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Pinning in a system of swarmalators
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We study a population of swarmalators (swarming/mobile oscillators) which run on a ring and are subject to
random pinning. The pinning represents the tendency of particles to stick to defects in the underlying medium
which competes with the tendency to sync and swarm. The result is rich collective behavior. A highlight is low
dimensional chaos which in systems of ordinary, Kuramoto-type oscillators is uncommon. Some of the states (the
phase wave and split phase wave) resemble those seen in systems of Janus matchsticks or Japanese tree frogs.
The others (such as the sync and unsteady states) may be observable in systems of vinegar eels, electrorotated
Quincke rollers, or other swarmalators moving in disordered environments.
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I. INTRODUCTION

Synchronization (self-organization in time) and swarm-
ing (self-organization in space) are universal phenomena that
cooccur in driven colloids [1–8], embryonic cells [9,10], bio-
logical microswimmers [11–18], and robotic swarms [19–26].
Yet a theoretical understanding of the interplay between sync
and swarming is lacking. Much is known about sync [27–29]
and swarming [30,31] acting independently of each other,
yet little is known about their interaction—an effect which
some have dubbed “swarmalation” [17,32], since it combines
swarming in space with oscillation in time.

Swarmalation, as theoretical field, began about 15 years
ago when Tanaka et al. introduced a model of chemotactic
oscillators [33–36]. Later O’Keeffe et al. studied a generalized
Kuramoto model of “swarmalators” [37] which triggered a
new wave of work [21–23,38–56]. Even so, the subfield is still
very much in its infancy, with little known in the way of anal-
ysis [43,47], and even less known in the way of swarmalator
phenomenology.

This paper sets out to explore this uncharted terrain with a
case study of swarmalators subject to random pinning. Ran-
dom pinning is a well studied topic in nonlinear dynamics
and statistical physics. It refers to the tendency of a substance
to stick to the impurities of the underlying medium requiring
forcing to produce flow. A classic example is charge density
waves [57,58] which have been analyzed using phases oscilla-
tors [59,60]. Here, the phase θi corresponds to the phase of the
density wave at a (fixed) position xi in the underlying lattice
ρ(x, t ) = ρ0 sin(kx − θ (x, t )). At a critical forcing, the phases
depin from their preferred values θ∗

i producing interesting
collective effects.

Charge density waves partly inspired our study of pinned
swarmalators. We wondered what might happen if the lattice
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sites xi themselves begin to vibrate and interact with the den-
sity waves’ phases θi?

A clue comes from a recent work on a pair magnetic
domains walls [61,62], entities with bright futures as memory
devices in next generation spintronics [63–65]. When suffi-
ciently forced, the center of mass xi and the magnetic dipole
vector θi of the walls unlock and begin to interact producing
rich spatiotemporal dynamics (see Fig. 2 and the lissajous
curves in Figs. 6 and 7 of the Supplemental Material in [61]).
Just N = 2 swarmalators produce these dynamics. We expect
N � 1 swarmalators—the regime we are interested in here—
to produce even richer dynamics.

We search for such dynamics using a simple model of
swarmalators which move on a 1D ring. The hope is that
a bare-bones, simple model might capture phenomena with
some universality. We find diverse collective behavior: a
family of phase waves, “flying saucers” where swarmalators
form traveling loops in (x, θ ) space, quasiperiodicity, and
chaos. The unsteady behaviors do not occur in systems of
pinned oscillators; they are exclusive to systems of pinned
swarmalators.

We hope our work inspires more studies of swarmalators
with random pinning. As we show, the model is tractable
and could thus be used as a testbed for general studies of
swarmalation in disordered media.

II. MODEL

We study a pair of Kuramoto-like models

ẋi = E − b sin(xi − αi ) + K

N

N∑
j

sin(x j − xi ) cos(θ j − θi ),

(1)

θ̇i = E − b sin(θi − βi ) + K

N

N∑
j

sin(θ j − θi ) cos(x j − xi ),

(2)
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where (xi, θi ) ∈ (S1,S1) are the position and phase of the ith
swarmalator. E represents external forcing, K the interelement
couplings, b the strength of the pinning, and αi, βi the pinning
locations. We confined the motion to a 1D ring mainly for
simplicity. That said, there are real-world swarmalators which
move around 1D rings; vinegar eels move along the ring-like
edges of 2D disks, Japanese tree frogs on the edges of paddy
fields [66], and coupled magnetic bilayers, above the walker
regime, oscillate along a 1D axis. We pin the swarmalators’
positions uniformly around the circle αi = 2π i/N and also set
the phase pinning equal to the space pinning βi = αi. These
choices simplify the analysis, and also enforce that in the the
pinned state (K = 0) the swarmalators form a phase wave
around the circle xi = θi—a natural base state which occurs
commonly in nature (see discussion). Finally, we set b =
1 without loss of generality, which leaves a two-parameter
model (K, E ).

We simplify our model by converting the trigonometric
functions to complex exponentials,

ẋi = E − sin(xi − αi ) + K

2
S+ sin(�+ − (xi + θi ))

+ K

2
S− sin(�− − (xi − θi )), (3)

θ̇i = E − sin(θi − βi ) + K

2
S+ sin(�+ − (xi + θi ))

− K

2
S− sin(�− − (xi − θi )), (4)

where

W± = S±eĩ�± = 1

N

∑
j

eĩ(x j±θ j ) (ĩ = √−1) (5)

are order parameters which measure the system’s space-phase
order. When positions and phases are perfectly correlated
xi = ±θi + C, they are maximal S∓ = 1. When xi, θi are un-
correlated, they are minimal S± = 0.

Now we begin our analysis.

III. NO DRIVING E = 0

To warm up, we study the undriven system E = 0 (which
leaves just one active parameter K). Numerics reveals three
collective steady states as we vary K : the phase wave, split
phase wave, and sync state. The first three panels of Movies 1
and 2 in the Supplemental Material [67] show the evolution to
these states.

Phase wave. When the pinning dominates the synchro-
nizing |K| � 1 (or in dimensionful units |K| � b), the
swarmalators’ positions and phases stay pinned to their pre-
ferred values xi = θi = αi = 2π i/N . As mentioned, in the
(x, θ ) plane, this constitutes a phase wave xi = θi [Fig. 1(a)]
which implies (S+, S−) = (0, 1) (Fig. 2). The stability of this
state in the no pinning limit b = 0 was calculated previ-
ously by linearizing the (ẋi, θ̇i ) equations and exploiting the
block structure of the Jacobian J [42]. Adapting this calcu-
lation when pinning is turned on b = 1 yields three distinct
eigenvalues:

λ0 = −1, (6)

FIG. 1. Collective states in undriven limit E = 0. (a) Pinned
state K = 1, (b) split phase wave K = −2, (c) sync state K = 3. In
each panel, (dt, T, N ) = (0.1, 100, 200) and initial xi, θi were drawn
randomly from [−π, π ].

λ1 = −1 − K, (7)

λ2 = 1
2 (−2 + K ), (8)

with multiplicities N − 1, N − 1, and 2, respectively. These
imply the pinned state is stable for

−1 � K � 2. (9)

This holds true for all finite N .
Split phase wave. When K < −1, the phase wave splits

into two phase waves [Fig. 1(b)] separated by a distance 	(K )
from the pinned state:

xi = αi + (−1)i	, (10)

θi = αi + (−1)i−1	. (11)

The order parameter S+ remains zero, but now S−
obeys 0 � S−(K ) < 1 (Fig. 2) and must be solved for
self-consistently. We insert Eqs. (10) and (11) into the ẋi

equation and apply the fixed point condition ẋi = 0,

ẋi = sin((−1)i	) + K

2
S− sin(2	(−1)i−1) = 0. (12)

(The θ̇i equation is a duplicate so we omit it). Equation (12)
is in fact independent of i. When i is even, the first term
is positive, the second negative. When i is odd the reverse
happens. Since the RHS is zero, the sign flipping doesn’t
matter so we set i = 0 without loss of generality and rearrange
terms to obtain

S− = − 2

K

sin 	

sin 2	
. (13)

Next we plug Eqs. (10) and (11) into the definition for S−:

S− = 1

N

∑
j

eĩ(x j−θ j ), (14)

which gives us

S− = cos 2	. (15)
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FIG. 2. Order parameters in undriven limit E = 0. Colored dots
show simulation results. The thick black curve on the LHS shows
theoretical prediction Eq. (18), the one on the RHS the numerical
solution of Eqs. (23) and (24). Hysteresis exists in the small region
K ∈ [0.1926, 2], which is plotted more clearly in Fig. 3. Simulation
parameters: (dt, T, N ) = (0.25, 200, 400).

Equations (13) and (15) comprise a pair of simultaneous equa-
tions for (	, S−). To solve them we eliminate 	 by writing
sin 	, sin 2	 in terms of cos 2	 = S−. Using the identity
sin2 2	 + cos2 2	 = 1, we find sin 2	 = ±

√
1 − cos2 2	 =

±
√

1 − S2−. Using the identity, cos 2	 = 1 − 2 sin2 	, we

find sin 	 = ±√
(1 − cos 2	)/2 = ±√

(1 − S−)/2. Plug-
ging these into Eq. (13) gives

S− = ± 2

K

√
1 − S−

2(1 − S2−)
. (16)

Cleaning this up yields a cubic in S− :

K2S3
− + K2S2

− − 2 = 0. (17)

The unique real root is

S− = − 1 + K2

3
√

−K6 + 27K4 + 3
√

81K8 − 6K10

+
3
√

−K6 + 27K4 + 3
√

81K8 − 6K10

K2
. (18)

This exists for all K , but becomes stable at K = −1 via a
transcritical bifurcation when it intersects with the S− = 1
branch (Fig. 2). As K → −∞, S− declines from one to zero,
and the “split gap” 	 increases from 0 to π/4.

Sync state. We have sussed out the split phase wave on
K < −1 and the phase wave on −1 � K � 2. Now we jump
to the remaining region K > 2, where the sync force domi-
nates the pinning force, so to speak. Here swarmalators form
synchronous clusters [Fig. 1(c)]. Two clusters form when the
initial conditions xi, θi are drawn uniformly at random from
[−π, π ], while one cluster forms when xi, θi are drawn from
[0, π ] (the single cluster state is not plotted). Figure 2 shows
S− stays at unity while S+ bifurcates from 0 at Kc = 2.

We again solve for S+(K ) self-consistently. This time we
move to coordinates

ξ := x + θ, (19)

η := x − θ. (20)

FIG. 3. Hysteresis in S+(K ) for E = 0. Curve is drawn by solv-
ing Eqs. (23) and (24) numerically. It shows hysteretic transition
from the phase wave to the sync state.

The governing ODEs in this frame are

ξ̇i = −2 cos
ηi

2
sin

(
ξi

2
− αi

)
+ KS+ sin(�+ − ξi ), (21)

η̇i = −2 sin
ηi

2
cos

(
ξi

2
− αi

)
+ KS− sin(�− − ηi ). (22)

Next we search for fixed points. First we simplify by setting
S− = 1 and ηi = �− = 0 (these ansatzes were suggested by
numerics). The η̇i equation reduces to 0 = 0. The ξ̇i equa-
tion reads

−2 sin

(
ξ

2
− α

)
+ KS+ sin(�+ − ξ ) = 0, (23)

S+eĩ�+ = 1

2π

∫ 2π

0
eĩξ (α)dα, (24)

where Eq. (24) requotes the definition of S+ in the N → ∞
limit. We must solve Eq. (23) for the fixed points ξ ∗(α) then
plug them into Eq. (24) to find S+. First we set �+ = 0 with-
out loss of generality. Then by applying various trig identities
to Eq. (23) we arrive at a fourth order polynomial in cos ξ ∗
and plug the roots into Eq. (24), which when �+ = 0 reads
S+ = ∫

cos(ξ ∗(α))dα. Unfortunately, we were unable to do
the integral over α analytically. So instead we approximated
it numerically. Figure 3 shows it matches simulation. Notice
there is a bistable region K ∈ [1.926, 2].

This completes our study of the undriven system E = 0. To
recap, we solved for the order parameters in each collective
states: S−(K ) in the split phase wave, S+(K ) in the sync state,
and the trivial result (S+, S−) = (0, 1) in the phase wave.
We also determined the stability of the phase wave for all
finite N . From a dynamic point of view, the discovered states
were tame; in each, swarmalators were ultimately stationary in
space and phase. When external driving is turned on E > 0,
however, the dynamics become richer.

IV. DRIVING E > 0

The phase wave, split phase wave, and sync state persist
for small amount of driving E > 0. This is a good news; it
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FIG. 4. Bifurcation diagram in (K, E ) plane. Black curves denote
theoretical predictions. Colored regions were found by computing
(S+, S−, 〈V 〉) over the population over a (K, E ) mesh and applying
various conditions (see main text). Hysteresis boundaries were not
computed; the text just indicates their approximate locations. Here
(dt, N, T ) = (0.1, 200, 200). The first 90% of simulation data were
discarded as transients. The jagged boundaries are due to finite ef-
fects in the (K, E ) mesh.

means we can use our earlier E = 0 analyses of these states
as springboards to the E > 0 regime.

To help guide our analysis, we first numerically con-
structed the bifurcation diagram in the (K, E ) plane. We
computed (S+, S−, 〈V 〉) at each point in a uniform (Ei, Ki )

mesh, where 〈V 〉 := N−1 ∑
i

√
v2

x,i + v2
θ,i is the mean velocity.

Then we divided the plane into four regions according to these
conditions:

Unsteady: 〈V 〉 > 0.

Phase wave: {〈V 〉 = 0} ∩ {S+ < 0.1} ∩ {S− > 0.99}.
Split phase wave: {〈V 〉 = 0} ∩ {S+ < 0.1} ∩ {S− < 0.99}.
Sync: {〈V 〉 = 0} ∩ {S+ > 0.1}.

Figure 4 shows the result. Our analysis will be a walk through
each of the colored regions/states, so keep this map in mind
as we go.

Split phase wave. Here the analysis is essentially a repeat
of the E = 0 case. The fixed points become

xi = αi + sin−1(E ) + (−1)i	, (25)

θi = βi + sin−1(E ) + (−1)i−1	. (26)

The resultant cubic is

K2S3
− + K2S2

− − 2 + 2E2 = 0, (27)

whose unique real solution is

S− = −1

3
+ K4 + (�1 + 3

√
3
√

�2)2/3

3K2(�1 + 3
√

3
√

�2)1/3
, (28)

where

�1 := −27(E2 − 1)K4 − K6, (29)

�2 := (E2 − 1)K8(27E2 + 2K2 − 27). (30)

We can use Eq. (28) to study the bifurcations of the split phase
wave. The trick is to peel off the critical (E , K ) boundaries
by evaluating Eq. (28) at extremal values of S− (these values
are 0,1 since 0 � S± � 1). First we set S− = 1 (which corre-
sponds to the bifurcation to the phase wave) and solve to find

Ec(K ) =
√

1 − K2. (31)

This is an existence condition; it doesn’t say anything about
stability. Simulations show however, that it coincides with the
stability boundary as shown in Fig. 4 (the black curve between
the yellow and cyan regions).

Now we target the other extreme S− = 0 which has exis-
tence condition

E∗(K ) = 1. (32)

This time existence and stability boundaries do not coincide;
the split phase wave loses stability at some E∗∗ < E∗. One
can see this in Fig. 4, where the boundary between the yellow
and light red regions is clearly not E∗ = 1. Figure 5 con-
firms this picture by plotting S−(E ) for K = −1.2. For E <

E∗∗ ≈ 0.55, the prediction matches simulation. For E > E∗∗
however, theory and numerics start to diverge. Moreover, S+
jumps from zero which certifies the transition to a new state
we call active async.

Active async. This state is best understood by watching
Movies 1 and 2 in the Supplemental Material [67]. Starting
in the split phase wave at K = −1.5 (the yellow region of
Fig. 4), we move E just past E∗∗, and find swarmalators ex-
hibit fast/slow dynamics. They move slowly about the “ghost”
of the split phase wave, make sudden cycles in position x and
phase θ , then return to the ghost. This burstiness manifests in
S− as irregular oscillations [Fig. 6(a)]. As the driving becomes
more extreme E > E∗∗, the slow-fast mechanism dies out and
all swarmalators are pushed around x, θ at about the same
speed resulting in S± ≈ 0 [Fig. 6(b)]. The bottom row of Fig. 6
shows the transition to async from the phase wave state (i.e.,
starting at K = −0.1; the cyan region in Fig. 4). The picture
is qualitatively the same: large amplitude oscillations which
shrink as the driving grows.

Unfortunately, we were unable to calculate the stability of
this unsteady state. Numerics however show state dies for K >

0, the regime we now explore.
Phase wave. We begin the K > 0 exploration with the

phase wave. This time however, we analyze in the N → ∞
limit. The governing equations become

ẋα = E − sin(xα − α) + K

2
S+ sin(�+ − (xα + θα ))

+ K

2
S− sin(�− − (xα − θα )), (33)

θ̇α = E − sin(θα − α) + K

2
S+ sin(�+ − (xα + θα ))

− K

2
S− sin(�− − (xα − θα )), (34)

where S± are

S±eĩ�± = 1

2π

∫ 2π

0
eĩ(xα±θα ) dα, (35)
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FIG. 5. Order parameter with driving. S− versus E for K =
−1.2. Colored dots show simulation results. The black curve shows
theoretical prediction Eq. (28). Notice S− < 0.99 exists for E ∈
[0, 1], but is stable for E < E∗∗ ≈ 0.55. For E > E∗∗ the active
async state is realized. Also notice S+ becomes nonzero for E > E∗∗.
Here (dt, T, N ) = (0.25, 200, 200) and data are averaged over last
10% of data collected.

and x : α → xα and θ : α → θα should be thought of as self-
maps of the unit circle. The fixed points take the form

xα = θα = α + sin−1(E ). (36)

Now, our goal is to compute the local stability of the
phase wave. To get there, we follow the strategy in [59]
which is to diagonalize the second variation of the potential
function

V (xα, θα )

= −E
∫ 2π

0
xα dα − E

∫ 2π

0
θα dα

−
∫ 2π

0
cos(α − xα ) dα −

∫ 2π

0
cos(α − θα ) dα

− K

2π

∫ 2π

0

∫ 2π

0
cos(xβ − xα ) cos(θβ − θα ) dαdβ.

(37)

Simplification of Eq. (37) using xα = θα yields

V (xα ) = − 2E
∫ 2π

0
xα dα − 2

∫ 2π

0
cos(α − xα ) dα

− K

4π

∫ 2π

0

∫ 2π

0
cos2(xβ − xα ) dαdβ. (38)

Let η : α → ηα denote a perturbation about the phase wave
state so that

xα (ε) = α + sin−1(E ) + εηα, (39)

where ε is small. Plugging Eq. (39) into Eq. (38) yields

V (xα (ε)) = − 2E
∫ 2π

0
(α + sin−1(E ) + εηα ) dα

− 2
∫ 2π

0
cos(sin−1(E ) + εηα ) dα

− K

4π

∫ 2π

0

∫ 2π

0
cos2(β − α + εηβ − εηα ) dαdβ.

(40)

FIG. 6. Active async. Order parameters in active async
state. (a) (K, E ) = (−1.5, 0.8), (b) (K, E ) = (−1.5, 3),
(c) (K, E ) = (−0.1, 1.1), (d) (K, E ) = (−0.1, 2). Simulation
parameters: (dt, T, N ) = (0.25, 200, 300).

The second variation of V is a quadratic form

�(η) = d2

dε2
V (xα (ε))|ε=0. (41)

Differentiation yields

�(η) = 2
√

1 − E2

∫ 2π

0
η2

α dα

+ K

2π

∫ 2π

0

∫ 2π

0
(ηβ − ηα )2 cos(2β − 2α) dαdβ.

(42)

We can simplify the second term on the RHS of Eq. (42) by
expanding the term (ηβ − ηα )2, which gives

∫ 2π

0

∫ 2π

0
(ηβ − ηα )2 cos(2β − 2α) dαdβ

= −2
∫ 2π

0

∫ 2π

0
ηβηα cos(2β − 2α) dαdβ. (43)

FIG. 7. Order parameter S+(K ) for different driving strengths E .
Colored dots show simulation results, thick black curves numerical
solution of Eqs. (52), (53). Simulation parameters: (dt, T, N ) =
(0.25, 200, 200) and each are averaged over the last 10% of data
collected.
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FIG. 8. Transition to chaos. Time series of S+, phase space trajectory in the S+-S− plane, and the normalized power spectrum for different
E values when K = 0.5. In the top row, E = 1.0 which is the quasiperiodic state. In the middle row, E = 1.2 which is the chaotic state. In the
bottom row, E = 1.3 which is the periodic orbit.

FIG. 9. Route to chaos. (a) Bifurcations structure of S+(E ).
(b) Zoom in of period doubling route to chaos. (c) Lyapunov expo-
nents. (d)—(g) Period doubling illustrated in the (S+, S−) plane. E =
1.248, 1.243, 1.241, 1.23 for the panels (d), (e), (f), and (g), respec-
tively. In all panels, K = 0.5 and (dt, T, N ) = (0.01, 10000, 200).
Last 20% data were taken to calculate peaks of the time series of S+.

α and β integrals further separate when we expand the term
cos(2β − 2α):∫ 2π

0

∫ 2π

0
ηβηα cos(2β − 2α) dαdβ

=
∫ 2π

0

∫ 2π

0
ηβηα (cos 2α cos 2β + sin 2α sin 2β ) dαdβ

=
[∫ 2π

0
ηα cos 2α dα

]2

+
[∫ 2π

0
ηα sin 2α dα

]2

=
∣∣∣∣
∫ 2π

0
ηαeĩ2α dα

∣∣∣∣
2

= 4π2|η̂α (−2)|2, (44)

where η̂α is the Fourier transform of ηα defined by

η̂α (m) = 1

2π

∫ 2π

0
ηαe−ĩmα dα. (45)

We study this in the Hilbert space L2(S1) with the inner
product,

μα · να = 1

2π

∫ 2π

0
μανα dα. (46)

Let μα = cos 2α, να = sin 2α. Then we have ||μα||2 =
||να||2 = 1/2 and μα · να = 0. We express ηα as a linear com-
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bination of μα , να , and a function η⊥
α (orthogonal to both μα

and να) as

ηα = p
μα

||μα|| + q
να

||να|| + η⊥
α , (47)

where μα · η⊥
α = να · η⊥

α = 0. Moreover, we get

||ηα||2 = p2 + q2 + ||η⊥
α ||2. (48)

Now it is easy to see that

|η̂α (−2)|2 =
∣∣∣∣ 1

2π

∫ 2π

0
ηαeĩ2α dα

∣∣∣∣
2

=
[∫ 2π

0
ηα cos 2α dα

]2

+
[∫ 2π

0
ηα sin 2α dα

]2

= (ηα · μα )2 + (ηα · να )2

= (p||μα||)2 + (q||να||)2 = p2 + q2

2
. (49)

Finally, using Eqs. (43), (44), (48), and (49), from Eq. (42)
we get

�(η) = 4π

[√
1 − E2(p2 + q2 + ||η⊥

α ||2) − K

(
p2 + q2

2

)]

= 4π

[
(p2 + q2)

(√
1 − E2 − K

2

)
+

√
1 − E2||η⊥

α ||2
]
.

(50)

So, � is positive definite when
√

1 − E2 − K/2 > 0. This
implies the stability boundary is

ET (K ) =
√

1 − K2

4
. (51)

When E = 0 we recover the critical coupling Kc = 2. Figure 4
shows this agrees with simulation; the thick black curve on
RHS of the lopsided bell correctly demarcates the phase wave
stability region (cyan). To the north is the unsteady region,
while to the east lies the sync state; we go east first.

Sync state. The analysis carries through as before. In the
presence of driving, Eqs. (23) and (24) become

2E + 2 sin

(
ξ

2
− α

)
+ KS+ sin ξ = 0, (52)

S+ = 1

2π

∫ 2π

0
eĩξ (α)dα. (53)

Figure 7 shows the numerical solution to these matches simu-
lation for different values of E . Now we present the last piece
of our analysis: the K > 0, E � 0 regime where collective
behavior is unsteady.

Chaos & quasiperiodicity. Starting in the phase wave and
moving in the +E direction, we encounter low dimensional
chaos (where the order parameters W± move chaotically in
the complex plane). Figure 8 explores the transition for K =
0.5 (for which the critical driving is ET = √

15/4 ≈ 0.968).
For E = 1.0, just past the threshold, S+ is quasiperiodic. The
time series is irregular, plots of (S+, S−) form space-filling
curves, and its power spectrum has a few dominant peaks with
multiple smaller peaks (Fig. 8, top row). As E is increased

FIG. 10. Hysteresis in the time average of order parameter
〈S+〉 versus E for K = 1 [for which ET = √

3/2 from the analyt-
ical expression Eq. (51)]. Lower branch, phase wave state. Upper
branch, start of route to chaos. Simulation parameters: (dt, T, N ) =
(0.25, 100, 200). Each data point is the time average of the last 10%
of data.

to E = 1.2, the motion becomes chaotic. The time series and
(S−, S+) plots are irregular while the power spectrum has a
wide band of frequencies (Fig. 8, middle row). As E increases
to 1.3 the chaos dies and simple periodic behavior is observed
as indicated by the 1D manifold in (S−, S+) plane and a single
peak in the Fourier spectrum (Fig. 8, bottom row). Here the
swarmalators form traveling loops in (x, θ ) space like “flying
saucers” (Movies 1 and 2 in the Supplemental Material [67]).
As E increases, the width of these loops shrinks and finally
become delta point masses at E → ∞.

Figure 9 further explores the route to chaotic region. Panel
(a) shows the bifurcation structure of min S+(K ). Starting
from E ≈ 1.3 and decreasing E , the classic period doubling
route to chaos is observed [panel (b) zooms in the period
doubling region]. Panel (c) shows the maximum Lyapunov ex-
ponents are consistent with this picture: at the onset of chaos
E ≈ 1.24, they switch from negative to positive. Lastly, panels
(d)–(g) illustrate the period doubling in the (S−, S+) plane.
Starting from the right at E = 1.248, where one-periodic orbit
exists [Fig. 9(d)], one can observe a period doubling cas-
cade with decreasing E . At E = 1.243, a two-periodic orbit
[Fig. 9(e)] and at E = 1.241, a four-periodic orbit [Fig. 9(f)]
are found before the motion becomes chaotic (Fig. 9(g) for
E = 1.23). Supplemental Movie 3 shows the (S+, S−) plots
along with accompanying scatter plots in the (x, θ ). Finally,
Fig. 10 shows the transition to unsteady behavior is hysteretic.
For K = 1, the phase wave loses stability at ET = √

3/2 ≈
0.87. A quasiperiodic orbit is born beyond this value of E .
However, the backward transition shows that quasiperiodicity
is sustained till E ≈ 0.79 < ET .

V. ROBUSTNESS TO NONSYMMETRIC PINNING

Here we briefly demonstrate that our results are robust
to small perturbation around the symmetric pinning ideal-
ization αi = βi. We explore two choices: symmetric pinning
with an offset (i) αi = βi+1 = 2π i/N and (ii) randomly drawn
(but sorted) pinning αi, βi ∼ U (0, 2π ). We find each collec-
tive state persists for both (i) and (ii). Figure 11 shows the
phase wave as an example. We also computed the numerical
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FIG. 11. Robustness to asymmetric pinning. The phase wave
persists under small amounts of disorder around the linearly spaced
model. The other collective states are deformed in a qualitative man-
ner. Here (N, dt, T ) = (300, 0.25, 100).

bifurcation diagram (K, E ) and found it was qualitatively
similar. We leave further explorations for future work.

VI. DISCUSSION

Our hope is that the 1D swarmalator model be used as a
toy model for general studies of swarmalation in disordered
media. It seems to have the right ingredients: it is tractable
yet also mimics real world behavior. The phase wave state is
observed in many 1D swarmalators, such as circularly con-
fined spermatazoa [68] and bordertaxic vinegar eels [13–15].
The split phase wave mimics the “wavy-antisynchronization”
seen in models of Japanese tree frogs (see Fig. 3 in [66]) and

the chain states of Janus matchsticks (Fig. 5(c) of [8]). As for
the dynamic states, chaos has been observed in the dynamics
of single magnetic domains walls [69], but to our knowledge
has not yet been observed in the N > 1 regime. On the other
hand, so-called biological turbulence is often observed in ag-
gregations of microswimmers [70]. Could the material defects
in the host medium be the source of this unsteady behavior?
If so, our model could provide a tractable setting to examine
this form of chaos (indeed, to our knowledge, this is the only
oscillator model with pinning that produces chaos).

To sum up, the model’s partial matches to reality are en-
couraging, but it’s still not clear if the model is general enough
for broad use. The radical idealizations we made (mean field
coupling, symmetric pinning αi = βi) likely cut out some
essential physics. Nevertheless, we hope the model at least
finds use as an early stepping stone in the study of pinning
in systems which both sync and swarm—systems for which
theories are currently lacking.

Ambitious follow up work could try to derive the evo-
lution equations for the order parameters Ṡ±. Crawford did
this for the Kuramoto model via a center manifold calcula-
tion [71]. If we could adapt his analysis for Ṡ± we could
crack the bifurcations of the unsteady states. For instance,
we could study the tricritical point joining the phase wave,
sync, and unsteady phases (the point at which the red, cyan,
and magenta regions meet in Fig. 4). Future work could also
relax our model’s symmetry. Instead of a common (E , b, K )
appearing in both the ẋ, θ̇ , one could split them up E →
(Ex, Eθ ), b → (bx, bθ ), K → (Kx, Kθ ). Local coupling, non-
symmetric pinning αi �= βi, and spatial motion in 2D would
also be interesting to explore.

Code used for simulations and analytic calculations are
available on Github [72].
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