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Assessing the saturation of Krylov complexity as a measure of chaos
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Krylov complexity is a novel approach to study how an operator spreads over a specific basis. Recently, it
has been stated that this quantity has a long-time saturation that depends on the amount of chaos in the system.
Since this quantity not only depends on the Hamiltonian but also on the chosen operator, in this work we study
the level of generality of this hypothesis by studying how the saturation value varies in the integrability to chaos
transition when different operators are expanded. To do this, we work with an Ising chain with a longitudinal-
transverse magnetic field and compare the saturation of the Krylov complexity with the standard spectral measure
of quantum chaos. Our numerical results show that the usefulness of this quantity as a predictor of the chaoticity
is strongly dependent on the chosen operator.
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I. INTRODUCTION

Throughout this century advances in technology have
allowed us to control increasingly complex quantum sys-
tems. The devices supported by these systems are considered
the near future for computation and information processing.
Therefore, it is essential to understand their robustness and
sensitivity to perturbations. Characterizing the complexity or
chaos of quantum systems is a crucial step in the development
of more efficient technologies.

The study of chaos in quantum systems began with a focus
on their spectral properties. Under this scheme, a chaotic
system is differentiated from an integrable one based on how
similar its level statistics are to a random matrix system [1–4].
Later on, the approach turned slightly to a dynamical defini-
tion of quantum chaos. Examples of this include the proposal
of the Loschmidt echo, which measures the irreversibility of a
system when it is disturbed, and the use of out-of-time ordered
correlators (OTOCs), which measure the speed at which an
operator spreads over the space of operators while evolving in
time.

Another possible approach to measure the complexity of
quantum evolutions uses the Krylov subspaces and the Krylov
complexity (K complexity from now on) [5–10]. In this sub-
space, any quantum system can be expressed as a one-particle
hopping problem on a one-dimensional chain, with hopping
coefficients being given by the so-called Lanczos coefficients.
Studying how much an operator spreads over this base is
equivalent to studying how much the wave function of this
fictional particle spreads over the chain. The K complexity
is a quantitative measure of this dynamic and it has recently
caused a great deal of activity within the community. Many
works study this metric for a wide variety of systems [11–19].

Specifically, in Refs. [18,19] it was conjectured and ob-
served in certain systems that the K complexity has a lower
late-time saturation value for integrable systems compared
to chaotic ones. The authors suggested that the distribution

of Poissonian statistics of the separation of energy levels,
characteristic of integrable systems, influences the Lanczos
coefficients, resulting in more disperse values. These irregu-
larities provoke an effect of localization in the wave function,
preventing it from exploring the whole chain efficiently, which
translates to a lower saturation value of the K complexity.
It is important to identify that this conjecture relies on two
assumptions. The first is that Poissonian statistics generate
more erratic Lanczos coefficients and the second is that this
noise generates localization and a diminution of the saturation
of the K complexity.

The goal of this work is to explore the generality of these
hypotheses. In particular, we study how the dispersion of
Lanczos coefficients and the late-time saturation of the K
complexity depend on the amount of chaos in the system
for different operators. To accomplish this, we use an Ising
spin chain with a longitudinal-transverse magnetic field; given
a value for the transverse component, this system has an
integrability-chaos transition varying the longitudinal compo-
nent. To explore the full space of local operators, we expand
the Krylov basis for the sum of Pauli operators over each one
of the spins. Our numerical results suggest that the dispersion
of Lanczos coefficients is slightly correlated with chaos for
the operators we studied. However, this relationship is not
well defined and exhibits large fluctuations, indicating the
need for larger systems or statistical ensembles of different
operators to determine whether there is a defined systematic-
ity. Conversely, the saturation of the K complexity tends to
have a defined trend, but its correlation with chaos is strongly
dependent on the operator chosen to construct the Krylov
basis.

This work is organized as follows. In Sec. II we briefly
review the Krylov subspaces and K complexity. In Sec. III we
begin by defining the dispersion measurement of the Lanczos
coefficients and the parameters of the Hamiltonian we are
going to work with. Then we generate the Krylov basis for
different operators and for each one of them we study the
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behavior of the Lanczos coefficients and the saturation of the
K complexity by altering the level of chaos in the system. We
conclude in Sec. IV with a summary and some final remarks.
In order to get a deeper understanding of the work, we have in-
cluded Appendixes with details of the Hamiltonian that we
used to perform the numeric simulations, together with the
study of its symmetries (Appendix ;A), the definition of the
measure of chaos (Appendix B), and a detailed explanation of
the measure’s normalization (Appendix C).

II. KRYLOV SUBSPACE, LANCZOS
ALGORITHM, AND K COMPLEXITY

Krylov methods were first introduced in the mathematical
literature as an efficient way to perform matrix exponentiation
[20,21]. This is why it is a traditional approach to approximate
the quantum evolution of systems with large Hilbert spaces.
Recently, Krylov subspaces began to be used in quantum
many-body problems to study the behavior and complexity
developed by operators over time [5,22]. In this section we
show how to construct the basis of Krylov subspaces using
the Lanczos algorithm, along with the definition of the K
complexity.

Given a Hamiltonian H , a Hermitian operator O, and the
Liouvillian superoperator L = [H, ·], the Krylov subspace is
defined as the minimum subspace of L that contains O(t ) at
all times, that is,

K = span{|O),L|O),L2|O), . . .}, (1)

where |O) is the state representation of O in the operator’s
Hilbert space. Given an inner product (O1|O2) = Tr(O†

1O2),
the iterative Lanczos algorithm can be used to generate an
orthonormal basis of this subspace. The exact form of this
algorithm consists of the following steps.

(i) Define auxiliary variables b0 = 0 and |O−1) = 0.
(ii) Normalize the operator to expand |O0) =

|O)/(O|O)1/2.
(iii) For n = 1, 2, . . ., repeat the following: (a) |Un) =

L|On−1) − bn−1|On−2), (b) bn = (Un|Un)1/2 (if bn = 0, stop),
and (c) |On) = |Un)/bn.

Doing this, we obtain the orthonormal Krylov basis {|On)}
and the Lanczos coefficients {bn}. For a Hamiltonian system
with a Hilbert space of finite dimension D, it can be proven
that n is upper bounded by D2 − D + 1 [7] such that the |On)
form a subspace of dimension 1 � K � D2 − D + 1.

Before proceeding, there are a couple of points to note.
First, while this algorithm is useful for theoretical purposes,
it is impractical to use on a computer due to the accumulation
of error from floating point rounding in the inner products.
To address this issue, there are alternative implementations
that allow for controlling this error, such as those described
in [21,23]. The simplest of these, and the one used in this
work, consists of orthonormalizing L|On−1) with respect to
all previous |On) instead of just the preceding one. Second,
all implementations of this algorithm are unstable when the
Hamiltonian matrix has degeneracies, so if the system has any
symmetries, it is necessary to desymmetrize the Hamiltonian
and study the operator in symmetry subspace.

In the Krylov basis, the Liouvillian has a tridiagonal form
with zero diagonal

L|O) = bn|On−1) + bn+1|On+1). (2)

Expanding |O(t )) in wave functions φn(t ) = i−n(On|O(t )),
we obtain

|O(t )) =
K−1∑

n=0

inφn(t )|On). (3)

Substituting in Eq. (2) results in a discrete Schrödinger equa-
tion for the wave functions,

∂tφn(t ) = bnφn−1 − bn+1φn+1, (4)

with b0 = φ−1 = 0. Note that this differential equation is the
same as the one for a tight-binding problem in one dimension,
with hopping coefficients bn between sites φn and φn−1 on the
chain. Since |O(t = 0)) = |O0), at t = 0 the wave function is
fully localized at the first site φn(0) = δ0n.

To study how information spreads over the chain after the
initial time, the following notion of complexity is defined:

KC (t ) =
K−1∑

n=0

n|φn(t )|2. (5)

This time-dependent quantity is called K complexity and it is
simply the mean value of the position of the φn(t ) in the chain.
As we interested in its late-time value, we define

KC =
K−1∑

n=0

n|φn(t > τ )|2, (6)

with τ being the time at which complexity saturates.

III. FROM INTEGRABILITY TO CHAOS
THROUGH LANCZOS COEFFICIENTS

In this section we study how the dispersion of the Lanczos
coefficients and the saturation of the K complexity depend on
the chaoticity of the system. The dispersion of an ordered set
of values can be defined in different ways. To facilitate the
discussion and a comparison with previous studies [18,19],
we use as a measure of dispersion the standard deviation of
the logarithmic difference between the successive values of
the chain,

σlog = SD{log(bn) − log(bn+1)} = SD{log(bn/bn+1)},
where the bn are the Lanczos coefficients and for this work the
natural logarithm was used.

As a model, we use a spin chain with a longitudinal-
transverse magnetic field. The Hamiltonian of this system and
the study of its symmetries can be found in Appendix A.
For all Lanczos coefficient calculations, we use L = 6 (re-
sulting in a Krylov space with dimension K = 1261), J =
1, and hx = 1 and study the chaos-integrability transition
by varying hz. We found similar results using L = 4 (K =
91), L = 5 (K = 381), and L = 7 (K = 5113) (in the latter
case, only a limited number of points were calculated due to
computational cost). The operators we use are

Sα
T =

L∑

k=1

1

2
σα

k , (7)
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FIG. 1. Krylov expansion of O = Sz
T. From lightest to darkest,

the curves represent hz = 0.2 and η � 1, hz = 1.35 and η � 0.7,
and hz = 2.5 and η � 0.1. (a) Lanczos sequence as a function of n.
(b) Distribution of the logarithmic difference between elements of the
sequences. The mean of these distributions in the three cases is prac-
tically zero and their dispersion is σlog � 0.32 for η � 1, σlog � 0.45
for η � 0.7, and σlog � 0.6 for η � 0.1. (c) Plot of the K complexity
as a function of time for the three calculated sequences. The late-time
saturations values are KC = 459 ± 10 for η � 1, KC = 274 ± 11 for
η � 0.7, and KC = 108 ± 6 for η � 0.1.

where σα
k is the Pauli operator at site k with direction

α = {x, y, z}. In addition, we compare these results with those
obtained from a random Gaussian, real, traceless operator,
which is a strongly entangled operator over the entire chain.

Let us start by taking O = Sz
T. In Fig. 1(a) we show the

Lanczos coefficients for three different values of hz, one in
the integrable regime (hz = 2.5), another in the chaotic regime
(hz = 0.2), and a third at a point between the two (hz = 1.35).
The dispersion of these coefficients in each regime is shown in
Fig. 1(b) and the K complexity is plotted as a function of time
in Fig. 1(c). We quantify the chaoticity of the system using the
standard measure η, which is a spectral measure that is equal
to 0 if the system is integrable and equal to 1 if it is chaotic.
The η is obtained from the distribution of min(rn, 1/rn), where
rn is the ratio between the two nearest-neighbor spacings of
a given level (rn = sn/sn−1). In Appendix B we give more

FIG. 2. Comparison between the degree of chaos present in the
system (indicated by η), the dispersion of the Lanczos sequences
σlog, and the late-time saturation value of the K complexity KC , as
a function of hz, for O = Sz

T. All quantities were normalized in order
to compare them on the same scale.

FIG. 3. Krylov expansion of O = Sx
T. The system parameters

and panel distribution are the same as in Fig. 1. The dispersion of
log(bn/bn+1) for this operator is σlog � 0.32 for η � 1, σlog � 0.44
for η � 0.7, and σlog � 0.6 for η � 0.1, with practically zero mean
in all cases. The saturation of the K complexity is KC = 188 ± 7 for
η � 1, KC = 316 ± 13 for η � 0.7, and KC = 417 ± 25 for η � 0.1.

details about how this quantity is calculated. The η was com-
puted in a chain with L = 13. For the three cases presented
in Fig. 1 there seems to be a relationship between the level of
chaos present in the system η, σlog, and KC . Specifically, as the
system becomes more chaotic, the dispersion of bn decreases
and the saturation point of the K complexity increases.

To study the integrability to chaos transition in more detail,
in Fig. 2 we show σlog and KC compared to η varying hz be-
tween 0.01 and 2.5. These quantities were normalized so that
they can be compared on the same scale. The normalization
that we use is discussed in Appendix C. Since we expect σlog

to decrease as the chaos parameter increases, we take −σlog to
make all the quantities involved follow the same systematicity
(all increase as a function of chaos). We see that in the limits
hz � hx and hz � hx the system is fundamentally integrable
and that for values of hz ∼ hx there is a transition indicated by
the value of η at each point. Expanding the operator Sz

T, we
find that the dispersions of both bn and KC are sensitive to this
transition, exhibiting a behavior similar to η. These results are
consistent with those discussed Refs. [18,19].

Now we consider the case O = Sx
T. Figure 3 was con-

structed in the same way as Fig. 1, but with the Krylov basis
generated using this operator. In this case, the saturation of the
K complexity has a notably different pattern. Comparing these
two figures, even though the Lanczos sequences are practi-
cally the same (in both average value and dispersion), the K
complexity for Sx

T exhibits behavior opposite to that seen for
Sz

T. In this case, when the system is chaotic, the K complexity
saturates at a lower value than when it is integrable. In Fig. 4
this behavior can be seen extended for the same values of hz

as in Fig. 2.
These results show not only that KC depends on the op-

erator, but also that there is no direct relationship between
the dispersion of bn and KC . We can see this same idea by
handpicking some of the first bn. In Fig. 5 we observe that by

024217-3



ESPAÑOL AND WISNIACKI PHYSICAL REVIEW E 107, 024217 (2023)

FIG. 4. Comparison between the degree of chaos present in the
system (indicated by η), the dispersion of the Lanczos sequences
σlog, and the late-time saturation value of the K complexity KC , as
a function of hz, for O = Sx

T. All quantities were normalized in order
to compare them on the same scale.

changing only the values of b1, b3, and b5 of the Sx
T sequence

we can completely modify the dynamics of the K complexity,
even to the point of inverting the original relationship (now
the configuration that saturates at a higher value is the chaotic
regime, as when we expand O = Sz

T). Although it is not clear
which values of the Lanczos coefficients are the ones that
determine the general behavior of the K complexity, in our
numerical tests we find that KC is very sensitive to the first
few values of bn and that it can be changed qualitatively by
changing only a few coefficients, without affecting the statis-
tics of the entire sequence. These results are consistent with
the idea that the first elements of the basis are the ones that
dominate the dynamics of the operator [5,12]. In particular,
in Ref. [12] it was shown for the integrable regime of the
same system (hx = 0 and hz = 1) that the first Lanczos coef-
ficients grow linearly when expanding the one-body operator
σ z

0 , while those of σ x
0 rapidly converge to a constant value.

This observation is compatible with our result, but a more
in-depth study is necessary to reach a robust conclusion.

Finally, in Fig. 6 we show the transition when using the
Krylov basis generated for a random Gaussian, real, traceless

FIG. 5. The inset in (a) shows a close-up of the first Lanczos
coefficients shown in Fig. 3(c). (a) Same coefficients but handpicking
the values of b1, b3, and b5. (b) Plot of the K complexity for the
modified chain.

FIG. 6. Comparison between the degree of chaos present in the
system (indicated by η), the dispersion of the Lanczos sequences
σlog, and the late-time saturation value of the K complexity KC , as
a function of hz, for a random Gaussian, real, traceless operator. All
quantities were normalized in order to compare them on the same
scale.

operator. We see that for this case the saturation of the K
complexity is not sensitive to the amount of chaos present in
the system. When we expand Sy

T, we obtain a similar result.
It is worth mentioning that while all operators shown in

this work have full lattice support, our calculations indicate
comparable results when the initial operators have support
only on a limited number of lattice sites. As an example,
we see that by expanding Sz

T we get the same chaos depend-
ence shown in Ref. [19] for Sz

i + Sz
L−i+1 (i is chosen to be

near the center of the chain). However, taking operators that
combine different directions of Pauli operators, such as Sz

i +
Sx

L−i+1, results in a chaotic dependence closer to that exhibited
by ST

y or a random operator (not shown).

IV. DISCUSSION

In this work we have discussed the feasibility of using
the saturation of the Krylov complexity as a measure of the
chaos present in a system. To do this, we worked with a
Hamiltonian system with an integrability-chaos transition and
compared this quantity with the usual spectral chaos measure.
We showed that the correlation between the K complexity
saturation and the chaoticity of the system strongly depends
on the operator chosen to construct the Krylov basis. In par-
ticular, we showed that there are operators for which this
quantity correlates (Fig. 2), others for which it anticorrelates
(Fig. 4), and others for which there is no clear systematicity
(Fig. 6). This work provides the possibility to understand what
the characteristics of the operators should be for the KC to be a
good predictor. Some progress has been made in [19], where
it is shown that operators must have zero trace, but clearly
this is not enough. Even in the cases where a relationship is
observed, there are no robust theoretical or numerical results
showing that there must be a causal relationship. These re-
sults serve as a counterexample to the expected relationship
between the dispersion of the Lanczos coefficients and the
saturation of the K complexity. In all the cases shown here,
the dispersion of the Lanczos coefficients has a similar sys-
tematicity, while the KC changes qualitatively.

It is also worth mentioning that this type of problem has
not been observed in OTOCs; in fact, it has been shown that
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FIG. 7. Same values as in Fig. 2, without normalization.

the long-time regime of the OTOCs is a good predictor of the
integrability-chaos transition as long as the operators are local,
even without desymmetrizing the system [24,25]. We consider
that understanding the difference in this transition is essential
for studying the relationship between Krylov complexity and
OTOCs.

APPENDIX A: ISING SPIN CHAIN IN A TRANSVERSE
MAGNETIC FIELD

The system we use is an Ising model with nearest-neighbor
interactions in the z direction and a transverse magnetic field
on the (x, z) plane, whose Hamiltonian is given by

Ĥ =
L∑

k=1

(
hxσ̂

x
k + hzσ̂

z
k

) − J
L−1∑

k=1

σ̂ z
k σ̂ z

k+1, (A1)

where L is the number of spin- 1
2 sites in the chain, σ

j
k is

the Pauli operator at site k = 1, 2, . . . , L in the x, y, and
z directions, hx and hz are the components of the mag-
netic field (transverse and longitudinal, respectively), and J
is the nearest-neighbor coupling. To expand an operator in
the Krylov space, it is necessary to work in a symmetry sub-
space. This system is invariant under reflection with respect
to the center of the chain; the parity operator commutes with
the Hamiltonian, allowing it to be decomposed into parity-
even and parity-odd subspaces of dimensions D = Deven +
Dodd, Deven/odd � D/2. In this work, we always operate in the
positive-parity subspace.

While this model is integrable in the limit of hx � hz and
hz � hx, it exhibits quantum chaos when the longitudinal and
the transverse field are of comparable strength [26].

APPENDIX B: SPECTRAL CHARACTERIZATION
OF QUANTUM CHAOS

In order to have a notion of the chaos present in the system
when varying the parameters of the Hamiltonian, we use a
spectral measure. Under this scheme, a quantum system is
considered chaotic if the distances between the consecutive
levels of the Hamiltonian follow a Wigner-Dyson distribution
and it is considered integrable if it is Poissonian. Given a
Hamiltonian H in a symmetry subspace, if we group the

FIG. 8. Same values as in Fig. 4, without normalization.

energy levels into an ordered set en, we can define the nearest-
neighbor spacing as sn = en+1 − en. To quantitatively measure
the distance between the distribution of a given system and a
perfectly chaotic or integrable one, it is common to define the
indicator r̃n = min(rn, 1/rn), where rn = sn/sn−1. The aver-
age value of this indicator is minimum if the distribution of
the sn is Poissonian (r̃P) and maximum if it is a Wigner-Dyson
distribution (r̃WD), so we can normalize this quantity as

η = r̃n − r̃P

r̃WD − r̃P
. (B1)

This allows us to identify a system as integrable if η � 0 and
chaotic if η � 1.

APPENDIX C: NORMALIZATION OF THE QUANTITIES

The spectral indicator η defined in the Appendix B is
normalized so that its values are restricted to the [0, 1] inter-
val. However, the dispersion of Lanczos coefficients σlog and
the saturation of the K complexity KC are not. For a better
comparison, it is necessary to define a general normalization
criterion. The r normalization is natural, since we know its
value when the system is integrable and when it is chaotic;
instead, for σlog and KC , this is precisely what we want to
study.

One possible option is mapping all the values to the [0, 1]
interval. This consists of, given a sequence of values X , ap-
plying the transformation

X (0,1)
norm = X − min X

max X − min X
. (C1)

This normalization has the advantage of confining all magni-
tudes on the same interval, but it has two main problems: (i)
η(0,1)

norm loses its intuitive normalization and (ii) if X is noisy,
min X will be poorly estimated and this error will spread to
all points of X (0,1)

norm .
To handle the first problem we can preserve η in its orig-

inal interval and map the other curves onto it, by taking
X ′ = X max η−min η

max X−min X . To solve the second problem, the idea is
to choose a displacement that does not rely on a single point,
which will reduce the amount of error that is propagated. In
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this work we use

Xnorm = dmin(X ′, η) − X ′,
(C2)

dmin(X ′, η) = min
α

‖(X ′ − α) − η‖,

where ‖ · ‖ is the Euclidean norm. This way X ′ is displaced in
order to minimize its Euclidean distance to η.

It is worth mentioning that the normalization of these quan-
tities is arbitrary and only serves to scale their magnitudes
so that they can be easily compared in the same plot. The
conclusions of this work do not depend on this normalization.
To emphasize this point and facilitate the reproducibility of
the results, we show η, σlog, and KC without normalization for
the Sz

T and Sx
T operators in Figs. 7 and 8, respectively.
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