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Stability of trapped Bose-Einstein condensate under a density-dependent gauge field
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We study the ground-state stability of the trapped one-dimensional Bose-Einstein condensate under a density-
dependent gauge field by variational and numerical methods. The competition of density-dependent gauge field
and mean-field atomic interaction induces the instability of the ground state, which results in irregular dynamics.
The threshold of the gauge field for exciting the instability is obtained analytically and confirmed numerically.
When the gauge field is less than the threshold, the system is stable, and the gauge field induces chiral dynamics
of the wave packet. When the gauge field is greater than the threshold, the system is unstable, and the ground-state
wave packet will be deformed and fragmented. Interestingly, we find that as the gauge field approaches the
threshold, strong dipolar and breathing dynamics take place, and strong modes mixing occurs, the instability
of the system sets in. In addition, we show that the stability of the system can be well controlled by periodical
modulation of the trapping potential. We provide theoretical evidence to understand and control the irregular
dynamics associated with chiral superfluid induced by density-dependent gauge field.
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I. INTRODUCTION

The realization of Bose-Einstein condensate (BEC) has
provided an ideal platform to probe some interesting phys-
ical phenomena under highly controllable conditions, for
example, topological insulators [1], Hall effect [2], and non-
linear dynamics and solitons [3–6]. In particular, we can
create synthetic gauge fields [7–9] for neutral atoms in the
BEC system. The gauge field plays an important role in the
BEC system. It can regulate the interaction between particles
and influence many important physical phenomena, includ-
ing spin-orbit coupling [10,11], the relativistic effect [12,13],
Laughlin liquid [14], etc. These synthetic gauge fields can be
introduced by Raman transition [15], lattice vibration [16,17],
light-matter coupling [7], and laser-induced tunneling [9].
Such gauge fields are determined by external parameters such
as the laser intensity or phase gradient of the incident laser
field, and they are also uniformly distributed in space. These
gauge fields are only described by the externally imposed time
dependence [18], not by their own Hamiltonian, so they are
all static gauge fields. In reality, the situation of the system
should be more complex, so in order to make the gauge field
nonuniformly distributed in space, and make this externally
imposed time dependence transform into the system itself, it
can be described by its own Hamiltonian: A dynamic gauge
field is generated by the collisionally induced detuning for
geometric potentials [19,20]. The time dependence of this
gauge field does not depend on external parameters; it can be
described by its own Hamiltonian. And this dynamic gauge
field has been realized experimentally [21,22]. This gauge
field changes with the variation of atomic density in space, and

*Corresponding author: xuejk@nwnu.edu.cn

its distribution in space is nonuniform, which is also called a
density-dependent gauge field.

With the increasing complexity of the BEC system, the
research of nonlinear dynamics induced by density-dependent
gauge field in BEC system has attracted extensive atten-
tion. This model breaks Galilean invariance and integrability,
and can realize chiral solitons [23–26] in a one-dimensional
BEC system. In particular, in the long time-scale limit, the
wave function of trapped BEC system under the action of
density-dependent gauge field has obvious deformation and
delocalization compared with the initial state, which provides
insights into the irregular dynamics associated with chiral
superfluid [19,27–29] and unconventional vortex dynamics
[20,30]. It is found that the density-dependent gauge field can
strongly modify correlations in the superfluid regime. Further-
more, in the conventional condensed state without artificial
gauge field, the collective oscillation of the system is ordi-
nary, and the collective oscillation is harmonic with natural
frequency. However, the collective dynamics of BEC with
the gauge field is complex. The collective oscillation depends
not only on the trapped potential and the interaction between
atoms, but also on the strength of gauge field [12,31,32].
The nonlinear dynamics violates the dynamics of Kohn’s the-
orem because the density-dependent gauge field breaks the
Galilean invariance. When the intensity of gauge field is large,
the dynamics is irregular. The density-dependent gauge field
strongly modifies the dynamic characteristics of the system.
Obviously, in BEC with a density-dependent gauge field, a
quantum phenomenon induced by the gauge field is the irreg-
ular dynamics, which plays a role for the chiral superfluid.
We expect that the origin of the irregular dynamics should be
related to the instability of the system induced by the gauge
field, which is an interesting and unsettled issue. The relation-
ship between the irregular dynamics and collective dynamics
is still an open subject.
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In this paper, we study the ground-state stability and col-
lective dynamics of trapped one-dimensional BEC under a
density-dependent gauge field. Based on the variational anal-
ysis, the mechanism of irregular dynamics in the system is
discussed. We find that the competition of density-dependent
gauge field a and atomic interaction g induces ground-state
instability, which results in irregular dynamics. The threshold
of gauge field ac for exciting the instability is obtained ana-
lytically, the stability diagram of the ground state determined
by the gauge field, and the atomic interaction is presented.
When a < ac, the system is stable, the wave packet oscillates
asymmetrically in the harmonic trap, and chiral oscillating
dynamics occurs. In this case, the wave packet can preserve
the Gauss-type profile. When a > ac, the instability sets in,
stable Gauss wave packet will not exist, and the wave packet
will be deformed and fragmented. Further analysis shows that
the instability is related to collective dynamics. The gauge
field causes strong coupling between dipolar oscillation and
breathing oscillation. In particular, when a → ac, the am-
plitudes of dipolar and breathing dynamics increase sharply,
strong mode mixing takes place, and the system will be un-
stable. Interestingly, we find that the stability of the system is
also closely related to the trapping potential and can be well
controlled by periodically modulating the trapping potential.
The analytical results are confirmed by numerical simulations.

The paper is organized as follows. In Sec. II, the mean field
Gross-Pitaevskii equation (GPE) of trapped one-dimensional
BEC under density-dependent gauge field is given. Then, us-
ing the variational method, we deduce the energy equation and
the dynamical equations governing the center of mass and
width of the wave packet. In Sec. III, the ground-state sta-
bility and collective dynamics of the system are discussed.
In Sec. IV, strong mode mixing is presented. In Sec. V, the
ground-state stability of the system is adjusted by periodically
modulating the trapping potential. Section VI is our conclu-
sion.

II. MODEL AND VARIATIONAL ANALYSIS

We consider a BEC consisting of N two-level atoms with
internal states |1〉 and |2〉. The two internal states are coupled
by a laser beam. The Hamiltonian of the system is written
as [33]

Ĥ =
[

p̂2

2m
+ V(r)

]
Î + Û + V̂int, (1)

Û = h̄

2

(
0 �e−iφl

�eiφl 0

)
, (2)

where Û describes the light-matter interaction, � is the Ra-
man frequency, φl is the laser phase, V(r) = 1

2 mω2
r r2 is the

trapped potential, and ωr is the frequency of the potential.
The mean-field atomic interactions V̂int = diag[g11|�1|2 +
g12|�2|2, g22|�2|2 + g12|�1|2], where |�i|2 represents the
atomic density in state |i〉. gi j represents the coupling constant
of the interaction between different components, which is
related to the corresponding scattering length of |i〉 and | j〉
s waves between different components.

Under the condition of weak interaction, the frequency
induced by detuning between atoms is much less than the

Raman frequency. Then, the interaction between atoms can
be regarded as a small disturbance of the interaction between
light and matter. The eigenvalues of Û + V̂int can be obtained
|χ±〉 = |χ (0)

± 〉 + |χ (1)
± 〉, where |χ (1)

± 〉 = ±[(g11 − g22)/(8h̄�)]
|�±|2|χ (0)

∓ 〉. Its eigenvalue is g̃|�±|2 ± h̄�/2, where g̃ =
(g11 + g22 + 2g12)/4, |χ (0)

± 〉 = [|1〉 ± eiφ|2〉]/√2. Through
the adiabatic approximation, the modified state can be used
to represent the state vector |ξ 〉 = �i=+,−�i(r, t )|χi〉 of the
system, and then the Hamiltonian of the system is written as

Ĥ± = (p̂ − A±)2

2m
+ W + g̃

2
|�±|2 + V(r), (3)

where A± = ih̄〈χ±|∇χ±〉 is a vector potential and W =
h̄2

2m |〈χ−| � χ+〉|2 is a scalar potential. They come from the
projection of the whole system on one of the dressed states.
Then the gauge potential becomes A± = A(0) ± ã|�±|2,
where A0 = − h̄

2 ∇φl is the single-particle component and
ã = ∇φl (g11 − g22)/(8�) is the effective intensity control-
ling the density-dependent vector potential. In order to derive
the mean-field density-dependent Gross-Pitaevskii equation
(GPE), we use the variational principle ∂£/∂�∗ = 0 to the ac-
tion £ = 〈�|(ih̄ ∂

∂t − Ĥ±)|�〉, with respect to �∗. We consider
the branch of + in Ĥ±, not loss of generality. The density-
dependent GPE is obtained as

ih̄
∂�

∂t
=

[
1

2m
(p̂ − Â)2 + W + V(r) + ã · J + g̃|�|2

]
�,

(4)

where J(r) is a nonlinear current, which describes a nonlinear
gauge field,

J(r) = 1

2m
[�(p̂ + Â)�∗ − �∗(p̂ − Â)�]. (5)

We are interested in studying the dynamics and ground state
of Eq. (4) in the one-dimensional framework. To achieve
one dimension, we assume that the system is in the ground
state of the transverse potential. In this way, we decompose
the wave function into �(r, t ) = 
⊥(r⊥)
(x, t ), 
⊥(r⊥) =
(
√

π l⊥)−1exp(−r2
⊥/2l2

⊥) is the transverse ground-state wave
function, and l⊥ = √

h̄/(mω⊥) is the transverse harmonic
length scale. We define the laser phase as φl = kx, and then
eliminate the zero-order vector potential by momentum boost.
Equation (4) is simplified to an effective one-dimensional
form,

ih̄
∂


∂t
=

[
1

2m
( p̂ − ã|
|2)2 + ã j(x) + W + g1D|
|2

]



+ V(x)
, (6)

where V(x) = 1
2 mω2

x x2. The effective gauge field strength
ã = k(g11 − g22)/(16π�l⊥) and atomic interaction strength
g1D = g̃/(2π l2

⊥) are scaled according to the transverse area of
the condensate, and the one-dimensional current nonlinearity
is defined as

j(x) = 1

2m
[
(p + ã|
|2)
∗ − 
∗(p − ã|
|2)
]. (7)

Equation (6) is further simplified by using nonlinear phase
transformation 
(x, t ) = ψ (x, t )exp[−iφl/2 + iã

∫ x
−∞ dx′

|
(x′, t )|2/h̄ − iW t/h̄]. When it is substituted into Eqs. (6)
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and (7), the vector potential is decoupled from the canonical
momentum, which leads to the simplified dimensionless
equation

i
∂ψ

∂t
=

[
−1

2

∂2

∂x2
− ia

(
ψ

∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

)
+ g|ψ |2

]
ψ

+ 1

2
ω2x2ψ, (8)

where the physical variables are rescaled as ψ → √
l⊥ψ ,

t → tω⊥, x → x/l⊥. g = g1D/(h̄ωl⊥), a = ãh̄, ω = ωx/ω⊥.
Equation (8) was originally studied under the background
of one-dimensional anyons [34]. This GPE is nonintegrable,
does not obey Galilean invariance, and has chiral soliton solu-
tions. These properties can produce unconventional dynamics
in the one-dimensional case. The effective Hamiltonian of
Eq. (8) is

H = −1

2

∂2

∂x2
− ia

(
ψ

∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

)

+ g|ψ |2 + 1

2
ω2x2. (9)

The collective dynamics and stability of condensate de-
scribed by Eq. (8) are analyzed by a variational method. In
order to explore the ground state and dynamic characteristics
of the system, we use a Gaussian trial wave function

ψ (x, t ) = (
√

2πR)−
1
2 e− (x−x0 )2

2R2 +ip(x−x0 )+ iδ
2 (x−x0 )2

. (10)

The variational parameters are center of mass x0(t ), width
R(t ), chirp δ(t ), and momentum p(t ) of the wave packet.
The choice of a Gaussian ansatz is reasonable, since in the
linear limit (without atomic interactions), it is precisely the
ground state of the linear Schrödinger equation. Accordingly,
for an interacting Bose gas, a natural and reasonable choice
of the trial function is a Gaussian [35,36]. The reasonability
of our analytical results obtained with Gaussian ansatz (10) is
further well confirmed by numerical simulations of the full
GPE Eq. (8). Substituting the trial wave function into the
Lagrange equation

L =
∫ [

i

2
(ψ∗ψ̇ − ψψ̇∗) − ψ∗Hψ

]
dx (11)

and applying the Euler-Lagrangian equations ∂L/∂qi −
d (∂L/∂ q̇i )/dt = 0, where qi = {x0, R, p, δ}, we obtain

ẋ0 = p −
a
√

2
π

R
, (12)

δ̇ = 1

R4
+ g − 4ap√

2πR3
− δ2 − ω2, (13)

Ṙ = Rδ, (14)

ṗ = −ω2x0. (15)

Then, the energy of the system E = ∫
ψ∗Hψdx can be ob-

tained:

E = 1

4R2
+

√
1

8π

g

R
− a2

πR2
+ 1

4
ω2R2. (16)

FIG. 1. (a) Energy E against R. (b) Stability diagram of ground
state in (g, a) plane under different trapping potential.

The ground state and the dynamics of the system can be
described by Eqs. (12) and (16).

III. STABILITY OF GROUND STATE

The energy in Eq. (16) corresponds to the kinetic energy,
the atomic interaction energy, the coupling energy induced by
the gauge field (nonlinearity current), and the potential energy,
respectively. Here, we consider repulsive atomic interaction,
i.e., g > 0. In particular, the energy term induced by gauge
field is negative and is scaled as −R−2, which is analogous
to the one resulted from the attractive cubic nonlinearity of
usual 2D GPE [37,38]. The two-dimensional (2D) GPE with
attractive cubic nonlinearity suffers from collapse instabil-
ity, i.e., E → −∞ as R → 0. Hence, we conclude that the
density-dependent gauge field should induce instability of the
Gauss wave packet (collapse like instability). As shown in
Fig. 1(a), for fixed atomic interaction g, there is a threshold
of the gauge field strength, a = ac; when a < ac, the energy
E has a minimum and the Gauss wave packet should be
stable, while for a > ac, an energy minimum does not exist
and E → −∞ as R → 0, the wave packet should be unstable.
The threshold of the gauge field strength ac can be obtained
analytically according to Eqs. (12)–(16).

Setting q̇i = 0, the corresponding steady state of Eqs. (12)–
(15) can be obtained,

−
√

2πω2R4
0 +

√
2π + gR0 − 4a2

√
2

π
= 0, (17)

with p = a
√

2
π

R , x0 = 0, and δ = 0. Therefore, once we know
R0 and p, the existence of the steady state of the condensate
can be checked.

Now we discuss the threshold of instability induced by
density-dependent gauge field. For a stable ground state, the
state with the lowest energy should be selected, and the eigen-
value of the Hessian matrix must be positive. Therefore, R
must satisfy ∂E/∂R = 0 [i.e., Eq. (17)] and ∂2E/∂2R > 0,
which results in

a < ac = 1

4

(√
5π

2
gR0 + 4π

) 1
2

, (18)

where R0 is determined by Eq. (17). Equation (18) is one of
our key results. The density-dependent gauge potential results
in the instability of the system. When 0 � a < ac, the system
is stable with repulsive atomic interaction. However, even
with repulsive atomic interaction, the system can be unstable
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FIG. 2. Time evolution of wave packet with different density-
dependent gauge field a at ω = 0.1, g = 0.

when the current nonlinearity induced by density-dependent
gauge potential is stronger, i.e., a > ac. In this case, the stable
Gauss wave packet will not exist, and the wave packet will
be deformed and fragmented. The stability phase diagram of
the ground state determined by density-dependent gauge field
strength a and atomic interaction g can be obtained, which
is shown in Fig. 1(b). It is clear that ac increases (decreases)
with g(ω). That is, strong (weak) repulsive atomic interaction
(trapping potential) can prevent the instability induced by the
gauge potential. Interestingly, when g = 0, ac is independent
of the trapping potential ω. The density-dependent gauge po-
tential, the atomic interaction, and the trapping potential have
coupled effects on the stability of the system.

To confirm the variational prediction given in Fig. 1, by
using the fourth-order Runge-Kutta method, direct numer-
ical simulations of Eq. (8) are provided and some results
are shown in Figs. 2 and 3. Under the small displace-
ment of the center-of-mass of the wave packet from the
steady state x0 = 0, i.e., �x0 = 0.5, �R0 = 0, Figs. 2 and
3 show the wave packet dynamics with different a for g =
0 and g = 1, respectively. The dipolar oscillation of wave

FIG. 3. Time evolution of wave packet with different density-
dependent gauge field a at ω = 0.1, g = 1.

FIG. 4. The dipolar (black line) and breathing (red line) oscilla-
tion amplitude as a function of a for ω = 0.1, g = 0 (solid line), and
g = 1 (dashed line).

packet is excited. We find, when a < ac � 0.886 in Fig. 2
(a < ac � 1.136 in Fig. 3), the wave packet preserves the sta-
ble Gauss-type profile. When a � ac, the wave packet cannot
preserve the stable Gauss-type profile and the wave packet
is deformed and fragmented. The instability of the system
sets in. Figures 2 and 3 confirm the variational predictions.
When the gauge potential does not exist (a = 0), the wave
packet oscillates symmetrically in the harmonic trap without
deformation. However, when the gauge potential is introduced
and as a increases (0 < a < ac), the wave packet oscillates
asymmetrically, the wave front (wave rear) is compressed
(broadened) when it moves left or right from its steady-state
position, and preserves its symmetry when it returns to the
initial position. Chiral dynamics is excited. With the increase
of repulsive atomic interaction g (Fig. 3), this phenomenon be-
comes more obvious. The chiral nonlinear current induced by
the density-dependent gauge potential results in this asymme-
try dynamics. The nonlinear current is a spatial function and
changes sign when the wave packet oscillates in the harmonic
trap. The successive changing of the sign of current nonlinear-
ity results in focusing and defocusing effects, which results in
the asymmetric dynamics of the wave packet. When a > ac,
the current nonlinearity dominates over the atomic interaction.
Then, the strong successive asymmetric oscillation dynamics
results in the deformation of wave packet. The instability is
excited.

The deformation and instability of wave packets can also
be understood by the strong dipolar dynamics and the cou-
pling of dipolar and breathing dynamics. Figures 2 and 3 show
that as a increases, the amplitude of the center-of-mass of the
wave packet increases significantly and the breathing dynam-
ics is also excited, indicating that the dipolar and breathing
dynamics are strongly coupled. This is further clearly shown
in Figs. 4 and 5. When a = 0, the breathing dynamics is not
excited (see the third row in Fig. 5, where R ≡ R0). When
a > 0, R oscillates around R0, and the breathing dynamics is
excited. Particularly, when a → ac, the amplitudes of dipolar
and breathing oscillation increase sharply (Fig. 4), and the
oscillation of the width of the wave packet is irregular (see
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FIG. 5. [(a1), (a2), (c1), (c2)] Time evolution of the center-of-
mass and width of wave packet with different g and a, respectively.
[(b1), (b2), (d1), (d2)] Corresponding spectrum analysis. ω = 0.1.

the third row in Fig. 5). Accordingly, the stable dipolar and
breathing dynamics are broken. The strong dipolar dynamics
accompanied by strong coupling of dipolar dynamics and
breathing dynamics result in strong mode mixing, which in-
duces the instability of the Gauss wave packet, and the wave
packet will be deformed and fragmented. The dipolar dynam-
ics shown in Fig. 5 (the first row) also shows a chirality: When
a = 0, the wave packet moves to the negative x0 direction
from its initial position when t > 0, while for a > 0, the
wave packet moves from the initial position to the positive x0

direction when t > 0. The motion direction of the wave packet
is changed by the gauge potential.

The strong mode mixing induced by the gauge field at
a = ac is particularly obvious for breathing dynamics (see
the third and fourth rows of Fig. 5), where the breathing
dynamics is irregular (the third row in Fig. 5) and many
modes are excited (the fourth row in Fig. 5). Correspondingly,
the wave packet is deformed at a = ac. The spectrum analysis
in Fig. 5 indicates that the two main dipolar (breathing) modes
are ωD1,2 (ωB1,2). The dipolar oscillation is dominated by the
lower mode ωD1, while the breathing oscillation is the nearly
equal superposition of the lower (ωB1) and higher (ωB2)
modes. When a → ac, the amplitude of collective modes
increases sharply. Importantly, one can find ωD1 = ωB1 and
ωD2 = ωB2 when a > 0. That is, the density-dependent gauge
field induces the complete coupling of dipolar and breathing
dynamics.

IV. STRONG MODES MIXING

The strong dipolar dynamics and breathing dynamics
shown in Figs. 2–5 can be well understood by the time-
dependent variational analysis. The motion equations of
collective dynamics (12)–(15) can be deduced to

ẍ0 + ω2x0 −
a
√

2
π

R2
Ṙ = 0, (19)

R̈ − 1

R3
− g − 4aẋ0√

2πR2
+

4a2
√

2
π√

2πR3
+ ω2R = 0. (20)

Equations (19) and (20) describe the dipolar and breathing
dynamics, which are coupled by the density-dependent gauge
field a. The dynamics of the system is fundamentally different
from that of the conventional BEC system. Equation (19)
describing the dipolar dynamics of the system no longer
only depends on the trapped potential, but has a nonlinear
term caused by the density-dependent gauge field. Moreover,
Eq. (20) describing the breathing dynamics of the system
also has two additional terms, which are proportional to the
velocity of the center of mass and the strength of the gauge
field. Because of the existence of density-dependent gauge
field, dipolar dynamics and breathing dynamics are coupled
with each other. Collective oscillation can be regarded as
the superposition between dipolar mode and breathing mode,
which leads to the emergence of a harmonic collective behav-
ior. To obtain the collective modes analytically, we consider
the weak perturbation of equilibrium states qi0. Inserting qi =
qi0 + δqi0 into Eqs. (19) and (20), we obtain the linearized
equation of collective dynamics:

¨δx0 + ω2δx0 − A11 ˙δR = 0, (21)

¨δR + (A21 + ω2)δR + A22 ˙δx0 = 0, (22)

where A11 = a
√

2/π/R2
0, A21 = 3/R4

0 + 2g/(
√

2πR3
0) −

12a2√2/π/(
√

2πR4
0), A22 = 4a/(

√
2πR2

0). According to
Eqs. (21) and (22), we obtain

˙̇ ˙̇δx0 + [2ω2 + A21 + A11A22] ¨δx0 + (A21 + ω2)δx0 = 0, (23)

where ˙̇ ˙̇δx0 is the fourth-order derivative respective to t . The
dipolar frequency can be obtained from the characteristic
equation of Eq. (23):

ωD1,2 = 1√
2

⎡
⎣ 1

R4
0

+ 4ω2 ∓
√(

1

R4
0

+ 2ω2

)2

+ 16a2ω2

πR4
0

⎤
⎦

1
2

,

(24)

and the dipolar oscillation can be described as

x0 = AD1 cos(ωD1t ) + AD2 cos(ωD2t ), (25)

where AD1,2 = ±[(ω2 − ω2
D2,1)/(ω2

D1 − ω2
D2)]�x0, and �x0 is

the initial displacement of the center-of-mass from the equi-
librium position. Because of the coupling effect of gauge field,
the breathing dynamics excited by the dipolar oscillation can
be obtained,

R = R0 + AB1 sin(ωD1t ) + AB2 sin(ωD2t ), (26)

where AB1 = AD1(ω2 − ω2
D1)/(A11ωD1), AB2 = AD2(ω2 −

ω2
D2)/(A11ωD2). From the above results, it is found that the

dipolar frequency is the same as the breathing frequency due
to the coupling effect of the gauge field, which is in good
agreement with the numerical results shown in Fig. 5.

The collective frequencies and their amplitudes are shown
in Fig. 6. One finds from Fig. 6(a) that the lower mode
(ωD1, ωB1) decreases (increases) with a(g), while the higher
mode (ωD2, ωB2) increases (decreases) with a(g). Importantly,
the amplitude of the lower dipolar mode is far larger than that
of the higher dipolar mode, i.e., AD1 � AD2 [see Fig. 6(b)],
which means the lower dipolar mode is dominant. That is,
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FIG. 6. (a) The oscillation frequencies corresponding to dipolar oscillation and breathing oscillation. The line is the analytical result
given by Eq. (24), while the triangle is the numerical result. (b) The amplitude corresponding to the dipolar oscillation. (c) The amplitude
corresponding to the breathing oscillation. In all figures, the solid (dashed) lines refer to the variables of higher (lower) collective mode.
ω = 0.1.

the dipolar oscillation is harmonic with the lower dipolar
mode ωD1. This is consistent with numerical results shown
in the first and second rows of Fig. 5. For the breathing mode,
however, the amplitudes of the two modes (AB1, AB2) are in
same order and increase with a [see Fig. 6(c)]. That is, the
breathing oscillation is the superposition of the two external
modes excited by dipolar dynamics, which is enhanced sig-
nificantly as a increases. The coupling of two (even more)
external modes induces irregular breathing dynamics, which
results in the instability of the wave packet. This is con-
firmed by numerical simulations (see the third and fourth rows
in Fig. 5). When a = 0, the dipolar oscillation is harmonic
with inherent frequency ωD = ω, i.e., AD1 = 1 and AD2 = 0.
The amplitude corresponding to the other external mode is
zero. In this case, the dipolar dynamics and the breathing
dynamics are decoupled, so the breathing dynamics does not
excited, AB1,2 = 0. The variational results are consistent with
the results of numerical simulation (see Fig. 5). We provide
theoretical evidence to understand the irregular dynamics in-
duced by density-dependent gauge field.

Note that, as shown in Fig. 6(a), the collective frequencies
predicted by the analytical result and direct numerical simu-
lation are in good agreement when the gauge field is weak,
while for a → ac, the collective frequencies obtained by the
two methods are inconsistent. The reason is that the analytical
result given by Eq. (24) is obtained by linearization method,
which should hold for weak excitation (i.e., with small ampli-
tude oscillation). However, as shown in Fig. 4, when a → ac,
the effect of nonlinear current is enhanced significantly, the
amplitude of collective dynamics increases sharply, and strong
nonlinear modes mixing occurs, which cannot be captured by
linearization method. Strong atomic interaction can prevent
the instability induced by the gauge potential. Figure 6 shows
that as g increases, the validation of the collective frequencies
predicted by linearization is improved obviously.

V. PERIODIC MODULATION

The previous sections show that the density-dependent
gauge field induced instability of wave packets depends on the
intensity of gauge field, atomic interaction, and the trapping
potential, and remarkable results are obtained.

In order to better control the stability of the ground state,
we perform periodical modulation of the trapping potential

and then adjust the stability of the condensate. We consider
the system described by Eq. (8),

i
∂ψ

∂t
= (H0 + HI )ψ, (27)

shere H0 = [− 1
2

∂2

∂x2 − 2a j(x)] + V (x, t ) and HI = g|ψ |2. We
assume that the trapping potential changes periodically with
time

V (x, t ) = 1
2 x2ω2 cos(�0t ), (28)

where �0 is the modulation frequency, and this scheme can
be easily realized by changing the frequency of the trapped
potential [39]. The stability of ordinary 2D GPE with cu-
bic self-attraction is studied by periodical modulation of the
quadratic trapping potential and stable 2D fundamental-state
modes under the action of the cubic self-attraction is pre-
dicted [40]. We assume that the modulation frequency �0 is
much larger than other energy scales in the system. Under
this high-frequency condition, we can use the high-frequency
approximation to offset the time-varying modulation term
generated by the periodic modulation of the trapping po-
tential. Therefore, we introduce unitary transformation [41]
ϕ = U †ψ , U = exp[−i sin(�0t )x2ω2/(2�0)], where the ϕ is
the transformed wave function. Then, according to Floquet
theory, the transformed Hamiltonian can be written as

H ′ = U †(H0 + HI )U − iU † ∂U

∂t
. (29)

FIG. 7. The stability diagram of ground state under different
parameters: (a) for different ω with (�0 = 5) and without (�0 = 0)
modulation, (b) for different �0 with ω = 0.1.
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FIG. 8. Time evolution of wave packet with different a under
periodic modulation. ω = 0.1, �0 = 5, g = 1.

In order to obtain the time-independent Hamiltonian, we
eliminate the time-varying part of the transformed Hamil-
tonian by the following integral, H̄ = ∫ τ

0 H ′dt = H̄0 + H̄I ,
where τ = 2π/�0 is the modulation period, H̄ is a time-
independent Hamiltonian, H̄0 is an effective single-particle
Hamiltonian, and H̄I is the Hamiltonian of atomic interaction,
and then the effective Hamiltonian becomes

H̄ =
[
−1

2

∂2

∂x2
− 2a j(x)

]
+ 1

2
�2

1x2 + g|ϕ|2,

j(x) = i

2

[
ϕ

∂ϕ∗

∂x
− ϕ∗ ∂ϕ

∂x

]
, (30)

where �1 = ω2/(
√

2�0) is the effective trapping potential.
Under the trial wave function (10), the energy of the system is

E = 1

4R2
+

√
1

8π

g

R
− a2

πR2
+ 1

4
�2

1R2. (31)

Comparing Eq. (8) [or Eq. (16)] with Eq. (30) [or Eq. (31)],
the modulation of external trapping potential only results in
modification of the frequency of the trapping potential; i.e.,
ω is changed to �1 = ω2/(

√
2�0). The modulation weakens

the external trapping. As shown in Fig. 1, a weak trapping
potential can prevent the instability induced by the gauge field.
Then, we conclude that the periodic modulation of the exter-
nal trapping potential can enhance the stability of the system.
Replacing ω with �1, the stability diagram of the modulated
system can be obtained according to Eqs. (17) and (18), which
is shown in Fig. 7. For fixed ω, the stable region can be
significantly expanded with modulation (�0 �= 0) [Fig. 7(a)]
and the stable region increases with �0 [Fig. 7(b)].

The periodic modulation of the trapping potential can pre-
vent the instability induced by the density-dependent gauge
potential. The results of the numerical simulation of Eq. (27)
are shown in Fig. 8, which confirms our variational predic-
tions. We find that when a = 0, the wave packet oscillates
symmetrically without any deformation. When 0 < a < ac =
3.071, the wave packet oscillates asymmetrically, and signif-
icant chiral dynamics takes place. That is, the chirality of the
wave packet is enhanced by modulation. The reason is that
under periodic modulation, the trapping effect on the conden-
sate decreases, and the oscillation of the ground-state wave
packet becomes more active, which further suppresses the in-
stability caused by the gauge potential. Therefore, the chirality
of the ground-state wave packet under periodic modulation is
stronger than that without periodic modulation. When a > ac,
the wave packets are deformed, and instability is excited.
Periodic modulation of external trapping potential provides a
mechanism for controlling the topological and chiral proper-
ties of condensates with a density-dependent gauge field.

VI. CONCLUSIONS

In conclusion, using variational analysis and numerical
simulation, the stability of trapped one-dimensional Bose-
Einstein condensate under density-dependent gauge field is
studied. The physical mechanism for exciting the instability
and irregular dynamics of the system is revealed and some
interesting phenomena are predicted. The competition be-
tween density-dependent gauge field and mean-field atomic
interaction induces instability and irregular dynamics. The
threshold for exciting the instability is obtained analytically
and confirmed numerically. When the atomic interaction is
dominant, stable chiral Gaussian wave packet dynamics is
observed. However, when the gauge field is dominant, strong
coupling of dipolar and breathing dynamics takes place, the
system is unstable, and the wave packet will be deformed and
fragmented. Interestingly, the stability of the system can be
adjusted by periodically modulating the trapping potential.

ACKNOWLEDGMENTS

This work is supported by the National Natural Sci-
ence Foundation of China under Grants No. 12164042, No.
12264045, No. 11764039, No. 11847304, No. 11865014,
and No. 11475027; by Natural Science Foundation of Gansu
Province under Grant No. 17JR5RA07620JR5RA526; by a
scientific research project of Gansu Higher Education under
Grant No. 2016A-005; by Innovation Capability Enhance-
ment Project of Gansu Higher Education under Grants No.
2020A-146 and No. 2019A-014; and by Creation of Science
and Technology of Northwest Normal University under Grant
No. NWNU-LKQN-18-33.

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[2] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett.

48, 1559 (1982).
[3] S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A.

Sanpera, G. V. Shlyapnikov, and M. Lewenstein, Phys. Rev.
Lett. 83, 5198 (1999).

[4] J. Denschlag, J. E. Simsarian, and D. L. Feder, Science 287, 97
(2000).

[5] G. J. Dong, J. Zhu, W. P. Zhang, and B. A. Malomed, Phys. Rev.
Lett. 110, 250401 (2013).

[6] Z. X. Liang, Z. D. Zhang, and W. M. Liu, Phys. Rev. Lett. 94,
050402 (2005).

024218-7

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevLett.83.5198
https://doi.org/10.1126/science.287.5450.97
https://doi.org/10.1103/PhysRevLett.110.250401
https://doi.org/10.1103/PhysRevLett.94.050402


ZHANG, JIAO, YU, WANG, ZHANG, AND XUE PHYSICAL REVIEW E 107, 024218 (2023)

[7] Y. J. Lin, R. L. Compton, K. J. García, J. V. Porto, and I. B.
Spielman, Nature (London) 462, 628 (2009).

[8] R. A. Williams, L. J. LeBlanc, K. J. Garcia, M. C. Beeler, A. R.
Perry, W. D. Phillips, and I. B. Spielman, Science 335, 314
(2012).

[9] M. Aidelsburger, M. Atala, S. Nascimbéne, S. Trotzky,
Y.-A. Chen, and I. Bloch, Phys. Rev. Lett. 107, 255301
(2011).

[10] Y. J. Lin, K. J. García, and I. B. Spielman, Nature (London) 471,
83 (2011).

[11] P. Wang, Z. Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai,
and J. Zhang, Phys. Rev. Lett. 109, 095301 (2012).

[12] M. Merkl, F. E. Zimmer, G. Juzeliunas, and P. Öhberg,
Europhys. Lett. 83, 54002 (2008).
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