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We investigate, both analytically and numerically, the nonlinear dynamics of (2+1)-dimensional [(2+1)D]
matter waves excited in a disk-shaped dipolar Bose-Einstein condensate (BEC) when quantum fluctuations
described by the Lee-Huang-Yang (LHY) correction are taken into consideration. By using a method of
multiple scales, we derive Davey-Stewartson I equations that govern the nonlinear evolution of matter-wave
envelopes. We demonstrate that the system supports (241)D matter-wave dromions, which are superpositions of
a short-wavelength excitation and a long-wavelength mean flow. We found that the stability of the matter-wave
dromions can be enhanced by the LHY correction. We also found that such dromions display interesting
behaviors of collision, reflection, and transmission when they interact with each other and are scattered by
obstacles. The results reported here are useful not only for improving the understanding on the physical property
of the quantum fluctuations in BECs, but also for possible experimental findings of new nonlinear localized

excitations in systems with long-ranged interactions.
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I. INTRODUCTION

In the past decades, the remarkable experimental re-
alization of Bose-Einstein condensates (BECs) in weakly
interacting cold atomic gases opened a new avenue for the
exploration of nonlinear properties of matter waves. The most
significant experimental progress includes demonstrations of
the matter-wave four-wave mixing, superradiance, amplifica-
tion, and collapse [1-4]. These studies established a new field
of nonlinear atom optics that deals with various nonlinear
dynamics of matter-wave excitations [5—7].

Fascinating phenomena of solitons and related excita-
tions occur in many nonlinear media (e.g., fluids, plasmas,
solids, optical fibers, etc.), and have potential applications
in information processing and transmission [8]. Solitonlike
nonlinear localized excitations in BECs (called matter-
wave solitons generally) have also received much atten-
tion. Related studies focused mainly on solitons in BECs
with contact atom-atom interactions, controlled by Gross-
Pitaevskii (GP) equations with local cubic nonlinearity,
by which stable bright (dark) solitons for attractive (re-
pulsive) interatomic interaction can be obtained in one
dimension [9-12].

In order to obtain new and more interesting properties, in
recent years there has been considerable interest in exploring
cold atomic gases with more rich atom-atom interactions.
In particular, nonlocal (long-ranged) dipole-dipole interaction
has been suggested to realize a novel kind of degenerate
quantum gas both in the weakly interacting limit and also
in strongly correlated regimes. It has been shown that BECs
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with dipole-dipole interaction, governed by GP equations with
nonlocal cubic nonlinearity, can support high-dimensional
solitons. However, generally such solitons can only be sta-
bilized by some special conditions due to the fact that the
dipole-dipole interaction is anisotropic and nonpositive defi-
nite [13-20].

In the studies mentioned above, the ground-state energy
of BECs was obtained by using a mean-field approximation.
Going beyond this approximation gives a Lee-Huang-Yang
(LHY) correction [21], which is originated from the quantum
fluctuations in the BEC. The LHY correction can stabilize the
BEC against the mean-field collapse, which has been observed
in Bose-Bose mixtures and also in dipolar BECs, and has been
shown to be useful for the formation of solitonlike quantum
droplets and supersolid crystals [22-28].

Stable high-dimensional solitons are rarely found in na-
ture. The reason is that it is usually not easy to realize the
balance among nonlinearity, dispersion, and/or diffraction.
Nevertheless, if a system is prepared under particular con-
ditions the nonlinear dynamics of wave envelopes can be
effectively described by some integrable (or nearly integrable)
nonlinear partial differential equations, and one is able to
observe high-dimensional solitons during propagation in the
system [29]. In Ref. [30], (2+1)-dimensional [(241)D] [31]
weak nonlinear matter waves excited from the background
of a disk-shaped BEC with local atom-atom interaction were
considered, Davey-Stewartson I (DSI) equations were de-
rived, and hence dromionlike (2+1)D soliton excitations were
proved to be possible. Predicted first by Boiti et al. [32],
a dromion (the name was first given in Ref. [33]) is a
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(24+1)D nonlinear localized excitation with two wave compo-
nents; one describes a short-wavelength excitation decaying
in two spatial directions and another one describes a long-
wavelength mean flow generated by the short-wavelength
excitation [29,30,32-35].

In the present paper, we extend the study of Ref. [30] by
investigating, both analytically and numerically, the nonlinear
dynamics of matter waves excited in a disk-shaped BEC with
dipole-dipole interatomic interaction. In order to include the
contribution of the quantum fluctuations beyond mean-field
approximation, the LHY correction term is taken into account
in the GP equation describing the dipolar BEC. By using
a standard asymptotic expansion method of multiple scales
[36], we derive DSI equations that control the nonlinear evo-
lution of two coupled matter-wave envelope components. We
show that the system supports (2+1)D matter-wave dromions
excited from the ground-state background of the dipolar BEC,
which are superpositions of a short-wavelength excitation
and a long-wavelength mean flow. We demonstrate that the
stability of the matter-wave dromions can be enhanced sig-
nificantly by the LHY correction. We also demonstrate that
such (2+1)D nonlinear matter-wave dromions exhibit many
interesting behaviors for collision, reflection, and transmis-
sion when they interact with each other and are scattered by
obstacles. The results reported here are beneficial not only
for a deep understanding on novel physical properties of the
quantum fluctuations (the LHY correction) in BECs, but also
for seeking possible experimental findings of new types of
high-dimensional nonlinear localized excitations in systems
with long-ranged interactions.

The remainder of the paper is arranged as follows. In
Sec. II, we describe the physical model under study. In
Sec. III, we derive the DSI equations, give the dromion solu-
tions, and discuss their stability. In Sec. IV, we investigate the
collision between two dromions, and discuss their reflection
and transmission when scattered by obstacles. Finally, Sec. V
contains the summary of our main results obtained in this

paper.

II. MODEL

We consider a dipolar BEC, which consists of N bosonic
atoms interacting through short-ranged interaction (charac-
terized by s-wave scattering length ay) and also long-ranged
dipole-dipole interaction. The external potential that traps the
atoms is disk shaped, as schematically shown in Fig. 1(a).
R =r —r’ is the separation between two dipoles d; and d,
[located respectively at r = (x,y,z) and v = (x',y, 7)) 1),
with their interaction described by the dipole-dipole inter-
action potential Uyy(R) =[1 —3 cos? 9]/R3. Here, cosf =
z/R, R = |R|, and @ is the angle formed by the vector join-
ing the two interacting particles and the dipole direction.
The disk-shaped dipolar BEC is formed by tightly confining
the atoms in the x-y plane using a strong external harmonic
confinement potential along the z direction, in which the
dipoles (represented by arrows) are polarized at angle o (with
respect to the z-axis) in the x-z plane; see the insets of
Fig. 1(a).

At zero temperature and beyond mean-field approximation,
the dipolar BEC can be described by the (341)-dimensional

(a) (b)

FIG. 1. (a) Dipolar BEC tightly confined in the xy plane by a
strong harmonic confinement along the z direction. Two dipoles
located respectively at position r and r’ interact via the dipole-dipole
interaction potential Uy (R) =[1 —3 cos? 6] /R3, with cos 0 = z/R,
R =|R|, R =r —1'; 0 is the angle between the polarization direc-
tion and the relative position of the two dipoles (i.e., R). Dipoles are
assumed to be polarized in the x-z plane, with a tilting angle o with
respect to the z axis. (b) Intensity of the matter-wave dromion in the
disk-shaped dipolar BEC, which is a localized (2+1)D wave packet
(short-wave component) riding on the crossing point of two antikinks
(long-wave component).

GP equation [20,24,27]

indV _ _h—2v2+v(r)+g W+ gorly I’
» m 3D QF

+gdd/d3r/Udd(l' — )|y, f)|2:|1/f~ e

Here v (r, t) is an order parameter (satisfying the normalized
condition [ d3r|y|* = N); V? = 82/3x> + 82 /3y* + 82 /3z%;
d*r = dx'dy'dz; gsp = 4w h*as/m is the short-ranged (con-
tact) interaction parameter, with m the atomic mass and a;
the s-wave scattering length; gor =~ 32/(3ﬁ)g3Da2/2[1 +
3/2(agq/as)?] is the parameter describing the quantum fluc-
tuations, with agg = puod?m/(127h?) the dipolar length
[20,24,27]; gaa = wod? /(4m) is the parameter describing the
nonlocal interaction, with o the permeability of free space

and d the dipole moment. In Eq. (1), V(r) = im[w? (x> +

¥*) + w?z] is the external trapping potential. Since the BEC
is assumed to be strongly confined along the z direction, we
have w, > w,, where w, and w, are trap frequencies in the
xy plane and in the z axis, respectively.

Notice that in the present system there exist three types
of contributions of interatomic interactions (i.e., the s-wave
interaction, the interaction induced by the LHY correction,
and the dipole-dipole interaction). Since the s-wave scatter-
ing length a; can be tuned by optical Feshbach resonance
[37,38], the term g3p|v/|> can be positive or negative (which
gives repulsive or attractive interactions correspondingly).
The contribution by the quantum fluctuations in the BEC
is represented by the LHY correction term ggr|t/|>, which
is local and can be positive and negative depending on the
sign of a,. The contribution by the nonlocal dipole-dipole
interaction, represented by the term with the spatial integra-
tion gy fd3r’Udd(r — 1) (x’, )|, can also be positive or
negative depending on the angle 6 and the relative position of
dipoles. Notice also that the dipole-dipole interaction is not
only anisotropic but also nonpositive definite. For example,
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Usju(R) = 1/R3 when 0 = /2 (i.e., cosd = 0); Uzg(R) =
—2/R3 when 6 =0 (i.e., cos6 = 1).

For the convenience of the following calculations, we in-
troduce the dimensionless variables t = ot ¥ = ¢(N/I2)'/?,
{=@Lyna) =6y D/k, as=al, and au = dal..
Here 79 =ml?/h, with [, = /li/(mw;) the harmonic-
oscillator length in the z direction. Then Eq. (1) is cast into
the dimensionless form

9 1. .
if = [—§v2 +V(C)+ 4raN|¢g|> + WN32 ¢
1

+3Nagq / d*t'Uga(C — E’)|¢(Zﬁr1>|2}¢, )

where V2 = 9%/3x3 + 3%/dy? + 82/3z3, d’¢ = dxidy,dz,
V(©) = 375l0] (i + yD)+ w2zi] = Vi, y)+ Vy (21), and
W =12 /7?1 + 3(a4a/as)?/2].

Since the axial trapping potential has been assumed
to be strong, the motion of wave function ¢ in the
71 direction is frozen into the ground state of the har-
monic potential V., (z;) = tjw?z]/2. Thereby we can make

the approximation ¢(E, 1) ~ (P, t))po(z1), where ¢o(z1) =
(1/Ym) exp(—zf /2) is the ground-state wave function of
the potential V (z1) and ¢(p, 1) [p = (x1,y1)] is the two-
dimensional (2D) wave function in the x;-y; plane. After
multiplying ¢y (z;) and integrating over z;, Eq. (2) is converted
into the effective (2+1)D GP equation

KL 1. o
it = [_zvi + b+ Volpl> + wilgl* + walel’
1

+g / d*p'Usn(p — 5/)|¢<5/)|2}p, 3)

where d%p’ = dx|dy|, b=ml’w?/4+ 1 /(4mi2), Vy=
Lol @}, wy = 2v/27Nas, wy = N¥2 /275 87145371 +
%(szd /ds)?] (a nonlinear parameter characterizing the
quantum fluctuations, called the LHY parameter below), and
g =3a44N. Uyp(p — ,5’) is calculated in momentum space by
using the convolution integral, as done in Refs. [39—41]. The
dipole at position (x, y;) polarizes at angle « to the z; axis
in the x;-z; plane [see the inset of Fig. 1(a)]. The constant
b in Eq. (3) can be removed by using the transformation
o(p, 1) = @(p,t;)e” ™" Then we have

9y 1o =
i _ [‘zvi + Volp1 + wilel + walel?

+g / d*p'Usp(p — p”>|go<5/>|2}¢. C)

The model described above is quite general, valid for any
dipolar BECs trapped by a disk-shaped potential. Here we
take the %Dy BEC [24,42] as an example to facilitate the cal-
culation and discussion given below. The system parameters
are given by d = 10 ug = 9.27401x 107> Am? (magnetic-
dipole moment), po = 4w x 1077 N/m?, aqq = 132.7ay =
7.02x10~° m (dipolar length), a; = 100ay = 5.292x107° m
(scatter length), w, =2mwx62.6 Hz (trap frequency),

I, =45mayy >~ 1 um (harmonic oscillator length in the z
direction), and 1y = 2.5 ms.

III. AMPLITUDE EQUATIONS, MATTER-WAVE
DROMIONS, AND THEIR STABILITY

A. Amplitude equations

We now investigate the weak nonlinear excitations in the
system based on the effective GP equation (4). Note that each
term of the three nonlinear terms in Eq. (4) can be either
positive (repulsive) or negative (attractive). Thus, generally
speaking, the whole nonlinearity in Eq. (4) may be positive
or negative, depending on the signs and relative magnitudes
of wy, wy, and Usp(p). By taking N = 2x10° and @ = 0 («
is the titling angle of the dipoles with respect to the z axis),
and using the system parameters given in the previous sec-
tion, we can obtain w; > 0, w, > 0, and Upp(p) > 0. In this
situation, the whole nonlinearity is repulsive and hence the
system supports dromion solutions. Moreover, we assume also
that the transverse trapping frequency w; is small (i.e., the
disk radius is large). This means that the transverse trapping
potential V;| 5% in Eq. (4) plays no significant role if one is not
interested in the case for dromions excited near the boundary
or interacting with the boundary of the BEC. Hence, we shall
neglect the small transverse trapping potential in the following
calculations. Under such assumptions, the ground-state solu-
tion ¢ of Eq. (4) is a uniform one, i.e., go = up exp(—iut;).

Here 11 = ul[w; + uows + g [ Uan(p)d?p], with uy a con-
stant.

To study the soliton phenomenon in a complicated
nonlinear system, a convenient method is to derive the
amplitude equations [like the DS equations (9a) and (9b)
obtained below] that govern the spatial-temporal evolution
of the envelopes of nonlinear excitations by using asymp-
totic expansions. Such a method is powerful and has been
widely employed in nonlinear wave theory [29,36]. Here,
to investigate the dromion excitations generated from the
ground-state background ¢ of the dipolar BEC, we apply
the method of multiple scales [36] to derive relevant am-
plitude equations. The general solution can be written as
the form ¢ = [ug + @p(x1, y1, 1)1 exp (—iuty), with ¢, denot-
ing the excitation from the ground state. Taking ¢(p, ;) =
P(p, t1)exp [—iut; +i@(p, t1)], Eq. (4) becomes

aP+w> v~+1v2~ 0 (52)
—_ . — =0, a
an grave

g 1o ! =12 4
P— — —V?P — uP + -P|V P

on 2 7 +2 Vo™ + w2

+P / R(p — p)P*(0)d’p' =0, (5b)
where 9 = (x1,y1), P = (x],))), d*p = dxidy;, and
R(p) = gUxp(p) + wi8(p). To solve Eq. (5), we make the
asymptotic expansions P = ug + €a; + €%ay + €3az + - - -
and @ =ep)+e’pp+ep3+---. Here a; and ¢;
(j=1,2,3,...) are functions of the multiscale variables
0 =px —owt, T= €2, § =e(xi/vg—11), and n = eyy;
€ is a small parameter characterizing the amplitude of the
excitation from the BEC ground state. Substituting these
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FIG. 2. (a)-(f) Coefficients «; (j =1,2) and §; (! =1,2,3,4) in Egs. (9a) and (9b) as functions of the LHY parameter w, for
different wave number of the excitation 8 = 0.1 (dotted red line), B = 0.3 (dashed blue line), and B = 0.5 (solid purple line). (g) Phase
diagram for the existence of matter-wave dromions in the N-g4, plane (e, = aqq/as is relative dipole strength). Here the dashed red
(solid blue) line denotes the boundary between the modulational instability (MI) and the modulational stability (MS) of the BEC ground
state in the presence (absence) of the LHY correction. The existence of the LHY term enlarges the region where the BEC ground state is

modulationally stable.

expansions into Egs. (5), we obtain perturbation equations for
a; and ¢;, which can be solved order by order.

At the first-order approximation (j = 1), we have the solu-
tion

2
ar=i"P A e, (6)
2w
&1 =Ag + (A +c.c). (7)

The linear dispersion relation is given by w = w(8) (B and w
are the wave number and frequency of the excitation, respec-
tively), with
o =[18* +BRB) + 2wauip?]. ®)

Here R(B) is the Fourier transform of R(%). A; and A, are
respectively the amplitude (envelope) of the short wave and
that of the long wave (mean flow), both of which are functions
of the slow variables &, n, and 7, yet to be determined.

Going to the third-order approximation (j = 3), we obtain
the DS equations describing the interaction between the long
wave Ag and the short wave A :

24, 924, 3142
A= — =—a , (9a)
9E2 a2 oE
24 (s ” +35 ” A; + 8314, 2A 5.4, 240
i— — — =— —_—.
Py 1ggz T o ) ekl A
(9b)

In these equations, the terms with the second-order derivatives
92/9£% and 98%/9n* describe the dispersion and diffraction
effects, and the term |A;|?A; describes the nonlinear effect of
the system. From Eq. (9a), we see that the self-interaction of
the short-wave component (the term on the right-hand side
of the equation) A; supports the occurrence of the long-wave
component Ag; however, the long-wave component A, has
a backaction to the short-wave component A;, which is re-
flected by the term on the right-hand side of Eq. (9b). The
detailed derivation of the DS equations (9a) and (9b) and

explicit expressions of their coefficients «; (j =1, 2) and §;
(I =1, 2,3, 4) are presented in Appendix A.

Before proceeding, we give a simple discussion on the
role played by the LHY correction [characterized by the
LHY parameter w, in Egs. (4) and (5)] to the coefficients
of the DS equations (9a) and (9b). Shown in Figs. 2(a)-2(f)
are coefficients o; (j=1,2) and § (I =1,2,3,4) in
Egs. (9a) and (9b) as functions of the parameter w, (the
strength of LHY correction), for different wave number of
the excitation from the ground-state background of the BEC.
The dotted red line, dashed blue line, and solid purple
line in the figures are for g = 0.1, 0.3, and 0.5, respec-
tively. We see that these coefficients display the following
characters.

(1) o1 () is decreased (increased) as w, grows; o, has a
weak dependence on S, but ¢ is nearly invariant when g is
changed.

(i1) 8; is reduced as w, increases, while §, is increased if
wy is increased.

(iii) Both §3 and 84 decrease when w, increases.

These results tell us that the coefficients in the DS
equations (9a) and (9b) have strong dependence on the LHY
correction of the system; moreover, these coefficients are ad-
justable, providing a flexible way to manipulate the system so
that stable matter-wave dromions are possible, as explained in
the following section.

B. Matter-wave dromions and their stabilities

Now we investigate possible high-dimensional solitons so-
lutions based on the DS equations (9a) and (9b). As mentioned
above, due to the anisotropic and nonpositive definite dipole-
dipole interaction, the high-dimensional solitons in dipolar
BECs are generally unstable. However, under some condi-
tions, the dipole-dipole interaction can be made isotropic and
has a definite sign, and hence the system can support stable
solitons. Based on the assumptions given at the beginning of
the last subsection, the nonlinearity of the system is repul-
sive isotropically. In this case, the ground-state background
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FIG. 3. Matter-wave dromions in the dipolar BEC obtained by numerically solving the DS equations (9a) and (9b) for different times
T =0,1,2,3,4, respectively. The data in the figure are normalized to 1, all of which share the same color bar. (al)—(el) The distribution of
the short-wave component |A;|? as functions of £ and 7 in the absence of the LHY correction (i.e., the LHY parameter w, = 0). (a2)—(e2) The

same as (al)—(el) but for the long-wave component |A|?. (a3)—(e3) The distribution of the short-wave component |A

1|? as functions of £ and

7 in the presence of the LHY term (i.e., wy = 472.8). (a4)—(e4) The same as (a3)—(e3) but for the long-wave component |Ag|?. These results
show that the LHY term can stabilize the dromions in the dipolar BEC greatly.

of the dipolar BEC is modulationally stable under the action
of perturbations; the system allows the existence of dromion
excitations that are excited on the ground-state background
[30].

In order to determine the parameter domain for the exis-
tence of dromions, a modulational instability (MI) [43—46]
analysis is carried out. Figure 2(g) shows the numerical re-
sult of the MI analysis, in which the phase diagram for
the existence of dromions is illustrated in the N-g4, plane
(€44 = agq/as is a parameter characterizing the relative dipole
strength). In the figure, the dashed red (solid blue) line is the
boundary between the MI and modulational stability (MS) in
the presence (absence) of the LHY correction. We see that the
domain in which the MS occurs (i.e., the modulation of the
BEC ground state is stable) is increased by the existence of the
LHY correction [represented by the parameter w, in Eq. (4)],
which means that the the LHY correction by the quantum
fluctuations can make the existence domain of dromions en-
larged significantly [47]. Note that the effect of the LHY term
on the enlargement of the MS domain for large N is more
significant than that for small N. This is due to the fact that
the nonlinear coefficients describing the contact and dipolar
interactions (i.e., w; and g) are proportional to N, while the
nonlinear coefficient describing the LHY correction (w;) is
proportional to N3/2.

We now present approximated soliton solutions
for the DS equations (9a) and (9b). Using the trans-
formation  0A¢/9& = 8;/(x184)s, Ay = 24/81/(x2d4) 14,
X =& y=n and t,=(o;/81)T, (9a) and (9b)

become

3%s 3%s

9x2 9y ax"2

82|I/t|2
-0, (10a)

N 82+ o + 2ulPu+ 82M+ ul®
l— D —s U ujur+Ssu =K Ka Ul u,
31‘2 ox’2 ay/z 1 8y/2 2

(10b)

with K1 = 1-— 06182/51 and Ky = 2— 4()[133/(05254). To find
analytic solutions, we assume the wave number g is small,
which makes x| and «; play negligible roles. For instance, by
taking B8 = 0.1, one has x; = 0.006 and x, = —0.03. When
taking x1 = k; = 0, (10a) and (10b) reduce into standard DSI
equations, which admit the dromion solution [29]:

32In F
A

with  F = F[n, 2] =1+ exp(m + ny) +exp(n2 +n3) +
y exp(m +nj +m2 +n3), m = (ke + ik)(x' +y)/2 +
(Q +iQ)t, m = + i)y —x)/2 + (o, + iw))t,
Qr = —Zkrki, Wy = —2lrl,', Q,’ + w; = k% + lrz — k12 - llz,
and o = 24/2k1,(y — 1)exp(i¢,). Here k,, k;, I, I;, y, and
¢, are free real parameters. Shown in Fig. 1(b) is the intensity
of the matter-wave dromion by taking k. =1, k; =0.5,
I,=1,1; =05,y =3,and ¢, = 0. In the figure, the hump in
the center represents the localized (2+1)D wave packet (i.e.,
the short-wave component |u|?), which rides on the crossing
p(;int of the two antikinks (i.e., the long-wave component
s=1).

u= %eXP(m +m), s=4
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6

FIG. 4. Dynamical stability of the matter-wave dromion. Shown
are intensity distributions of the short-wave component |A;|> (al)—
(c1) and the long-wave component |Ag|? (a2)—(c2) of the dromion, as
functions of & and n for r = 0, 1, 2, respectively, perturbed by 10%
noise.

A numerical simulation is carried out for checking the
validity of the above approximated solution given above.
Figure 3 shows the propagation of the matter-wave dromion
obtained by numerically solving the DS equations (9a) and

rl_l‘/12—lrl_lr2_1

(b1)

(c1)
o
o

(9b) for different dimensionless times 7 =0, 1,2, 3, 4, re-
spectively, by taking (11) as an initial condition. Illustrated in
panels (al-el) is the distribution of the short-wave component
|A1]? as functions of £ and n; the distribution in Figs. 3(a2)-
3(e2) is the same as that in Figs. 3(al)-3(el) but for the
long-wave component |Ag|>. In the simulation, the system
parameters used are k. = [, = 1.0, and k; = [; = 0.5, with
wy = 0 (i.e., the LHY correction is absent). We see that in the
short-wave component a small side wave packet is generated;
the two antikinks in the long-wave component are broken off
after propagating to some distance. Thus, in the absence of the
LHY correction, both the short- and long-wave components of
the dromion are unstable during propagation.

To see what is the situation for the dromion propagation
when the LHY correction is present, an additional simulation
is made by using a nonzero w,. Shown in Figs. 3(a3)-3(e3)
and 3(a4)-3(e4) are respectively the distributions of |A;|?
and |Ag|> as functions of & and 75, by taking w, = 472.8.
We see that both the short- and long-wave components are
rather robust in the course of their propagations. There-
fore, the LHY correction beyond mean-field approximation
contributed by the quantum fluctuations can stabilize the
matter-wave dromion in the system.

To further check the dynamical stability of the dromion
in the presence of the LHY correction, we have made a

11 = Ibr" = lrl = lr‘? =2

(c2) 0.8
0.6
0.4
0.2
-10 0 10 -10 0 10 -10 0 10
FIG. 5. Collision between two matter-wave dromions, with k;j = kp = =l = —lp =2, 91 =3, y» =3, ¢,, =0, and ¢,, = 0. (al)—~(a3)

[(b1)—(b3)] Intensity profile of the short-wave component |A, |> (long-wave component |Ag|?) for k,; = k,» = I,; = l,, = 1, which are taken to
be functions of £ and n for t = 0, 1, 3, respectively. The collision between two dromions is inelastic. (c1)—(c3) [(d1)—(d3)] Intensity profile

of the short-wave component |A, |?

(long-wave component |Ao|?) for k,; = k,» = I,; = l,, = 2, which are taken to be functions of & and 7 for
T =0, 1, 3, respectively. The collision between two dromions is elastic.
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numerical simulation on the DS equations (9a) and (9b), by
adding 10% noise into the initial condition of the dromion.
Shown in Fig. 4 are intensity distributions of the short-wave
component |A; |2 [Figs. 4(al)—4(c1)] and the long-wave com-
ponent |Ag|? [Figs. 4(a2)—4(c2)] of the dromion, which are
taken to be functions of & and 5, for the dimensionless time
7 =0, 1, 2, respectively. One sees that the dromion is quite
stable during propagation.

In passing, we indicated that it is possible to experimentally
observe the matter-wave dromion predicted here by using
a Bose-condensed atomic gas with dipole-dipole interaction
(such as '®*Dy [24]), confined in a disk-shaped trap. By setting
the system parameters described at the beginning of Sec. IIT A,
one can realize the condition of repulsive interaction. Then, by
making the system work at the modulationally stable region of
the ground-state background, and using an initial excitation
prepared by an imprinting technique [5], one can excited
the dromion in the disk-shaped dipolar BEC and observe its
propagation in the system.

IV. COLLISION, REFLECTION, AND TRANSMISSION
OF THE MATTER-WAVE DROMIONS

A. Collision between two dromions

To have a further understanding on the physical property of
the matter-wave dromions described above, it is of interest to
explore their behaviors of collision, reflection, and transmis-
sion. To investigate the interaction between dromions, we as-
sume that the initial condition of the system is a superposition
of two dromion solutions, each of which has the form of (11),
ie. ulmo =Y 71  0/FIm& +d;.y +d)). mG' +d;.y +
dplexplm(x' +d;,y +d;) + m(x' +d;, y' + d;)]. Here the
parameters are chosen to be kj =kp = —Il;1 = —Ilp =2,
vi =y =3, ¢, =0, and ¢,, = 0; in addition, we choose
d) = —4 and d, = 4, which describe the positions of the first
and second dromions, respectively. With the function F' given
here, the initial condition for s|,—¢ can be obtained by the
second expression of (11).

Shown in Fig. 5 is the result of the collision between
the two dromions through numerically solving the DS
equations (9a) and (9b) in the presence of the LHY correction.
Figures 5(al)-5(a3) illustrate the intensity profile of the short-
wave component |A;|? (before, during, and after the collision)
for k.1 = k,» = 1,1 = I, = 1, by taking it as a function of &
and n for T =0, 1, 3, respectively; Figs. 5(b1)-5(b3) show
the corresponding result for the long-wave component |Ag|>.
We see that, after the collision, though the long-wave compo-
nent |Ag|? can keep its shape nearly invariant, the short-wave
component |A;|? is split into four parts. Thus in this case the
collision between the two dromions is inelastic. The physical
reason for the occurrence of such an inelastic collision is
the following. Since k,; and /,; (j = 1,2) are small, each
part of the short-wave component |A;|?> has a large spatial
width, and hence the diffraction effect is weak and cannot
balance the nonlinear effect in the system. In addition, the
long-wave component |Ag|> (formed by the intersection of
the four antikinks) provides an attractive force to the short-
wave component |A;|2. At the four intersections of |Ay|?, the
attractive force is strongest, which focuses the energy of |A; |>

—-10 0 10

—-10 0 10
3

-10 0 10

FIG. 6. Matter-wave dromion scattered by an obstacle (denoted
by the white circle). (a) k; = [; = 5: the dromion passes the obstacle
without large deformation for large incident velocity. (b) k; = [; = 2:
the dromion can pass the obstacle but with drastic deformation for
intermediate incident velocity. (c) k; = /; = 1: the dromion is par-
tially reflected and partially transmitted after being scattered by the
obstacle for smaller incident velocity.

into the four intersections and thus results in the appearance
of four pulses in the distribution of |A;|>.

Nevertheless, if k.; and [,; (j =1, 2) are increased, the
outcome of the two-dromion collision will be changed dras-
tically. Shown in Figs. 5(c1)-5(c3) are the intensity profiles
of |A|? for k,y =k, = l,; = I, = 2, by taking it also as a
function of &€ and n for t = 0, 1, 3, respectively; Figs. 5(d1)-
5(d3) give the corresponding result of |Aq|%. One sees that, in
this situation, the collision between the two dromions is very
robust and hence can be taken as an elastic one. The reason is
that, for larger k,; and larger /,;, each part of the short-wave
component |A;|* has a smaller spatial width, and the diffrac-
tion effect is increased and can balance the nonlinear effect
in the system. Thereby, the two pulses of |A;|* can keep their
wave shapes after their collision. However, the propagation
directions of the two pulses are changed after the collision.

B. Reflection and transmission of dromions
scattered by impurities

Finally, we investigate reflection and transmission behav-
iors of the dromion numerically when it is scattered by an
impurity. In the simulation, we assume that the impurity can
be described by a repulsive Gaussian potential with the form
V=W exp[—(%‘2 + nz)/4], with parameters given by V = 3.
Shown in Fig. 6 are numerical results of the scattering by the
obstacle (denoted by the white circles) for different incident
velocities of the dromion, controlled by the parameter k; and
I; in the approximated solution (11).

Figure 6(a) shows the case of the dromion before (the
left panel), during (the central panel), and after (the right
panel) passing the obstacle, with a large incident velocity (i.e.,
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ki = 1; = 5). We see that the dromion is rather robust, i.e.,
it can pass the obstacle without large deformation. For an
intermediate incident velocity (k; = [; = 2), the dromion can
pass the obstacle, but with a drastic deformation and a very
small reflection, which is illustrated in Fig. 6(b). However, for
a small incident velocity (k; = [; = 1), the dromion is partially
reflected and partially transmitted after being scattered by the
obstacle; see the result given by Fig. 6(c).

V. DISCUSSION AND SUMMARY

The asymptotic reduction used in Sec. III A for deriving
the DS equations (9a) and (9b) requires that the Fourier trans-
form of U,y exists, which is the case for the dipole-dipole
interaction considered here. We stress that such an asymptotic
reduction is one of the examples for general processes, and it
can be generalized to other types of atom-atom interactions as
long as the Fourier transform of the kernel Uy, exists.

The above analysis shows that the DS equations (9a)
and (9b) describing the weak nonlinear matter-wave ex-
citations can be simplified into DSI equations. Since in
high-dimensional soliton theory DSII equations are also of
much interest [29], one may ask the question whether or not
the DSII equations can be obtained in the present dipolar
BEC. However, after analyzing possible parameter domains,
we find that amplitude equations for the system under our
consideration here cannot be reduced into the DSII equations.

On the other hand, the LHY correction can be very
different depending on the relevant settings and space dimen-
sionality. It can be cubic, quadratic [48], or a complicated
logarithm form [49]. Here we consider the simple cubic form,
which is obtained by using a local density approximation in
three-dimensional space. An application of our paper to cases

J

1.390(,7?, t)
o

1~2 > 2 2 ~iN 2 3
= [—EVL-F /dCR(C = Ole(EHI” + wale| }p,

with different LHY correction terms will be interesting but is
beyond the scope of the present paper.

In conclusion, in this paper we have investigated the weak
nonlinear dynamics of (241)D matter waves in a disk-shaped
dipolar BEC when quantum fluctuations are taken into ac-
count. By applying the method of multiple scales, we have
derived the DSI equations governing the nonlinear evolution
of matter-wave envelopes. We have shown that the system
supports (241)D matter-wave dromions, which are superpo-
sitions of short-wavelength excitation and long-wavelength
mean flow. We have found that the stability of the matter-wave
dromions can be largely enhanced by the quantum fluctuations
described by the LHY correction. We have also found that
such dromions possess many interesting characters for colli-
sion, reflection, and transmission when they interact with each
other and are scattered by obstacles. The results reported here
are beneficial not only for understanding the physical property
of the quantum fluctuations in BECs, but also for finding new
nonlinear localized excitations in systems with long-ranged
interactions experimentally.
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APPENDIX A: DERIVATION OF
THE AMPLITUDE EQUATIONS

In this Appendix, we give the detailed derivation of the
amplitude equations based on the following equation:

(AL)

where p = (x1,y1), R(p) = gUsp(p) + w18(p) with w;, w,, and g characterizing the contact interaction, quantum fluctuations,
and the dipole-dipole interaction. Letting ¢ (0, t1) = P(P, t1) exp [—iut; + i@(P, t1)], with u = uOR(O) + wzuo and uy a con-

stant, we obtain

aP 5 1 2.
— +VP-Vo+ =Vp=0, (A2a)
8[1 2
8_(2_1 2p l 712 4 2 NP2 ANAZ N —
Pal‘ ZV P—uP+ 2P|V(,0| + woP"+P | R(p— p )P (p)d p =0. (A2b)
1

Following the idea of the method of multiple scales [36], we make the asymptotic expansion P = uy + €a; + €2a, + €>a3 and
P =€p+ 2Py + 63¢3 Those variables are the functions of 8 = ,3x1 —oty, T = €’*ty, € = €(x1/vy — 11), and n = €y,. Thus

) a

wehave——,Bag 2L — ¢l and L =—a)——e—+e

v as dy| an’ ot 0

(A2b), we obtain
Baj 1 2 82¢j

—. Substituting the above expansion into Egs. (A2a) and

05y T3P e = (A3
1 282aj >, > 00; 3
—5,3 W+2 R(¢ )ajdg‘—wu0¥+3W2u0aj=,3j, (A3b)
Jj=1,2,3,.... By eliminating a;, we get the closed equation for ¢;:
84¢, 32¢, JE - - ) 8,31 B? 82aj
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The expressions for o; and §; are respectively given by

w=l A (ASa)
0 da; 92 1 92
w =t - ot S ME LR g S (ASb)
3 30 30 v, 9008 27 T 962
:8 82611 3¢1 3¢1 1 ) 8¢1 2 f R _ 2[ 2 aal )
T 9E EY ) — ] -2 R dta; —2 R oa d
o5 v, D09 + up T +oar— = Suf| o uy | R(Oardia; —2u | RE)| w 7 Ly, 20 - :

— ug / R(D)aldl — 6Wauda?, (A5c)

3612 8a1 8a1 8¢>2 1 8¢1 1 2 3 ¢1 3¢1 3612 1 3611 uoﬁ 82¢2 1 82¢)1
a3=————ﬂ— /3— —— | ;B a— — ﬁ— — — SUy——
aE ot v, 3 2 20 v, 0 v, 903 2
uy ¢y 1 2070, 2B 3%¢
- = , A6
202 92~ 2" (’3 067 g 960¢ (A62)

B3 = w 2%4‘1 _+¥

g 0 ¢ 0 - - - -
_ uoﬁz%% %%% — 4W2(uoa? + 3u(2)a1a2) — 2u0/R(§)a1d§a2 — 2u0/R(§)a1a2d§

dE ot 202 2 30

09 (3¢2 3¢1>
2o " v 0008 | 207 987 2

NI NLIVL R P

/R(Z) 20w 2 4w, 2% 4 ay) 4 @ |az /R( urlat 22 oy, 20
—a upl wi— + wa— +a a —u, wr —— + 2w wy ——
1 o| w1 oF 2 on 2 1 0 ¢ 1 852 250 1 285317

9 day] -
2w 222 40w, 22 4z, (A6b)
0 an

1. First-order solution

We now solve Eq. (A4) order by order. At the first-order approximation (j = 1), we have the equation

94 8
- 4 89‘121 35521 05 /R(C) =3 dg =0, (A7)
3

where b = §W2“(3J B% — w?. Its solution is of the form
¢1 ZAO +A]€i0+A_1€7i0, (AS)

where Ay and A, are, respectively, the amplitude (envelope) of the short-wave and that of the long-wave (mean flow) component,
both of which are functions of the slow variables &, 1, and 7, yet to be determined. The solution of a; reads

2 2
a; = P Al — °’3 i — jc,Are? +c.c. (A9)
o)
Here, the linear dispersion relation is given by
1/2
o = o(p) = [38* + ugBRB) + Fwaus 7] (A10)

with I?(ﬂ) being the Fourier transform of R(p) = gUsp(p) + w18(p).

2. Second-order solution

At the second-order approximation (j = 2), by substituting the above first-order solution into Egs. (A5b) and (A5c) we get

0A 0A; . _ )
oy = l<C] — %)( agl 10 aé:] e—lb‘) _lCIﬁ (A2 2i6 A%e—zﬁ)’ (Alla)
c 2c1u2 dR(B) \ (9A, ,, A, _, . o
B = (uo — ;—'B — % 5 )(8—&_1619 + 8_?,316 ‘9> (6uéW2 + 2upR(B) + uOR(Zﬁ))cl(A2 20 +A%e 2‘9)
g g
2 5 5 21412 Ao
— (12MOW2 + 4MOR(ﬂ) + 2M0R(0))C1 |A|1 + u()g
0AL 4y, A1 i A0 4 2,200 940
= — ! Y+ Ale™ A —_— Allb
/321(856 +8§ + Bn(A7e™ + ) + BaslAi)? +u08$ ( )

024214-9



ZEYUN SHI AND GUOXIANG HUANG PHYSICAL REVIEW E 107, 024214 (2023)

where R(B) is the Fourier transform of R(5). Then the right-hand side of Eq. (A4) reads
A1 4 0A, _ )
£2 = llz]a—gle — ll 1@6 + il 2A - ilzzA%e_zw, (A12)
where L, = 3¢ 8% /ug + 3ugc1 B*R(2B) + Jufc1 B*Wa + 2wPaa /ug. The solvability condition needs /; = 0, and we hence have
=B + 2uoBR(B) + 3uiWa B + u0ﬂ2 dR)| Therefore, the solutions of ¢ and a» are given by

1122 (AZ 2i6 A%e—Zie)

=— . , Al3
& 4B% + 6Woug B% + 4ul B2R(2B) — 4w? (A1)
Ao A
a) = a20|A1| + 6121@ + |:6122—$1€ + ay A2 26 4+ c.c. ] (A14)
where  ax = gpdts. an = et an = (8 — o) = 5 IEAPR(B) + JugWap® — ug VRO =
iy __ P 3
~ e apRep ae i 4 = =5 om + 5c1).

3. Third-order solution

At the third-order approximation (j = 3), by substituting the above first- and second-order solutions into Eqs. (A6a) and
(A6b) we have

Uuo 82A0 up 82A0 1 ,36‘1 3|A1|2 . 0A 1 32A
Ol3=<021_2_v2)____+ a20_§,32a22__ + _lcl_l__“_1
8

9E2 2 o’ ve ) 0F ar 2 Vanp?

+ L0 — 30382141 PAL + (2anp? + S8 )4, 220 4 (4 — 20 A o + () fce.,  (Al5a)
5 (@ 23 1I7A, 5921 v, i 85 22 ) e .C.,
iCl 82A1 8A1 8A 0 A 2 i0 2i0
3 = [78_712_ a +1H1A1 85 +lH2 352 +lH3|A1| A1i|€ +()€ 4+ c.c., (Ale)
where H, = ¢; — Ray1cuidWs + an o — ﬁv—? + 2c1upan [R(0) — 2R(B)], H, = 2vz + a”ﬂ + udey ddlfs(zﬂ) + M(Z)azz%;ﬁ),

Hy = 12Waugcy (azsug — azoug — ¢}) + (a0 — az3)w — % + 2cymw — 2B%mug + 4c1u0R(ﬂ)(a23 — az) + 2upci1anR(2B) +
2¢1upaxnR(0) + ¢3[2R(0) — R(2B)]. The right-hand side of Eq. (A4) reads

o 9%A 9%A 1 d|A,|?
L3 = [2uoR(0) + 2W2u3]|:<021 - %)—O e Y ( 20 — —,3 an — @)i}
2

0&2 2 9n? Vg 0&
0A, w? B\ %4, 2w? Uo w 9%A, w? 2
—2iw— — — -—|-—H -3 — 2 )1A24
—i—{ o= (,82 + — e + e an 27 ” 852 (azo a3) o 113 |A117Ay
2w ary Clﬂ aAO i0
hLat I —H A — Ll Al6
+|:Mo,32< B* + o il 185 (A16)
The solvability condition at this order gives the equations for Ag and A;:
U 82A0 Uo BZAO Bei\ 1A, |2
2\ =_22" - - )—=0, Al7
(6121 2U§) 02 2 o + | ax ,3 an v, ) oE (Al7a)
202 (BN DA ey + [ 22 (e 4 L =0 (AT
=2iv— — | = + — — ) - = — =
T x4 ) a2 T g2 S PPy’ Vg T e

where K| = [%(azz 2v2) — ﬂHz] and W) = (“’ (aro — 3ar3) — %H3)' After simplification, the above equations become
%Ay 3%Ag 3A1|?

_ —0. Al8

T T o +a oF (Al8a)
.aAl 82A1 8 A] aA

— 4+ 46—+ 65 53|A1|°A S4A1— =0, A18b
18r+]8§2+ 82+3||1+4]8§ ( )
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where

1
=" = " . (Al%
! 22R(0) + 3Woid V2 (Al9a)

2 1
oy = <6lzo - —ﬂ an — &> (A19b)
uop Vg
5= L [2 M) _2y (A19¢)
YT T u0ﬂ2 a2 2v§ U 2P
1 (0* B
Hh=—|—+—), A19d
2 Zw(ﬂz + 2 ) ( )
1 [a? w
83 = ——| —(ax — 3ax) — —H; |, (A19e)
2w \ ug Uo
1 [ 202 (an ,  cB w
Oy = —— - — ) - —H;|. Al19
4 2w|:uoﬂ2< 2 pr Vg > ug ]] (A19D)

APPENDIX B: MODULATION INSTABILITY

The plane-wave (i.e., ground state of the BEC) solution of
Eq. (4) for Vy = 0 reads

@(B, 1) = uge™"", (B1)

with u = u%[wl “+ upwy + gff UZD(E)dzé‘] and uy=
1/(ffd*¢)!/?. The MI of this plane-wave solution can
be analyzed by assuming

P(p. 1) = [uo + 1P PN 4 ghe PIto nyminn (D)

where a; and a, are small complex amplitudes characterizing
the perturbation to the ground state, B = (B, B) is the wave
vector of the perturbation in the x;-y; plane, and o is the
growth rate of the perturbation.

Substituting (B2) into Eq. (4) and keeping only linear terms
of a; and a,, we get the expression of the growth rate:

o = —p*1B% + Judwr + wdwy + gudUop(B)],  (B3)
with
5 242 5 5
Usn(B) = “T_”[F”(ﬁ/ﬁ) sin®(@) + FL(B/+/2) cos*(a)].
(B4)

Here B = \/B? + B3, Fj(B)=3/m 2 exp(BPerfc(B)/B — 1,

and FL(B) =2 — 3 /7B exp(B?)erfc(B), with erfc the com-
plementary error function. For « = 0, the growth rate o is
independent of the propagation direction of the perturbation,

RS
|
---eqqa=1.8 T
——-gqq = 1.91 :
-10 —&d =2 o
0 1 2 3 B 4 5

wave number (3

FIG. 7. —o? as a function of wave number 8 when N = 2x10°,
for different relative dipolar strengths e,, = ayy/as = 1.8 (dotted
black line), 1.91 (dashed red line), and 2 (solid blue line), respec-
tively. MI happens first at the critical wave number S, = 3.5 when
44 reaches its threshold &5, = 1.91.

while for a # 0, it relies on the propagation direction and
becomes anisotropic.

Using I, = 45may, and the relative dipolar strength 45 =
aqq/as, (B3) becomes

221 1

24 2Ne~! 2

- — 2N,

B { B+ 15, ugNe,, + 510 Uop(B1, B2)
2 o/ 525512 3 32

+ 64 37 (457)~ 1+§£dd U\’

(BS)

Shown in Fig. 7 is —o? as a function of the wave num-
ber B by taking N = 2x10°. The dotted black line, dashed
red line, and solid blue line are ones for the relative dipolar
strength e,y = agq/as = 1.8, 1.91, and 2, respectively. One
sees that the MI starts to occur at the critical wave number
B = B = 3.5, for which the corresponding threshold of the
relative dipolar strength is given by g4 = &5, = 1.91. The
region with blue color in the figure is the one where MI
appears.

Based on such calculations, the phase diagram for the ex-
istence and absence of MI in the N-¢,, plane can be obtained,
as shown by Fig. 2(g) of the main text. In the region of
modulational stability, the system supports the existence of
matter-wave dromions, while in the region of modulational
instability, the excitation in the system can undergo a sponta-
neous symmetry breaking and hence a self-organization into
a supersolid crystal will occur [47], which is however a topic
beyond the scope of the present paper.
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