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Drift of sparse and dense spiral waves under joint external forces
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Many methods have been employed to investigate the drift behaviors of spiral waves in an effort to understand
and control their dynamics. Drift behaviors of sparse and dense spirals induced by external forces have been
investigated, yet they remain incompletely understood. Here we employ joint external forces to study and
control the drift dynamics. First, sparse and dense spiral waves are synchronized by the suitable external current.
Then, under another weak current or heterogeneity, the synchronized spirals undergo a directional drift, and the
dependence of their drift velocity on the strength and frequency of the joint external force is studied.
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I. INTRODUCTION

Spiral waves, clinically also called reentry, rotor, or driver,
are spatiotemporal self-organizing structures formed in a
broad range of excitable systems, such as the classical
Belousov-Zhabotinsky (BZ) reaction [1], CO oxidation on
platinum [2], retina of the eyes [3], and aggregations of Dic-
tyostelium discoideum amoebae [4], and even cardiac tissues
[5], where spiral drift is thought to be a possible underly-
ing mechanism for life-threatening polymorphic ventricular
tachycardia [6–8].

Clinically, high-voltage electric shock is one of the most
effective therapies to terminate fibrillation by resetting electric
activities in cardiac tissues. However, high-voltage electric
shock will cause severe side effects such as myocardial dam-
age [9–12]. To avoid the problems of previous traditional
therapy, less-damage technology has been proposed, such as
eliminating spiral waves by controlling their dynamics. Drift
dynamics of excitable spiral waves have been extensively
studied, especially under the influence of different external
forces, including periodic force [13], illumination [14,15],
heterogeneity [16,17], electric field [18,19], and magnetic
field [20].

Interestingly, Krinsky et al. found that the sparse and
dense spirals may drift in opposite directions induced by the
same advective field [21]. Then Xu et al. and Sridhar et al.
investigated the drift behaviors of sparse and dense spirals
in heterogeneous media successively [16,17], and observed
that the sparse spirals might drift anomalously, i.e., drifting
toward the region with longer spiral rotation period. However,
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especially in cardiac tissues, how to control drift behaviors of
sparse and dense spirals remains largely unexplored.

It has been known that spiral waves may be induced to
drift resonantly by external periodic force, that is, the spiral
adjusts its rotational frequency to an integer multiple of the
external forcing frequency, and executes a net drift along a
straight line. This directional drift of spiral waves subjected
to the external periodic force has been confirmed experimen-
tally and numerically [22–35]. Agladze et al. observed the
resonant drift of spiral waves induced by illumination in a
light-sensitive BZ reaction [13]. Recently, resonant drift of
rigidly rotating and even meandering spirals were studied
numerically by applying both a circularly polarized electric
field and a periodic force [36].

In this paper, we investigate the drift behaviors of synchro-
nized sparse and dense spiral waves under the influence of the
external weak current and heterogeneity. The spiral wave is
synchronized by the external current, which is induced by an
ideal array of electrodes applying periodic anisotropic current
stimulation in cardiac tissue. The array of electrodes has been
proposed as the alternative low-energy technology to control
electrical turbulence [37]. The electrode current we apply in
this work is coupled with the intercellular current [38]. We
find that drift behaviors of sparse spirals are more susceptible
to the changes of the external current, and even can convert
into normal drift from anomalous one. However, dense spiral
drift dynamics are insensitive to external current changes.

II. MODEL AND METHODS

In the presence of external current, the two-variable
Barkley model becomes [39]

∂u

∂t
= ∇2u + u(1 − u)

ε

(
u − v + b

a

)
+ Iex, (1a)
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∂v

∂t
= u − v, (1b)

where u(x, y, t ) and v(x, y, t ) are the transmembrane voltage
(activator) and gate variable (inhibitor), respectively. Param-
eters a and b govern the local kinetics, and ε denotes the
relative time scale between the voltage and gate variable. We
use two sets of system parameters: one is a = 0.55, b = 0.05,
and ε = 0.02 for the sparse spiral wave, the other is a = 1.0,
b = 0.03, and ε = 0.02 for the dense one. The last term in
Eq. (1a) can be specified by the function

Iex(x, y, t ) = − g

[
I0 cos ωet[u(x + 1, y, t ) − u(x − 1, y, t )]

+ I0 cos

(
ωet + 3π

2

)
[u(x, y + 1, t )

− u(x, y − 1, t )]

]
, (2)

where I0 and ωe are the strength and angular frequency
of the external current, respectively. We choose a con-
stant intercellular conductance g = 5. The u(x + 1, y, t ) −
u(x−1, y, t ) represents the intercellular voltage difference be-
tween neighboring cells in the x direction, while u(x, y +
1, t ) − u(x, y−1, t ) stands for the intercellular voltage differ-
ence in the y direction [38]. The external current is spatially
anisotropic, and its strength changes with local intercellular
current and time, so it can synchronize the spiral wave. We
define the recorded activation frequency deviated by less than
0.1% from ωe as a synchronized state, which is similar as
described in [40].

Furthermore, we add the external weak current Iw whose
strength is I1 into Eq. (1a), which is also coupled with the
intercellular current:

∂u

∂t
= ∇2u + u(1 − u)

ε

(
u − v + b

a

)
+ Iex + Iw,

(3a)

∂v

∂t
= u − v, (3b)

Iw(x, y, t ) = −g{I1[u(x + 1, y, t ) − u(x − 1, y, t )]}, (3c)

or with moderate heterogeneities modeled by changing the
parameter ε linearly in the parallel direction:

∂u

∂t
= ∇2u + u(1 − u)

ε

(
u − v + b

a

)
+ Iex, (4a)

∂v

∂t
= u − v, (4b)

ε = ε0[1 + δ(x − x0)]. (4c)

It should be noted that Eq. (3c) has a similar function as
described in [18,41], i.e., a small constant field �e of strength I1

applied along the positive x axis. In this work, the joint ex-
ternal forces are composed of external current Iex and weak
current Iw (or heterogeneities ε). Equations (3) and (4) are in-
tegrated by an explicit Euler method with grids of size 500 ×
500, and no-flux boundary conditions are used. The space
and time steps are �x = �y = 0.1 and �t = 0.002 375, re-
spectively. The midpoint position of the x component of the
coordinates x0 = 25.05 is used.

TABLE I. Frequency ranges of synchronized sparse spirals.

I0 0.05 0.10 0.15 0.20 0.25
P [1.0, 1.08] [0.95, 1.09] [0.91, 1.10] [0.85, 1.12] [0.8, 1.13]
I0 0.30 0.35 0.40 0.45 0.50
P [0.74, 1.15] [0.67, 1.17] [0.6, 1.18] [0.53, 1.20] [0.46, 1.22]

III. RESULTS

Figures 1(a) and 1(b) show the sparse and dense spirals
with no external current, i.e., Iex = Iw = 0, respectively. The
excitation wavelength of the sparse spiral is λes = cτ = 1.4
(c is the velocity of wave propagation and τ is the charac-
teristic duration of the excitation waves for u > 0.5), which
is much less than its spiral pitch λs = 18.1 (λes/λs � 1).
Otherwise, the excitation wavelength of the dense spiral
is λed = 3.6, which is comparable to its pitch λd = 9.9
[λed/λd ∼ O(1)] [21]. The rotation centers (or tips) of these
spirals both execute rigid rotation, and the rotation period is
T0 = 5.389 for the sparse spiral, and T0 = 3.362 for the dense.

Drift behaviors of these spirals induced by weak current
and heterogeneity are studied in detail below. First, we apply
the weak current to these spiral waves, and they are induced to
drift in the opposite directions, as shown in Figs. 1(c) and 1(d).
Next, we apply external current Iex to synchronize the sparse
and dense spirals. It means that the spiral is induced to ac-
commodate its rotating frequency to the frequency of external
current. In Tables I and II, as the strength of external current
increases from 0 to 0.5, we show the ranges of the frequency
ratio P (P = ωe

ω0
, and ω0 = 2π

T0
), with which the external cur-

rent can synchronize the sparse and dense spirals, respectively.
Obviously the sparse spiral is much easier to be synchronized
compared with the dense one. Taking I0 = 0.4, for example,
the effective value of the ratio P is P ∈ [0.6, 1.18] for the
sparse spiral, while it is still very close to 1 for the dense one.

After that, another weak current is applied to the syn-
chronized sparse and dense spirals. In Fig. 2, we show drift
trajectories of synchronized spirals as the parameters of ex-
ternal current (I0 and P) are changed. Obviously, the drift
behaviors of sparse spirals are easier to be affected by the
external current. Most notably, the synchronized sparse spi-
ral may turn its drift direction to the right region under the
influence of a weak current [in Figs. 2(a) and 2(c)]. Neverthe-
less, the drift direction of the synchronized dense spiral only
exhibits a small change, as shown in Figs. 2(b) and 2(d).

Moreover, it is known that scroll waves exhibiting negative
filament tension in a three-dimensional medium may develop
into a turbulent state, and the filament tension coefficient is
directly related to the spiral drift direction parallel to the weak
current in a two-dimensional medium [41]. In this work, if
the drift direction of the spiral wave is consistent with the
positive direction of the x axis, the filament tension is positive,
and if the drift direction of the spiral wave is opposite to the
positive direction of the x axis, the filament tension is neg-
ative. Specifically, here the tension coefficient τe is taken as
τe = vx

I1
, where vx is the horizontal drift speed since the weak

current is along the parallel direction. For the sparse spiral,
as shown in Fig. 3, the filament tension coefficient keeps
negative at I0 = 0.3 no matter what values of the frequency
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FIG. 1. Snapshots of a sparse spiral wave (a) and a dense spiral wave (b) without external current (Iex = Iw = 0). Panels (c) and (d) are the
drift trajectories of sparse and dense spirals induced by the external forces with parameters ε = ε0, I0 = 0, and I1 = 0.001. The arrows denote
the drift directions.

rate P [Figs. 3(a1) and 3(b1)]. As I0 is increased over 0.3, τe

turns positive if P is over a threshold value. But for the dense
spiral, the filament tension coefficient is always positive, and
the drift angle changes trivially with different parameters of
external current (Fig. 4). Negative filament tension is one of
the typical results causing cardiac arrhythmias [42,43]. Under
the influence of the external current, the system can turn from
the negative filament tension to the positive one, thus it is a
possible low-energy method for cardiac defibrillation.

In the following, we study drift behaviors of sparse and
dense spirals in the heterogeneous media, i.e., ε = ε0[1 +

δ(x − x0)], where x denotes the spatial position along the par-
allel direction of the inhomogeneous gradient, and x0 = 25.05
is the parallel midpoint position of the simulation domain.
Fig. 5 shows drift trajectories of the spiral waves which are
induced only by the heterogeneity. The sparse spiral drifts
toward the left region of the higher excitability since a smaller
ε enhances wave propagation, which means anomalous drift
[Fig. 5(a)]. For comparison, the dense spiral drifts normally
to the right region of the lower excitability [Fig. 5(b)] [17].
Then we apply external current to synchronize the sparse
and dense spirals, and after that we study drift behaviors of

TABLE II. Frequency ranges of synchronized dense spirals.

I0 0.05 0.10 0.15 0.20 0.25
P [0.998, 1.001] [0.996, 1.001] [0.993, 1.002] [0.989, 1.003] [0.985, 1.004]
I0 0.30 0.35 0.40 0.45 0.50
P [0.98, 1.005] [0.975, 1.005] [0.97, 1.005] [0.965, 1.005] [0.959, 1.005]

024213-3



LI, LI, SONG, PAN, ZHONG, AND LUO PHYSICAL REVIEW E 107, 024213 (2023)

FIG. 2. Drift trajectories of synchronized sparse and dense spirals induced by the weak current with fixed strength I1 = 0.001. Left column
is for the sparse spirals and the right is for the dense ones. The parameters of external current are changed: (a) and (b) changing I0 but fixing
P = 1, (c) and (d) changing P but fixing I0 = 0.4.

synchronized spirals in the heterogeneous media. As shown
in Fig. 6, when I0 is increased from 0 but fixing P = 1,
the synchronized sparse spirals turn the anomalous drift to
the normal drift quickly in the same heterogeneous medium
[Fig. 6(a)]. Moreover, the drift direction of the sparse spiral is
also sensitive to the frequency of external current [Fig. 6(c)].
On the contrary, drift behaviors of synchronized dense spirals
induced by heterogeneities are still affected not much by the
external current, as shown in Figs. 6(b) and 6(d).

Varying the parameters ε0 and δ but keeping the external
current Iex fixed, we study the effects of heterogeneities on the
drift behaviors of synchronized spirals. By increasing δ but
fixing ε0, as illustrated in Fig. 7(a), the drift speed of the sparse
spiral increases, while the drift direction is almost unchanged.
At increasing ε0 but fixing δ, the changes of drift speed and
direction of the dense spiral are both less sensitive, as shown
in Fig. 7(b).

For comparison, without applying the external current, we
calculate numerically drift speeds and angles of the sparse
and dense spirals in the heterogeneous media by changing δ

and ε0. As shown in Figs. 8(a1) and 8(b1), the drift speeds of
both sparse and dense spirals increase linearly with δ, which
are similar to the observation in Fig. 7(a). Their drift angles
increase slightly. Changing ε0 but fixing δ, we observed that
the drift speeds of sparse spirals change nonmonotonically
with ε0 [Fig. 8(c1)], and the drift angles decrease with ε0

[Fig. 8(c2)]. On the other hand, the drift speeds and angles
of dense spirals increase with ε0 [Figs. 8(d1) and 8(d2)].

Finally, in Fig. 9, we show the drift speeds and angles
of the synchronized sparse and dense spirals by varying the
parameters (P and I0) of the external current but fixing the
heterogeneity parameters. Figure 9(a) shows the parabolic re-
lations between the drift speed V of the sparse spirals and the
frequency rate P of the external current. In Fig. 9(c), obviously
the drift angle of the sparse spirals decreases as I0 is increased,
and is still anomalous for large P and I0 � 0.2. In contrast,
despite the relationships between the drift speeds (angles) of
the dense spirals and I0(P) seeming complicated, the curves
fluctuate within a narrow range, as shown in Figs. 9(b)
and 9(d).
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FIG. 3. Drift speeds and angles of the synchronized sparse spirals induced by the weak current with fixed strength I1 = 0.001. The sparse
spirals are synchronized by the external current with different strengths and frequencies.

IV. THEORY

The weak current or the heterogeneity can induce period-
ical changes in the core size and a directional drift of the
rotating sparse and dense spirals, which results in drifts of
these spirals. In the case of no external current, applying
response function theory [18], we calculate theoretical drift
speeds and angles of the sparse and dense spirals induced by
the weak current, and they are quantitatively consistent with

the numerical results. Taking the spiral waves in Fig. 1, for ex-
ample, the theoretical values of their drift speed and angle are
V = |Ṙ| = 4.193 × 10−3 and θ = −3.059 for the sparse one,
and V = |Ṙ| = 7.895 × 10−4 and θ = 0.729 for the dense
one, respectively. The numerical values of their drift speed
and angle are V = |Ṙ| = 4.198 × 10−3 and θ = −3.045 for
the sparse one, and V = |Ṙ| = 7.909 × 10−4 and θ = 0.716
for the dense one, respectively. Furthermore, according to the
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FIG. 4. Drift speeds and angles of the synchronized dense spirals induced by the weak current with fixed strength I1 = 0.001. The dense
spirals are synchronized by the external current with different strengths and frequencies.

derivation in [41,44,45], one obtains

τe = V

I1
cos θ, (5)

which shows that the sign of the filament tension coefficient is
directly dependent on the drift direction. As shown in Fig. 3,
τe is negative if the drift angle θ > π

2 , i.e., the sparse spiral
drifts antiparallel to the weak current.

We also deduce theoretical drift speeds and angles of the
sparse and dense spirals in heterogeneous excitable media
without external current, and the results are as follows (more
details can be found in the Appendix):

Ṙ = ε0δ

〈
W (1)(ρ, θ,�),

[
− 1

ε2
U (1 − U )

(
U − V + b

a

)]

× ρ
e−iθ

2
|�′=0 [1, 0]T

〉
, (6)
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FIG. 5. Drift trajectories of spiral waves in the heterogeneous media with parameters ε0 = 0.02 and δ = 0.0001; (a) sparse spiral,
and (b) dense spiral.

FIG. 6. Drift trajectories of synchronized spirals in the heterogeneous media with fixed parameters ε0 = 0.02 and δ = 0.0001. The
parameters of external current are changed: (a) and (b) fixing the frequency rate P = 1 but changing the strength I0, (c) and (d) fixing the
strength I0 = 0.4 but changing the frequency rate P. The left column corresponds to the sparse spirals, and the right corresponds to the dense.
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FIG. 7. (a) Drift trajectories of synchronized sparse spirals in the heterogeneous media with fixed ε0 = 0.02 but changing δ. (b) Drift
trajectories of synchronized dense spirals in the heterogeneous media with fixed δ = 0.0001 but changing ε0. The parameters of external
current are fixed as I0 = 0.4 and P = 1.

�̇ = ε0δ(x − x0)

〈
W (0)(ρ, θ,�),

[
− 1

ε2
U (1 − U )

(
U − V + b

a

)]
|�′=0 [1, 0]T

〉
. (7)

The above equations show that spatial and temporal drifts
are proportional to the heterogeneous parameter δ, and the
temporal drift depends on x [46]. The numerical results in
Fig. 5 verified the theoretical predictions. The theoretical
values in the heterogeneous media of their drift speed and an-
gle are V = |Ṙ| = 3.552 × 10−3 and θ = 2.074 for the sparse
one, and V = |Ṙ| = 2.121 × 10−4 and θ = −0.475 for the
dense one, respectively. The numerical values of their drift
speed and angle are V = |Ṙ| = 3.440 × 10−3 and θ = 2.011
for the sparse one, and V = |Ṙ| = 2.113 × 10−4 and θ =
−0.531 for the dense one, respectively. In all cases, numerical
results show the quantitative agreement with the theoretical
results. If one takes the external current into consideration,
the derivations of Eqs. (6) and (7) are still applicable since the
spiral is still in rigid rotation, only changing W to W̄ [40].

Moreover, the numerical drift speeds and angles of the
sparse and dense spirals in the heterogeneous media by chang-
ing ε0 and δ are shown in Fig. 8. The drift speed is linearly
related to the change of δ, whether for sparse or dense spi-
rals, which is also in good agreement with the relationship
described by Eq. (6). But for ε0, drift speed and ε0 do not
conform to the linear relationship. This is because the spiral
wave is sensitive to the change of the parameter ε0. With the
shift of ε0, the rigidly clockwise-rotating spiral wave solution
U(−→r , t ) in Eq. (A3) also changes significantly; that is, the
spiral wave has a large deformation. Therefore, the relation-
ship between speed and parameter ε0 is no longer linear.
Furthermore, for both dense and sparse spirals, drift angles are
determined by both Eqs. (6) and (7). Thus they correspond to
the nonlinear relationship between ε0 and δ.

V. CONCLUSION

In conclusion, we study drift dynamics of the sparse and
dense spirals synchronized by suitable external current under
another weak current or heterogeneity (or heterogeneous me-
dia). It should be noted that the joint external forces used in
our methods can probably be stimulated in other disciplines,
such as optogenetics [14,15] and sonogenetics [47,48], thus
in many ways, our methods of controlling spiral wave drift
can probably be clinically used [38]. However, previous meth-
ods concerning spiral wave drift mainly focused on chemical
systems such as BZ reactions [13,18,19,21,36]. We can draw
the following conclusions. First, the sparse spirals are much
more easily synchronized by the external current than the
dense ones. Moreover, synchronized sparse and dense spirals
both execute directional drift induced by the weak current or
heterogeneity, which is similar to that in [12]. Second, for
sparse spiral waves, the media with negative filament tension
can turn to positive under the influence of the external current,
thus, if one extends the system to three dimensions, it would
not break up into turbulence [41]. Similarly, the anomalous
drift of the sparse spirals in the heterogeneous media can
be changed easily to normal drift after synchronization, so
that wave breaks in regions with longer spiral rotation period
can be prevented. Thus our joint external forces are effective
against “mother rotor” fibrillation, and can work as alter-
native low-energy technology to control electric turbulence.
The proposed two-step procedure makes the spiral wave drift
behaviors richer, and the scientists have more ways to manip-
ulate the drift of the spiral waves. We hope that our findings
can be observed in cardiac experiments.
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FIG. 8. Drift speeds and angles of the sparse and dense spirals in the heterogeneous media. (a),(b) Fixing ε0 = 0.02 but changing δ. (c),(d)
Fixing δ = 0.0001 but changing ε0. The left column corresponds to the sparse spiral, and the right corresponds to the dense spiral.
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FIG. 9. Drift speeds and angles of the synchronized sparse and dense spirals in the heterogeneous media. The heterogeneous parameters
are fixed as ε0 = 0.02 and δ = 0.0001, and the parameters of external current are changed. Panels (a) and (c) show drift speeds and angles of
the sparse spirals; panels (b) and (d) correspond to the dense.

APPENDIX: RESPONSE FUNCTION THEORY FOR
SPIRAL DRIFT IN HETEROGENEOUS MEDIA

To theoretically analyze the drift behavior of spiral waves
in heterogeneous cardiac tissue, we rewrite the Barkley model
in matrix form:

∂tu = F(u, ε) +


D
−→∇ 2

u, ε = ε0[1 + δ(x − x0)], (A1)

where u = [u, v]T , F(u, ε) = [ε−1u(1−u)[u−(v+b)/a],
u−v]T , D = diag(1, 0). The parameter ε has a small linear
heterogeneities gradient in the parallel direction. If only the
first order of Eq. (A1) is considered, the equation turns to

∂tu = F(u, ε0) +


D
−→∇ 2

u + ε0δ(x − x0)∂εF(u, ε0)[1, 0]T .

(A2)
h(u, �r, t ) = ε0δ(x − x0)∂εF(u, ε0)[1, 0]T is the perturbation
in the Cartesian coordinate system. For convenient calcula-
tion, x0 is the center of the computation grids in the x axis
and close to the rotation center of rigidly rotating spiral wave.
In the absence of any heterogeneities, a rigidly clockwise-
rotating spiral wave solution to Eq. (A2) has a convenient
corotating polar coordinates form to analyze the drift velocity

of the spiral:

U(−→r , t ) =
(

U (ρ(−→r − −→
R ), ϑ (−→r − −→

R ) + ωet − �)

V (ρ(−→r − −→
R ), ϑ (−→r − −→

R ) + ωet − �)

)
,

(A3)
where �R = (x0, y0)T is the rotation center of spiral wave, �

is the spiral wave’s initial rotation phase, ωe > 0 is the angu-
lar frequency of spiral wave, and ρ(−→r −−→

R ) and ϑ (−→r −−→
R )

construct polar coordinates at rotation center
−→
R . The spiral

tip is
−→
ζ t ip(t ) rotating around rotation center

−→
R . We choose

the angle between �ζt ip(t = 0) − �R and the x axis as the ini-
tial rotation phase �, which is measured counterclockwise
from the positive x axis. In these corotating polar coordi-
nates, the small perturbation turns to h(u, �r, t ) = δε0[X −
x0 + ρ cos(ϑ )]∂εF(U, ε0)[1, 0]T , the polar angle is given by

θ = ϑ + ωet−�, with
−→
R′ = ⇀

0 and �′ = 0 in the Cartesian
coordinate system.

According to response function theory [46,49,50], the
small perturbation h(u, �r, t ) causing translational and rota-
tional shifts of a spiral acts on the rigidly rotating spirals, and
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we can obtain the drift velocity of spiral waves:

Ṙ(t ) = ε0δei�
∫ t+π/ω

t−π/ω

ωdτ

2π
e−iωτ 〈W(1)(ρ, θ,�), [X − x0

+ ρ cos(ϑ )]∂εF(U, ε0)|�′=0[1, 0]T 〉, (A4)

where R(t ) = X + iY is the complex coordinate of the instant
spiral center, and Ṙ(t ) is the drift velocity. The inner product
〈w, v〉 represents for the scalar product in the functional space
in the spiral reference system (�′ = 0),

〈w, v〉 =
∫

w+(ρ, θ )v(ρ, θ )ρdρdθ,

and W(1) is one of the response functions of the spiral, that
is, the eigenfunction of the adjoint linearized operator corre-
sponding to the critical eigenvalue −iω.

After integration over the spiral wave rotation period, the
drift velocity can be expressed as

Ṙ = ε0δ

〈
W(1)(ρ, θ,�), ρ

e−iθ

2
∂εF(U, ε0)|�′=0 [1, 0]T

〉
.

(A5)

Ṙ can also be written as Ṙ = |Ṙ|ei�, where |Ṙ| is the drift
speed and � is the drift direction.

Furthermore, we also can calculate the rotational frequency
change of spiral wave:

�̇ = ε0δ

∫ t+π/ω

t−π/ω

ωdτ

2π
〈W(0)(ρ, θ,�), [X − x0 + ρ cos(ϑ )]

× ∂εF(U, ε0)|�′=0 [1, 0]T 〉. (A6)

W(0) is one of the response functions of the spiral wave
with critical eigenvalue 0. After integration, one can get

�̇ = ε0δ(X − x0)〈W(0)(ρ, θ,�), ∂εF(U, ε0)|�′=0 [1, 0]T 〉.
(A7)

Substituting F(U) of the Barkley model into Eqs. (A5) and
(A7), we obtain

Ṙ = ε0δ

〈
W (1)(ρ, θ,�), ρ

e−iθ

2

[
− 1

ε2
U (1 − U )

×
(

U − V + b

a

)]
|�′=0[1, 0]T

〉
, (A8)

�̇ = ε0δ(x − x0)

〈
W (0)(ρ, θ,�),

[
− 1

ε2
U (1 − U )

(
U − V + b

a

)]
|�′=0 [1, 0]T

〉
. (A9)

We use the open-source software DXSPIRAL to calculate Eqs. (A8) and (A9) and thereby analyze the drift behavior of the
spiral wave in heterogeneity.
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