ) is the value of data at the ith time ti and yi = y(ti )
is obtained from Eq. (15). Among these seven parameters
involved in the cost function, the linear and nonlinear parame-
ters are solved separately. Initially, linear parameters, namely,
A, B, C1, and C2, are determined uniquely in terms of the
nonlinear parameters by equating the first-order partial deriva-
tives of the cost function z with respect to linear parameters
to zero. Now z becomes a function of nonlinear parameters
only. Then tc, m, and ω are determined using the nonlinear
least-squares method, the Nelder-Mead simplex method [55].
The characteristics of all seven parameters are discussed in the
Appendix.

In Fig. 7 we fit Eq. (15) to the A f data for three differ-
ent rates of change of airflow rates r, 0.4 g/s2 [Fig. 7(a)],
0.8 g/s2 [Fig. 7(b)], and 1.2 g/s2 [Fig. 7(c)]. The fitted curves
are shown in red (gray), while black markers represent data
points obtained from the experiment. The predicted times
for blowout or tc are 72.6 s [Fig. 7(a)], 40.4 s [Fig. 7(b)],
and 25.9 s [Fig. 7(c)]. The final point of the time interval t2
selected for computation is 1 s earlier than Tc in each case.
As the system approaches blowout, the fitted curve (shown
in red) starts to grow and diverges. We also fit Eq. (15) to

TABLE I. Experimentally determined and mean of the predicted
critical time for blowout for different rates of change of airflow rates.
The predictions made by the LPPL are better than those by the power
law.

r tc (s), tc (s), Tc (s), e (s),
(g/s2) power law LPPL LBO LPPL

0.1 288.5 284.7 279.7 5.0
0.4 75.5 72.9 70.0 2.9
0.8 43.3 40.6 38.5 0.9
1.2 29.2 26.2 25.9 0.3
2.0 16.3 16.2 15.3 0.9

several other data sets for different values of r. A comparison
between the mean of predicted blowout times tc given by the
pure power law (11), the LPPL (15), and the actual blowout
time Tc for different values of the parameter r are given in
Table I. Here the mean of tc is the mean of 100 optimum
tc. The selection of these optimum values of tc is discussed
in the Appendix. We can clearly observe from Table I that
predictions made by the LPPL are better than the pure power
law. Moreover, we calculate errors (e = |tc − Tc|) for tc given
by the LPPL formulation for different values of r, which are
shown in the last column of Table I.

The wobbles in the LPPL curve in Fig. 7 are due to
log-periodic oscillations. The local maxima or peaks of the
curve are related to the underlying discrete scale-invariance
property. Therefore, it is desirable that the predicted A f (or y)
at those peaks are correlated to each other and may be associ-
ated with some hierarchical structure or collective behavior of
microscopic components of the system, which ceases to exist
as blowout occurs.

Note that the solution to the nonlinear parameters even-
tually gives the predicted time for critical phenomena tc,
which corresponds to the time of blowout in the present case.
Therefore, it will be interesting to know how early and how
accurately we can predict blowout using Eq. (15), which we
will discuss in the next section.

E. Early prediction of blowout

Although tc is the predicted time of blowout, it is more
reliable to consider the mean of tc for robust and accurate
predictions instead of any particular instances of it. To serve
this purpose, we first generate 5 × 104 realizations of tc, m,
and ω for a sample space over the time window [t1, t2]. Then
we determine the 95% confidence interval of tc. We repeat
the procedure for different sample spaces from a particular
data set over [t1, t2] by varying t2. In Fig. 8 we have plotted
the predicted time of blowout tc together with error bars [blue
(gray) markers] as a function of Tc − t2 for airflow rates of 0.4
and 0.8 g/s2. The absolute value of Tc − t2 signifies how far
the actual onset of blowout is from the present state of the sys-
tem, i.e., the precedence of prediction. The region shaded in
cyan (light gray) signifies a precision region of Tc [red (gray)
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FIG. 8. Predicted time to blowout tc with error bars [blue (black) markers] plotted with respect to Tc − t2 for different rates of change
of airflow rates: (a) 0.4 g/s2 and (b) 0.8 g/s2. The red (dark gray) dashed line represents the experimentally obtained blowout time Tc. The
cyan-shaded region represents a threshold region of Tc.

dashed line] having a 5% relaxation. If a tc, or its error bar,
intersects the precision region, we can say that the associated
interval ending at t2 predicts Tc well. In Fig. 8(a), predictions
together with their error remain within the precision region for
Tc − t2 � 6 s. In other words, better prediction can be given
up to 6 s earlier than the actual occurrence of blowout; after
that, the predicted tc deviates from Tc. Similarly, in the case
of rate of change of an airflow rate of 0.8 g/s2 [Fig. 8(b)], we
can approximate blowout up to 6.5 s earlier. Thus, the LPPL
model, given by Eq. (14), can approximate the occurrence
of blowout quite well. However, to fit the LPPL, we need
enough data consisting of at least one or two oscillations.
Hence, the prediction could potentially fail for very fast rates
of variation of control parameters. Since blowout occurs early
with the increment of the rate of change of airflow rates, the
distance between t1, the starting point of the time interval over
which fitting is performed, and tc decreases. Consequently,
data points in the interval [t1, t2] also decrease and become
sparse for faster rates. When there is not enough data, predic-
tions become challenging.

V. CONCLUSION

In this work we characterized the dynamics of a ther-
moacoustic system close to lean blowout. We investigated
the temporal variation of the maximum of coefficients of

low-frequency spectrum with frequencies f from 5 to 25 Hz,
denoted by A f . The A f was computed from pressure fluctua-
tions p′ obtained from a laboratory-scale turbulent combustor
for different rates of change of the control parameter. We
showed that the occurrence of blowout, from the perspec-
tive of statistical physics, bears the signatures of a critical
point. The value of A f after a specific time starts to increase
with an oscillation of increasing frequency and continues
until blowout. Thus, A f attains a finite-time singularity at
the critical time where blowout occurs. We discovered that
such an oscillation in A f prior to blowout is the so-called
log-periodic oscillation. The presence of a log-periodic power
law indicates an underlying discrete scale invariance. Thus,
we speculated that blowout can occur as a hierarchical
phenomenon. Blowout has already been interpreted as the
extinction of flames by the formation of global flame holes
[5,7,9]. The formation of local flame holes causes local flame
extinction followed by reignition. The number and the fre-
quency of extinction and reignition events increase as the
system approaches blowout. Each extinction is a part of the
precursory sequence of an even larger event with more lo-
cal flame holes during such a progression. At the critical
time when blowout occurs, the collective behavior of local
flame holes leads to the formation of a large flame hole
that ultimately results in blowout. Therefore, the formation
of such global flame holes can be considered a scaling-up

FIG. 9. Histogram of nonlinear parameters (a) tc, (b) m, and (c) ω [blue (gray) bars], computed over 100 realizations for rates of change of
airflow rate 0.4 g/s2. The number of counts in each bin for each parameter is along vertical axis.
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process where each local extinction event is associated with
intermediate scales in a geometric progression. However,
further investigations are required to confirm the origin of
log-periodicity close to blowout in thermoacoustic systems.

We also noticed that the growth of the amplitude of A f in
the close vicinity of blowout follows a faster-than-exponential
scaling law. Such a scaling law decorated with log-periodic
oscillations gives a deterministic model to characterize A f

prior to an impending blowout. Using the model, we were able
to predict the occurrence of blowout well in advance for dif-
ferent rates of change of airflow rates. Note that power law can
also be used to predict the time of blowout. However, far away
from the critical point, the fitting using log-periodicity gives
a better prediction compared to the power law. Therefore, we
expect that the model derived in the present work can serve
the purpose of predicting impending blowout in lean operating
combustors, enabling us to take control of the action in time
to evade it.
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APPENDIX

The log-periodic model given by Eq. (15) is calibrated on
the data within a time interval [t1, t2]. In the present anal-
ysis, we keep t1 fixed and vary t2. In order to determine
the parameters, we start with a random initial guess of the
nonlinear parameters tc, m, and ω. First, the linear parameters
are determined uniquely by minimizing the cost function z
from Eq. (16) with respect to the linear parameters. In other

FIG. 10. Histogram of linear parameters (a) A, (b) B, (c) C1,
and (d) C2 [blue (gray) bars] for rates of change of airflow rate
0.4 g/s2. Ordinates represent the number of counts in each bin for
each parameter.

words, the equation
∂z

∂X
= 0, (A1)

where X = A, B, C1, and C2, are solved to get A, B, C1, and
C2. Then we determine nonlinear parameters using the non-
linear least-squares method. We use a MATLAB-based package
FMINSEARCH to determine tc, m, and ω. We perform 100
realizations for each time interval examined in the present
analysis. To increase the robustness of the process of deter-
mining parameters, each of the realizations consists of 500
iterations. We then compute the sum-squared error (SSE) for
all 500 iterations. The best set of parameters is considered
to be associated with a minimum SSE for each realization.
Histograms of 100 such best sets of parameter values are
shown in Figs. 9 and 10 for a rate of change of airflow rate of
0.4 g/s2. The histograms depict the fact that although the ini-
tial values of the nonlinear parameters are randomly selected,
the computed final values are not scattered widely from their
mean.
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