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Asymmetric spiral chimeras on a spheric surface of nonlocally coupled phase oscillators
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The spiral chimera state shows a remarkable spatiotemporal pattern in a two-dimensional array of oscillators
for which the coherent spiral arms coexist with incoherent cores. In this work, we report on an asymmetric
spiral chimera having incoherent cores of different sizes on the spherical surface of identical phase oscillators
with nonlocal coupling. This asymmetric spiral chimera exhibits a strongly symmetry-broken state in the sense
that not only the coherent and incoherent domains coexist, but also their incoherent cores are nonidentical,
although the underlying coupling structure is symmetric. On the basis of analyses along the Ott-Antonsen
invariant manifold, the bifurcation conditions of asymmetric spiral chimeras are derived, which reveals that the
asymmetric spiral chimera state emerges via a supercritical symmetry-breaking bifurcation from the symmetric
spiral chimera. For the coupling function composed of two Legendre modes, rigorous stability analyses are
carried out to present a complete stability diagram for different types of spiral chimeras, including the stationary
symmetric and asymmetric spiral chimeras as well as breathing asymmetric spiral chimera. For the general
coupling scheme the asymmetric spiral chimera occurs as a result of competition between the odd and even
Legendre modes of the coupling function. Our theoretical findings are verified by using extensive numerical
simulations of the model system.
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I. INTRODUCTION

Systems of coupled oscillators have been studied for many
years as a paradigmatic model for spontaneous collective
order in the area of nonlinear science. In particular, the syn-
chronization of oscillator networks has been a subject of
continued interest in many contexts of physical, biological,
chemical, and even social systems [1–5].

Recently, much attention has been paid to a hybrid col-
lective behavior in which a population of identical oscillators
could split into two parts, one group with synchronization and
another group with desynchronization, under the symmetric
coupling schemes. Such a fascinating and counterintuitive
state was first discovered by Kuramoto and Battogtokh [6]
and later called the chimera state [7]. As a symmetry-breaking
phenomenon, the chimeras attracted great interest and are
found in networks of coupled oscillators with different di-
mensions and topologies (see the review articles [8–13] and
references therein).

A particularly remarkable chimera is the spiral chimera
reported by Kuramoto and Shima [14,15], which occurs in
two-dimensional arrays of nonlocally coupled oscillators and
consists of a phase-randomized core of desynchronized oscil-
lators surrounded by a spiral wave of synchronized oscillators.
The typical spiral symmetry that appears in the usual spiral
waves with a phase defect at the center is broken for the spiral
chimeras in the sense that in an extended core region the
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dynamics is no longer synchronized [16]. Such spiral
chimeras were found in different topologies of networks,
including a plane [15,17–19] with open boundary condi-
tions, a flat torus [20–23,25], and a spherical surface [24–28]
with periodic boundary conditions. Experimentally, the spiral
chimera state was observed in the chemical oscillator sys-
tem [29,30]. The single-core spiral chimera appears on the
unbounded plane of oscillators, while on the surface of a
sphere and a flat torus the primary spiral chimera states are
represented by the two-core and four-core spiral chimeras, re-
spectively. In particular, the multicore spiral chimeras studied
so far have a reflection-symmetry with the same shape and
size of incoherent cores and little is known about the existence
of asymmetric spiral chimera state. Recently, an asymmetric
spiral chimera state having the moving incoherent cores of
different shapes was observed in numerical simulations of
nonlocally coupled phase oscillators on a flat torus [23].

In this paper, we report on an asymmetric spiral chimera
state that has motionless incoherent cores of different sizes
and study theoretically the driving mechanisms for the
symmetry-broken state. This asymmetric spiral chimera state
exhibits symmetry breaking with an extreme incongruity in
the sense that not only the coherent and incoherent domains
coexist but also their incoherent cores are nonidentical, al-
though the underlying coupling structure is symmetric. To
understand the origin and the nature of asymmetric spiral
chimera, we consider nonlocally coupled phase oscillators
located on the unit sphere. On the basis of Ott-Antonsen
reduction theory [31,32], we reduce our model to a low-
dimensional system and derive the bifurcation conditions for
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the asymmetric spiral chimera to occur. This reveals that the
asymmetric spiral chimera state emerges from the symmetric
spiral chimera via a symmetry-breaking bifurcation. In par-
ticular, for the nonlocal coupling function composed of two
successive harmonic modes, we perform a rigorous stability
analysis to present a complete stability diagram for different
types of spiral chimeras, including the symmetric and asym-
metric spiral chimeras as well as breathing asymmetric spiral
chimera. We find that, for the general coupling scheme, the
competition between the odd and even Legendre modes of the
coupling functions incurs the asymmetric spiral chimeras. Our
theoretical findings are verified by using extensive numerical
simulations of the model system.

II. RESULTS

A. Governing equations

1. Model

We consider a two-dimensional array of nonlocally cou-
pled identical phase oscillators on the surface of unit sphere
S2 as follows:

∂ψ (r, t )

∂t
= ω +

∫
S2

G(r, r′) sin[ψ (r′, t ) − ψ (r, t ) − α]dr′,

(1)

where ψ (r, t ) is the phase of the oscillator at position r ∈ S2

at time t , ω is the natural frequency, and α denotes the phase
shift parameter. The identical frequency ω plays no role in the
dynamics and we can set ω = 0 without loss of generality.

The kernel G(r, r′) denotes the nonlocal coupling function,
which represents the strength of interaction between oscilla-
tors and is assumed to depend only on the great circle distance
γ (r, r′) > 0 between two positions r and r′ on the unit sphere
S2. Then the function G can be expanded via the Legendre
polynomials P�:

G(cos γ ) = 1

4π

∞∑
�=0

κ�P�(cos γ ),

where the coefficients are given by κ� = 2π (2� +
1)
∫ 1
−1 G(x)P�(x)dx.

In this work, we consider the so-called balanced coupling
with κ0 = 0, which gives

∫
S2 G(r, r′)dr′ = 0. Such a balanced

coupling schemes exhibit both attracting and repulsive inter-
actions depending on the distance between oscillators and are
typical in neuroscience, referred to as the Mexican-hat-shaped
coupling functions [33]. It is known that the zeroth coefficient
κ0 plays no role in the existence of spiral chimera states and
there exists no fully synchronized state in the system (1) with
the balanced coupling function [27]. Further, retaining the K
terms in the Legendre series, we obtain the coupling function
to be considered in this work as following:

GK (r, r′) = 1

4π

K∑
�=1

κ�P�(cos γ ). (2)

Note that, without loss of generality, one of the coefficients κ�

can be set to be a fixed value, e.g., κ1 = 1, by the rescaling
time in Eq. (1).

In particular, we focus on the coupling function containing
only two nonvanishing coefficients κ1 and κ2, given by

G2(r, r′) = 1

4π

[
κ1 cos γ + κ2

2
(3 cos2 γ − 1)

]
. (3)

For the coupling function (3), we can perform the stability
analysis, which allows us to compute the complete bifurcation
diagram for asymmetric spiral chimeras, as shown in Fig. 1.
We note that the coupling function G2 was considered in
Ref. [27] in the context of pure symmetric spiral chimera
states.

2. System reduction

We define a complex order parameter Z (r, t ) ≡
R(r, t )ei
(r,t ) that describes a macroscopic behavior of
oscillators as

Z (r, t ) = e−iα
∫
S2

G(r, r′)eiψ (r′,t )dr′. (4)

The macroscopic state of the phase oscillator system (1)
can be described by a distribution function f (ψ, r, t ) repre-
senting the probability density that the oscillator at position r
has the phase ψ at time t . Following the Ott-Antonsen ansatz
theory [31,32], the asymptotic evolution of the distribution
function f is described by a low-dimensional system for a
complex-valued function z(r, t ) as follows:

∂z(r, t )

∂t
= iωz + 1

2
(Z − z2Z∗), (5a)

Z (r, t ) = e−iα
∫
S2

G(r, r′)z(r′, t )dr′, (5b)

where the asterisk denotes complex conjugate. We call z(r, t )
the local order parameter.

The derivations of Eq. (5) were performed in a number
of previous studies [17,20,26,27] and we refer the interested
reader to those papers. Note that only the local order pa-
rameters that satisfy |z(r, t )| � 1 are physically meaningful
and that the oscillators corresponding to |z(r, t )| = 1 and
|z(r, t )| < 1 indicate the coherent and incoherent ones, re-
spectively.

B. Main results

1. Stability diagram

The results of analyzing the reduced Eq. (5) for the cou-
pling function given by Eq. (3) are summarized in Fig. 1,
which shows a bifurcation diagram for different types of spiral
chimera states in the [α, κ (≡ κ2)] plane. We found stability
regions for different types of spiral chimeras. (i) Symmetric
two-core spiral chimera (red), which consists of two inco-
herent cores surrounded by coherent spiral arms, having a
reflection symmetry. (ii) Symmetric striped (light pink), which
has two incoherent cores as well as an incoherent stripe with
reflection symmetry. (iii) Asymmetric two-core spiral (cyan)
and (iv) asymmetric striped spiral (green) chimeras, corre-
sponding to the symmetry-broken versions of the two-core
and striped spiral chimeras, respectively.

The transition from the symmetric two-core spiral chimera
to the asymmetric one occurs on the boundary S1, which is
analytically determined by Eq. (25). The curve S2 indicates
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FIG. 1. (a) Stability diagram for the reduced Eq. (5) with the coupling function (3), where κ1 = 1 and κ ≡ κ2. Symmetric two-core spiral
chimera (STSC) and asymmetric one (ATSC) occur in the red and cyan parameter regions, respectively, and the transition boundary S1 between
them is determined by Eq. (25). Transition boundary S2 between the symmetric striped spiral chimera (SSSC) and asymmetric one (ASSC),
shown in the light pink and green regions, respectively, is given by Eq. (28). Hatched regions indicate the bistable regime where different
spiral chimeras coexist. (b) Enlargement of rectangular part in panel (a). Stability boundaries labeled HB1, HB2, and HB3 denote the Hopf
bifurcation curves, determined by solving the characteristic Eq. (33) (see Figs. 9–11). The signs + and × indicate parameter locations for the
spiral chimera patterns displayed in Figs. 4 and 5, respectively.

the transition boundary between the symmetric striped spiral
chimera and the asymmetric one. The symmetry-breaking bi-
furcation analyses occurring on the boundaries S1 and S2 are
considered in Sec. III.

The asymmetric spiral chimera states undergo destabiliza-
tion via Hopf bifurcation on the boundaries marked HB1

(solid line) and HB2 (dashed line). All the Hopf bifurcation
curves in Fig. 1(b), labeled HB1, HB2, and HB3, are deter-
mined via the stability analysis of chimera states in Sec. IV.
The parameter region for the incoherent state (gray-colored)
and the stability boundary HB0 were obtained, based on the
results found in Ref. [27].

2. Numerical simulations

The numerical simulations were carried out by integrating
the discretized version of Eqs. (1) and (3) for the number of
oscillators equal to N = 5000 using the fourth-order Runge-
Kutta method with a time step of 0.02.

Figures 2(a) and 2(b) show the (i) symmetric two-core
spiral chimera and (ii) symmetric striped spiral chimera states,
respectively, observed in direct numerical simulations. The
upper panels of Fig. 2 depict the snapshots of phase dis-
tributions ψ (r) on the sphere and their two-dimensional
projections viewed from above and below. We can observe
that the sizes of incoherent cores located around the north and
south poles are equal and the phase patterns have a reflection
symmetry about the equator.

In the lower panels of Fig. 2, the longitudinal profiles R(θ )
of the order parameter and the corresponding � values are
displayed, where the open circles correspond to the results
from direct numerical simulations of Eq. (1). Numerically,
the order parameter was quantified by Eq. (4), while the �

value was evaluated by the phase velocity of oscillators in
the coherent domain. The gray boxes in the lower panels of
Fig. 2 denote the incoherent domain, which shows clearly the
identical radii of the north and south incoherent cores rN = rS.

Figure 3 depicts the typical examples of asymmetric spiral
chimera states (iii) and (iv), obtained by direct numerical
simulations of Eq. (1) for the coupling function (3). We can
see clearly that the phase snapshots and the corresponding
longitudinal profiles exhibit asymmetries with respect to the
equatorial plane defined by θ = π/2.

In the parameter region enclosed with Hopf boundaries
HB1 and HB2 in Fig. 1(b), both the symmetric and asymmet-
ric spiral chimera states are unstable. Simulating the system
in that parameter region, we observe a breathing asymmetric
spiral chimera state. An example of a breathing asymmetric
spiral chimera is depicted in Fig. 4 for which the parameter
values correspond to the plus sign in Fig. 1(b). Figure 4(a) il-
lustrates a series of phase snapshots during a breathing period.
We can see in Fig. 4(b) that the maximum value (blue solid
line) in the spatial distribution of R(r, t ) presents a periodic
oscillation around the theoretically obtained steady solution
(gray dashed line).

Figure 5 shows another symmetry-breaking state, the so-
called near-incoherent chimera, observed in the numerical
simulations for parameter values corresponding to the mul-
tiplication sign in Fig. 1(b).

III. SYMMETRY-BREAKING BIFURCATIONS

A. Self-consistency equation

Many dynamical regimes of interest, observed in Eq. (5),
are stationary in a rotating coordinate frame with a (yet
unknown) collective frequency . Under the transformation
given by z → zeit and Z → Zeit , Eq. (5) is replaced by

∂z(r, t )

∂t
= i�z + 1

2
(Z − z2Z∗), (6a)

Z (r, t ) = e−iα
∫
S2

G(r, r′)z(r′, t )dr′, (6b)

where � ≡ ω − .
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FIG. 2. Symmetric spiral chimera patterns. (a) Symmetric
two-core spiral chimera state for parameter values (α, κ1, κ2) =
(0.7, 1, 1). (b) Symmetric striped spiral chimera for (α, κ1, κ2) =
(1.43, 1, 1.1). The upper panels display the phase snapshots on
sphere and the two-dimensional projections viewed from the north
and south poles, obtained by numerical simulations of Eqs. (1)
and (3) for the number of oscillators equal to N = 5000. The lower
panels show the longitudinal profiles (blue) of order parameter Z
and the � value (red), where open circles represent results from
numerical simulations while solid lines correspond to theoretically
obtained results. Gray boxes denote the incoherent domains of which
the outer parts present identical radii of incoherent cores rN = rS.

The stationary spatial profile of the rotating waves is rep-
resented by the fixed point of Eq. (6a)

z0(r) = ih(r)Z (r), (7)

where h(r) = 1

�+
√

�2−R2(r)
with the square-root notation

√
d = √|d|ei arg (d )/2. Below, such a square root notation will

be used for other quantities as well. Inserting Eq. (7) into
Eq. (6b), we obtain the self-consistency equation for Z (r) ≡
R(r)ei
(r) as

Z (r) = eiβ
∫
S2

G(r, r′)h(r′)Z (r′)dr′, (8)

where β = π
2 − α.

Since the function h depends on |Z|, Eq. (8) can be con-
sidered as a nonlinear eigenvalue problem for the complex
eigenfunction Z (r) and the real eigenvalue �. Unlike the
linear eigenvalue problem, the eigenfunction Z has no arbi-
trariness in its real multiples. Instead Z is only determined
up to an arbitrary rotation since Eq. (8) is invariant under
any rigid rotation Z (r) → Z (r)ei
0 . Therefore, we are free to
specify the value of arg [Z (r)] ≡ 
(r) at a chosen point by

an arbitrary value that we want. This provides an additional
condition to determine � and Z (r) in a closed form, as will be
shown below.

We note that Eq. (8) has a trivial solution Z (r) = 0 for any
kernel G(r, r′), which represents the completely incoherent
state. Taking into account the equality

∫
S2 G(r, r′)dr′ = 0 for

the balanced coupling, one can see that Eq. (8) never allows
for a nonzero constant solution. Therefore, the fully synchro-
nized state given by Z (r) = const. 	= 0 could not occur for the
balanced coupling.

B. Reduced self-consistency

In the spherical polar coordinates with the azimuthal
angle φ ∈ [0, 2π ) and the polar angle θ ∈ [0, π ], we
use the spherical harmonic addition theorem P�(cos γ ) =

4π
2�+1

∑�
m=−� Y m

� (θ, φ)[Y m
� (θ ′, φ′)]∗ to expand the coupling

kernel (2) as follows:

G(r, r′) =
K∑

�=1

κ�

2� + 1

�∑
m=−�

Y m
� (r)

[
Y m

� (r′)
]∗

, (9)

where Y m
� (r) is the complex-valued spherical harmonics

of degree � � 1 and order |m| � �, given by Y m
� (θ, φ) =

(−1)m
√

(2�+1)
4π

(�−m)!
(�+m)! P

m
� (cos θ )eimφ with the associated Legen-

dre polynomials Pm
� .

Considering the appearance of the phase patterns in Figs. 2
and 3, we look for solutions of Eq. (8) in a spiral wave form
of R(r) = R(θ ) and 
(r) = �(θ ) + φ, i.e.,

Z (r) = Ẑ (θ )eiφ = R(θ )ei[�(θ )+φ].

Substituting Eq. (9) into Eq. (8) and integrating it with respect
to φ′ yield

Z = eiφ
K∑

�=1

a�P1
� (cos θ ), (10)

where

a� = κ�eiβ

2�(� + 1)

∫ π

0
h(θ ′)P1

� (cos θ ′)Ẑ (θ ′) sin θ ′dθ ′. (11)

Plugging Eq. (10) into Eq. (11), we obtain the reduced self-
consistency equation for a� as follows:

a� = κ�eiβ

�(� + 1)

K∑
k=1

ak
〈
h̃(x)P1

k (x)P1
� (x)

〉
, (12)

where h̃(x) = 1

�+
√

�2−|∑K
n=1 anP1

n (x)|2
and the angular bracket

denotes a spatial average defined by 〈 f 〉 ≡ 1
2

∫ 1
−1 f (x)dx.

Since the function h̃ involves unknown quantities a� and �,
the number of unknowns seems to be larger than that of equa-
tions: we have to solve the K complex Eq. (12) for the K + 1
unknowns a� ∈ C and � ∈ R. By using the arbitrariness of
choice of arg (Z ) ≡ 
0, one of the K complex quantities a�

can be set to be real without loss of generality. This makes it
possible to determine all the unknowns in terms of parameters
κ� and β in a closed form.
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FIG. 3. Asymmetric spiral chimera patterns in the same format as Fig. 2. (a,b) Asymmetric two-core spiral chimera states, corresponding to
parameter values (α, κ1, κ2) = (0.7, 1, 1.35) and (α, κ ) = (1.2, 1, 1.06), respectively. (c) Asymmetric striped spiral chimera for (α, κ1, κ2) =
(1.43, 1, 1.46). Inequality of incoherent core radii rN 	= rS features the asymmetry of phase patterns and longitudinal profiles.

C. Explicit solutions

For the coupling function G2 given by Eq. (3), analytical
solutions of the self-consistency Eq. (8) can be found. Equa-
tions (10) and (12) for K = 2 can be written by

R(θ )ei
(θ,φ) = (a + b cos θ ) sin θeiφ, (13)

and

a = κ1eiβ

2
〈(1 − x2)(a + bx)h̃〉, (14a)

b = 3κ2eiβ

2
〈x(1 − x2)(a + bx)h̃〉, (14b)

where a = a1, b = 3a2, and h̃ = 1

�+
√

�2−(1−x2 )|a+bx|2 .

1. Symmetric two-core spiral chimera

We can see that Eq. (14b) has a solution b = 0 since the
integrand in the right-hand side becomes an odd function.
Then the order parameter (13) reduces to

Z1(r) = a sin θeiφ, (15)

which corresponds to the symmetric two-core spiral chimera
state, studied in Refs. [24,26,27]. Note that, without loss of
generality, a can be assumed to be real by defining arg(Z1) =
0 at φ = 0. Two real values a and � are determined from

Eq. (14a), which can be written by

2a2 = κ1eiβ〈� −
√

�2 − a2(1 − x2)〉. (16)

In the lower panel of Fig. 2(a), the solid lines represent the
results for R(θ ) ≡ a sin θ and �, obtained by solving Eq. (16)
for parameter values α = 0.7 and κ1 = 1.

The size of the incoherent cores in the spiral chimeras can
be measured by the great circle arc length between the center
of the core and the coherence-incoherence boundary, which
we call the radius of the incoherent cores. The coherence-
incoherence boundary is determined by the intersection of two
lines R(θ ) and �, as depicted in Fig. 2. Thus the radii of
the north and south cores for the symmetric two-core spiral
chimera state are given by

rN = rS = arcsin

(
�

a

)
.

Defining ā = a/κ1 and �̄ = �/κ1, Eq. (16) can be written
by

2ā2 = eiβ〈�̄ −
√

�̄2 − ā2(1 − x2)〉. (17)

The solutions of Eq. (17), ā and �̄, depend only on the pa-
rameter β, or equivalently, α. It follows that both a and � are
proportional to κ1 and thus the radii rN and rS of symmetrical
two-core spiral chimeras depend only on α, irrespective of κ1

as well as κ2.
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FIG. 4. Breathing asymmetric spiral chimera state, observed in numerical simulations of Eqs. (1) and (3). (a) A series of phase snapshots
for a time period T = 275s. (b) Time dynamics of the maximum (blue) and minimum (red) values over the spherical surface of R(r, t ). Dashed
(gray) lines indicate theoretical values of Rmax and Rmin for the unstable steady state, determined by Eqs. (13) and (14). Parameters: α = 1.2,
κ1 = 1, and κ2 = 1.18, which correspond to the plus sign shown in Fig. 1(b).

2. Symmetric striped spiral chimera

It is obvious that Eq. (14a) allows a solution a = 0 and then
Eq. (13) becomes

Z2(r) = b sin θ cos θeiφ. (18)

The order parameter (18) represents the striped spiral chimera
state, which was investigated in Ref. [27]. Defining arg(Z2) =
0 at φ = 0, we can set b to be real. Two real values b and � are
determined by solving Eq. (14b), i.e., the following complex
equation:

2b2 = 3κ2eiβ〈� −
√

�2 − b2x2(1 − x2)〉. (19)

The graph of R(θ ) ≡ b sin θ | cos θ | and the corresponding
value of �, determined by solving Eq. (19) for α = 1.43 and
κ2 = 1.1, are depicted by solid lines in the lower panel of
Fig. 2(b). The radii of two cores for the symmetric striped

FIG. 5. Phase snapshot of near-incoherent asymmetric chimera
state. Parameter values: α = 1.53, κ1 = 1, and κ2 = 0.9, correspond-
ing to the multiplication sign shown in Fig. 1(b).

spiral chimera, described by Eq. (18), are determined by

rN = rS = 1

2
arcsin

(
2�

b

)
.

Defining b̂ = b/κ2 and �̂ = �/κ2, Eq. (19) becomes

2b̂2 = 3eiβ〈�̂ −
√

�̂2 − b̂2x2(1 − x2)〉, (20)

which does not contain the parameter κ2. This means that both
b and � are proportional to κ2 and thus the radii rN and rS

do not depend on κ2. We note that the parameter κ1 has no
effect on the symmetrical striped spiral chimera and thus the
incoherent core radius is independent of κ1 as well.

3. Asymmetric spiral chimera

We note that both the two-core and striped spiral chimeras,
represented, respectively, by Eqs. (15) and (18), have the
reflection symmetry about the equator.

However, when both a and b are nonzero, the order pa-
rameter given by Eq. (13) describes a spiral chimera pattern
which has an asymmetry with respect to the equator. One
can set a ∈ R and b ∈ C by defining arg(Z3) = 0 at θ = π/2
and φ = 0. Thus the complex Eq. (14) is equivalent to four
real equations for the four real unknowns a, bR, bI, and �.
The solutions, if they exist, are to be expressed in terms of
parameters κ1, κ2, and β. We note that, taking into account the
arbitrariness of arg (Z ), either of the two coefficients a and b
can be assumed to be real.

In the lower panels of Fig. 3, the solid curves indicate the
longitudinal profiles of asymmetric spiral chimeras given by

R(θ ) ≡ sin θ |a + b cos θ |,
for which a and b are obtained by solving Eq. (14). These
theoretical solutions agree very well with the result from the
direct numerical simulations of the model system (1) with the
kernel (3), as marked by the open circles. We observe that
there is a distinct difference in the size of the north and south
cores rN 	= rS for the asymmetric spiral chimera state.

Given the values of a, b, and � as solutions of Eq. (14),
we can determine the local order parameter z0(r) through
Eqs. (7) and (13). Figure 6 illustrates typical snapshots of
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FIG. 6. Asymmetric spiral chimera patterns represented by local order parameter z0(r), determined by solving Eqs. (7), (14), and (13).
Upper and lower rows indicate the snapshots for the phase and modulus of z0(r), respectively. Parameter values of panels (a), (b), and (c) are
the same as Figs. 3(a), 3(b), and 3(c), respectively.

arg(z0) and |z0| for the parameter values used in Fig. 3.
Compared to Fig. 3, we observe that, as a theoretical pre-
diction for the asymmetric spiral chimera state, the phase
pattern of z0(r) is well consistent with the result from the
direct simulations of Eq. (1). In the lower panels of Fig. 6,
we see that the coherent and incoherent domains, repre-
sented by |z0(r)| = 1 and |z0(r)| < 1, respectively, are clearly
distinguished.

D. Symmetry-breaking bifurcation

1. Numerical continuation

The incoherent core radii of the asymmetric spiral chimera
in the north and south poles are determined by

rN = min(θ0), rS = π − max(θ0), (21)

where θ0 ∈ [0, π ] denotes the roots of the following equation:

|a + b cos θ0| sin θ0 = �. (22)

We performed numerical continuations of solving Eqs. (14)
and (22) for the varying κ to see how the symmetry breaking
in the size of the north and south incoherent cores occurs.

Figure 7 shows the radii rN and rS as a function of κ for fixed
values of α, where the lines represent the result obtained by
the numerical continuation of Eq. (21). Figures 7(a) and 7(b)
correspond to the α values for the two-core spiral chimeras
while Fig. 7(c) concerns the striped spiral chimera state.

According to our numerical continuations, as κ decreases,
the two asymmetric solution branches (rN 	= rS) meet at a
bifurcation point, as marked by S1,2 in Fig. 7, and then merge
into the symmetric solutions (rN = rS). With the increase of
κ , the symmetric solutions that exist prior to the bifurcation
continue as symmetric solutions after the bifurcation, which
implies the coexistence of the symmetric and asymmetric
solution branches. In Fig. 7, the solid and dashed lines denote
the stable and unstable states, respectively, which is validated
by the stability analysis of Sec. IV (cf. Figs. 8–10). As a result,
a supercritical symmetry-breaking bifurcation occurs at the
bifurcation points S1,2.

The open circles seen in Fig. 7 correspond to the result
from the direct numerical simulation of model system (1)
with the kernel (3), which are in good agreement with those
obtained by the numerical continuation.
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FIG. 7. Bifurcation diagrams of incoherent core radii in the north and south poles rN and rS, as κ (≡ κ2) is varied. Asymmetric spiral
chimeras occur via the symmetry-breaking bifurcation at the boundaries S1,2. Symmetric (rN = rS) and asymmetric (rN 	= rS) branches, marked
by red and blue lines, respectively, are all determined by solving Eqs. (14), (21), and (22). Solid and dashed lines correspond to stable and
unstable states, respectively, as identified by the stability analysis of Sec. IV (see Figs. 8–10). Open circles denote results, obtained by direct
numerical simulation of Eqs. (1) and (3). Parameters: κ1 = 1, (a) α = 0.7, (b) α = 1.2, and (c) α = 1.53.

2. Transition to asymmetric two-core spiral chimera

Now we seek conditions for the asymmetric branch of so-
lutions to bifurcate off the symmetric two-core spiral chimera
state. The incipient occurrence of the asymmetric two-core
spiral chimera can be viewed by letting |b| → 0 in Eq. (14)
for a ∈ R and b ∈ C.

We expand the function h̃ in a two-variable Taylor series
for small bR and bI:

h̃ = h̃0(x; a) + h̃1(x; a)bR + O(|b|2),

where h̃0 = 1

�+
√

�2−a2(1−x2 )
and h̃1 = ax(1−x2 )h̃2

0√
�2−a2(1−x2 )

. Then

Eq. (14) becomes

1 = κ1eiβ

2

〈
(1 − x2)h̃0

〉+ O(|b|2), (23a)

b = 3κ2eiβ

2
〈x(1 − x2)(bxh̃0 + abRh̃1)〉 + O(|b|3). (23b)

As |b| → 0, Eq. (23a) recovers Eq. (16), or equivalently
Eq. (17), which gives the values of ā and �̄ that are indepen-
dent of parameters κ1 and κ2. Then, in the first approximation,
Eq. (23b) reduces to(

μR − κ1
κ2

−νI

μI νR − κ1
κ2

)(
bR

bI

)
= 0, (24)

where μ and ν are complex quantities given by

sμ = �̄(3�̄A − 1)eiβ/2ā2, ν = (�̄ − 3B)eiβ/2ā2,

with A = 〈x2/
√

�̄2 − ā2(1 − x2)〉 and B = 〈x2√
�̄2 − ā2(1 − x2)〉. The definite integrals A and B can

be calculated to yield A = 1
2ā [ �̄

ā +(1− �̄2

ā2 )(ln
√

ā+�̄

ā−�̄
− iπ

2 )] and
B = ā

8 [ �̄
ā (1+ �̄2

ā2 )−(1− �̄2

ā2 )2(ln
√

ā+�̄

ā−�̄
− iπ

2 )]. We note that the quantities
μ and ν describing the symmetric two-core spiral chimera
state depend only on the parameter β, or equivalently, α,
irrespective of κ1 and κ2.

The parameter location where the asymmetric solution
branch bifurcates off the symmetric one can be revealed via
the implicit function theorem: setting the coefficient determi-
nant of Eq. (24) equal to zero gives the bifurcation condition
as

κ2

κ1
= f1(α) ≡ 2

(μ + ν)R +
√

(μ − ν)2
R − 4μIνI

. (25)

Solving numerically Eq. (17) for a fixed α and substituting
the solutions into Eq. (25), we obtain the transition point from
symmetric two-core spiral chimera to an asymmetric one.

In Fig. 1, the stability boundary S1 was determined by
Eq. (25). Separating Eq. (17) into the real and imaginary parts
yields that ā = �̄ = 1/4 at α = π

2 while �̄ = 0 and ā = π
8 at

α = 0. Thus we can find that κ = 4
3 and κ = 1 for α = 0 and

α = π
2 , respectively, as shown in Fig. 1.

3. Transition to asymmetric striped chimera

Let us look for the transition point from the symmetric
striped spiral chimera to the asymmetric one.

Now the values of a and b in Eq. (14) are assumed to
be complex and real numbers, respectively. Expanding the
function h̃ in a two-variable Taylor series for small aR and
aI, one obtains

h̃ = ĥ0(x; b) + ĥ1(x; b)aR + O(|a|2),

where ĥ0 = 1

�+
√

�2−b2x2(1−x2 )
and ĥ1 = bx(1−x2 )ĥ2

0√
�2−b2x2(1−x2 )

. As

|a| → 0, linearizing Eq. (14) yields

a = κ1eiβ

2
〈(1 − x2)(aĥ0 + aRbxĥ1)〉, (26a)

1 = 3κ2eiβ

2
〈x2(1 − x2)ĥ0〉. (26b)

Equation (26b) is equivalent to Eq. (20), which gives solutions
b̂ and �̂ for the striped spiral chimera state. Equation (26a) can
be written by (

μ̂R − κ2
κ1

−ν̂I

μ̂I ν̂R − κ2
κ1

)(
aR

aI

)
= 0, (27)

where μ̂ = (C − D)eiβ/2 and ν̂ = Deiβ/2 with C =
〈(1 − x2)/

√
�̂2 − b̂2x2(1 − x2)〉 and D = 〈(1 − x2)/

[�̂ +
√

�̂2 − b̂2x2(1 − x2)]〉. We note that μ̂ and ν̂ depend
only on the parameter α.

Applying again the implicit function theorem to Eq. (27),
we obtain the bifurcation condition for the transition to the
asymmetric striped spiral chimera as follows:

κ = f2(α) ≡ 1
2

[
(μ̂ + ν̂)R −

√
(μ̂ − ν̂)2

R − 4μ̂Iν̂I
]
. (28)
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FIG. 8. Stability analysis of two-core spiral chimera states as
κ (≡ κ2) varies. Parameters: α = 0.7 and κ1 = 1, corresponding
to the parameter values of Fig. 7(a). (a) Radii of the north and
south cores versus κ , determined by Eq. (21). Solid and dashed
curves represent the stable and unstable states, respectively. Panels
(b) and (c) show the real and imaginary parts of the rightmost point
spectrums, respectively, determined by Eq. (33). Red and blue sym-
bols correspond to symmetric and asymmetric solution branches of
panel (a), respectively. As κ increases past the symmetry-asymmetry
boundary S1, a positive real eigenvalue marked by red cross appears
from zero eigenvalue embedded in the T -shaped essential spectrum,
destabilizing the symmetric two-core spiral chimera. Meanwhile,
a pair of complex conjugate eigenvalues with negative real part,
marked by blue asterisks, pops out of the real part of the T -shaped
essential spectrum.

Equation (28) gives the bifurcation boundary S2 in Fig. 1,
where the transition from the symmetric striped chimera to the
asymmetric one occurs. We can see that κ = 1 for α = 0 and
κ = √

2 for α = π
2 .

IV. STABILITY ANALYSIS

Substituting the ansatz z(r, t ) = z0(r) + ξ (r, t ) with a
small perturbation ξ into Eq. (6) and linearizing the result with
respect to ξ , we have the perturbative equation

∂ξ (r, t )

∂t
= η(r)ξ + 1

2

[
Gξ − z2

0(r)(Gξ )∗
]
, (29)

where η(r) = i� − z0(r)Z∗(r) and G denotes a convolution
operator defined by

(Gv)(r, t ) = e−iα
∫
S2

G(r, r′)v(r′, t )dr′.

Using the expression (7), η can be written as

η(r) = i
√

�2 − R(r)2.

Equation (29) and its complex conjugate counterpart form
a closed system for the linear stability analysis, of which the
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FIG. 9. Same picture as Fig. 8, but for α = 1.2, corresponding to
the parameter value of Fig. 7(b). The eigenvalues marked by crosses,
circles, and diamonds exhibit the same mechanism underlying the
supercritical symmetry-breaking bifurcation at the boundary S1 as in
Fig. 8. Beyond the critical value denoted by HB2 with the increasing
κ , a pair of complex conjugate eigenvalues, marked by asterisk and
multiplied by constants, emerges from the imaginary axis of complex
λ plane and moves into the half plane, destabilizing the asymmetric
two-core spiral chimera state. Such Hopf-like bifurcation specifies
the stability boundary HB2 in Fig. 1.

right-hand side defines a linear operator L:

∂

∂t
p = Lp, (30)

where p = (ξ, ξ ∗)T .
In general, for the finite-rank coupling function given

by Eq. (2), the perturbative Eq. (30) has separable kernels
and the linear stability analysis of all states can be per-
formed [26–28,34].

The spectrums of the operator L consists of two parts:
essential spectrum λess and point spectrum λpt. The essential
spectrum λess is known explicitly by

λess = η(r) and λess = η∗(r).

Therefore, the essential spectrums are determined for the co-
herent domain by

λcoh
ess = −

√
R2(r) − �2, (31)

and for the incoherent domain by

λincoh
ess = ±i

√
�2 − R2(r). (32)

Thus the spiral wave chimera state has a neutrally stable
essential spectrum with a T -shaped continuous curves that
consist of two intervals along the negative real and pure
imaginary axes, corresponding to the coherent and incoherent
domains, respectively.

As discussed in the Appendix, for the two-rank coupling
function (3), we obtain the characteristic equation for the point
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FIG. 10. Stability analysis of striped spiral chimera for α = 1.53,
κ1 = 1 and varying κ (≡ κ2), corresponding to Fig. 7(c). The format
is the same as Figs. 8 and 9. With the increasing κ , a single, positive
eigenvalue marked by (red) cross protrudes from the origin at the
boundary S2, presenting a supercritical symmetry-breaking bifurca-
tion. This bifurcation specifies the stability boundary S2 in Fig. 1. As
κ decreases, two complex conjugate eigenvalues, marked by (red)
open circles, simultaneously cross the imaginary axis into the right
half of complex λ plane at a critical value marked by HB3. Thus
the symmetric striped spiral chimera undergoes a Hopf bifurcation,
which determines the Hopf boundary HB3 in Fig. 1.

spectrum λpt of L as follows:

det [B(λ) − I] = 0, (33)

where B denotes 16 × 16 matrix defined by Eq. (A5) (see the
Appendix for details).

The point spectrums satisfying Eq. (33) consists of a fi-
nite number of eigenvalues that are either real or appear as
complex-conjugate pairs. It is typical of the chimera states
that some of the point spectrums could emerge from and be
absorbed into the T -shaped essential spectrums described by
Eqs. (31) and (32) when the parameter values change. In
particular, the transition from the symmetric spiral chimera to
the asymmetric one occurs via the typical symmetry-breaking
scenarios: A real eigenvalue suddenly emerges from a zero
eigenvalue embedded in the essential spectrum at the bifurca-
tion point and moves into the right half of the complex λ plane.
Below we investigate the movement of the point spectrums
λpt around the representative bifurcation boundaries shown in
Fig. 1.

A. Destabilization of symmetric two-core spiral chimera states

Solving Eq. (33) numerically, we determine the point spec-
trums for both the symmetric and asymmetric two-core spiral
chimera states described by Eqs. (15) and (13), respectively.

Figure 8 shows a typical result of numerically continuing
the solutions of Eq. (33) as κ2 is varied for κ1 = 1 and α =

−0.04
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FIG. 11. Same picture as Fig. 10, but for fixed κ2 with κ2 ≡ 1.35
and instead varying α. As α decreases in panel (a) the asymmetric
striped spiral chimera, marked by blue lines, bifurcates from the
symmetric one, marked by red line, at the boundary S2, where a
positive eigenvalue marked by red cross (multiplied by 0.5) emerges
from zero, as observed in panels (b) and (c). A pair of complex
conjugate eigenvalues marked by blue open circles goes into the right
half of complex λ plane at HB(2)

1 and goes back into the left half
at HB(1)

1 , giving rise to destabilization and successive stabilization
of asymmetric spiral chimera states via the Hopf and inverse Hopf
bifurcations, respectively. These two Hopf bifurcations occur on the
single bent boundary HB1 shown in Fig. 1.

0.7. These parameter values correspond to Fig. 7(a), which
is again depicted in Fig. 8(a) for the sake of convenience.
Figures 8(b) and 8(c) display the real and imaginary parts,
respectively, of the rightmost point spectrums as a function of
κ2. The red and blue symbols correspond to the symmetric and
asymmetric spiral chimera states, respectively.

As κ (≡ κ2) increases, a pair of complex conjugate eigen-
values with negative real parts, marked by the red open circle,
disappears at the point S1 and instead real eigenvalues marked
by red crosses emerge from the origin of the complex λ plane.
This indicates that the symmetric two-core spiral chimera
state becomes unstable when passing beyond the transition
boundary S1. On the other hand, the eigenvalues, marked by
the blue open circles and diamonds, inherit from the red open
circles corresponding to the symmetric chimera state have
negative real parts. With the decreasing κ , a pair of complex
conjugate eigenvalues, marked by the blue asterisk, collide on
the real axis of the complex λ plane and then are absorbed in
the T -shaped essential spectrums given by Eq. (31). Thus the
generated asymmetric two-core spiral chimeras are stable.

Figure 9 depicts the same picture as Fig. 8 but for α = 1.2,
corresponding to the parameter set in Fig. 7(b). We can see
that as the parameter κ increases the point spectrums de-
termined by Eq. (33) represents the same behavior as that
shown in Fig. 8, except for one aspect: As the parameter
κ approaches the value denoted by HB2, a pair of complex
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conjugate eigenvalues marked by the (blue) asterisk protrudes
from the imaginary part of the T -shaped essential spectrums
given by Eq. (32) and they move further into the right half of
the complex λ plane. In Figs. 9(b) and 9(c), the protruding
eigenvalues are clearly distinguished from others by multi-
plying them by constants. When a pair of unstable complex
conjugate eigenvalues appears from the neutrally stable essen-
tial spectrum, we call the bifurcation scenario the Hopf-like
bifurcation. Thus the asymmetric two-core spiral chimera
state undergoes a destabilization via a Hopf-like bifurcation,
which determines the stability boundary HB2 in shown in
Fig. 1.

B. Destabilization of symmetric striped spiral chimera

Substituting the solutions described by Eqs. (18) and (13)
into the characteristic Eq. (33) and solving it numerically, we
determine the point spectrums for the symmetric and asym-
metric spiral chimera states of a stripe-core mixed form.

Figure 10 shows the stability analysis of the striped spi-
ral chimera for the same parameter set as in Fig. 7(c). In
Fig. 10(a), the incoherent core radii are plotted as a function
of κ . Figures 10(b) and 10(c) show the real and imaginary
parts of the rightmost point spectrums λ, where the red and
blue symbols correspond to the symmetric and asymmetric
solution branches, respectively.

As κ increases, a single, positive eigenvalue marked by
the red cross symbol appears from the essential spectrum
at the symmetry-asymmetry boundary S2 and moves further
to the right on the real axis. Meanwhile, a pair of complex
conjugate eigenvalues marked by blue open circles inherits
from those marked by red circles at the boundary S2 and
moves within the left half plane of complex λ. This means
that the stable asymmetric stripe two-core chimera state is
created via a supercritical symmetry-breaking bifurcation. On
the other hand, with the decreasing κ , a pair of complex
conjugate eigenvalues, marked by the red open circles, crosses
into the right half of the complex λ plane at a critical point
denoted by HB3, which results in a destabilization of the sym-
metric striped spiral chimera via the Hopf bifurcation. Such
Hopf bifurcation points specify the stability boundary HB3 in
Fig. 1.

Figure 11 depicts the eigenvalue analysis for the striped
spiral chimera state when κ is fixed but α is varied. We can see
from Figs. 11(b) and 11(c) that the transition from symmetric
striped spiral chimera to the asymmetric one is realized in a
similar way to that shown in Fig. 10: a positive eigenvalue
(marked by the red cross) protrudes from zero at the boundary
S2 as α decreases. With the increasing α, the real parts of two
complex conjugate eigenvalues marked by blue open circles
become positive and then negative at the boundaries HB(1)

1 and
HB(2)

1 , respectively. These two Hopf bifurcations determine
the bent, single Hopf boundary HB1 shown in Fig. 1.

V. GENERAL COUPLING SCHEME

We extend the analysis for the occurrence of the asymmet-
ric spiral chimera state, described in Sec. III, to the case of an
arbitrary choice of coupling function.

A. Two symmetric solutions

We consider the general coupling functions given by
Eq. (2) for even K > 2. Unlike the case of the two-rank
coupling function (3), the self-consistency Eq. (8) does not
allow for symmetric solutions in the form of a single spherical
harmonic, such as Eqs. (15) and (18).

Instead, there are two forms of symmetric solutions for the
coupling function GK . They have the form as follows:

Z1 = eiφ
K/2−1∑

k=0

a2k+1P1
2k+1(cos θ ), (34a)

Z2 = eiφ
K/2∑
k=1

a2kP1
2k (cos θ ). (34b)

In fact, substituting the ansatz (34a) into Eq. (11) and
taking into account that P1

2k+1(x) is even and P1
2k (x) is odd,

we obtain a� = 0 when � is even. Hence, Eq. (34a) provides a
symmetric solution of the self-consistency Eq. (8) when a2k+1

satisfies the following equation:

a2k+1 = σ2k+1

K/2−1∑
n=0

a2n+1
〈
h1P1

2n+1(x)P1
2k+1(x)

〉
, (35)

where σ2k+1 = κ2k+1eiβ

2(k+1)(2k+1) and h1 = 1

�+
√

�2−|Z1|2
.

The same is true for the ansatz (34b). Substituting the
ansatz into Eq. (11) yields a� = 0 for odd � and thus Eq. (34b)
gives another symmetric solution of Eq. (8), where a2k for
every k ∈ Z is the root of the following equations:

a2k = σ2k

K/2∑
n=1

a2n
〈
h2P1

2n(x)P1
2k (x)

〉
, (36)

where σ2k = κ2keiβ

2k(2k+1) and h2 = 1

�+
√

�2−|Z2|2
.

By using the property of the associated Legendre functions
P1

n (x) = (1 − x2)1/2 d
dx Pn(x), Eq. (34) can be written by

Z1 = sin θeiφ
K/2−1∑

k=0

a2k+1F2k+1(θ ),

Z2 = sin θ cos θeiφ
K/2∑
k=1

a2kF2k (θ ),

where F� for � ∈ Z represents a polynomial with respect to
cos2 θ . Therefore, by analogy with Eqs. (15) and (18), the
spiral chimeras described by Eqs. (34a) and (34b) indicate
the two-core and striped spiral chimeras, respectively, with
reflection symmetry about the equator.

B. Onset of asymmetric spiral chimeras

When both a2k+1 and a2k are nonzero solutions of Eq. (12),
the order parameter given by Eq. (10) describes asymmetric
spiral chimera states, which can be written in the decomposed
form

Z = Z1 + Z2.

To seek the symmetry-breaking bifurcation around the
symmetric solution Z1, we represent Z2 in the form Z2 =
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εw(θ )eiφ for small parameter ε ∈ R. Substituting

Ẑ = Ẑ1 + εw

into h̃ in Eq. (12) and expanding it around Ẑ1 in a two-variable
Taylor series for small εwR and εwI, we obtain

h̃ = h1 + ε(pwR + qwI ) + O(ε2), (38)

where p = h2
1Re(Ẑ1 )√
�2−|Ẑ1|2

and q = h2
1Im(Ẑ1 )√
�2−|Ẑ1|2

. As ε → 0, Eq. (12)

can be written as

a2k+1 = σ2k+1

K/2−1∑
n=0

a2n+1
〈
h1P1

2n+1P1
2k+1

〉
, (39a)

a2k = σ2k

K/2∑
n=1

{〈
h1P1

2nP1
2k

〉
a2n + 〈pẐ1P1

2nP1
2k

〉
Re(a2n)

+ 〈qẐ1P1
2nP1

2k

〉
Im(a2n)

}
. (39b)

Note that Eq. (39a) coincides with Eq. (35). We rewrite
the complex Eq. (38b) as a system for a two-component real
vector-function ek = [Re(a2k ), Im(a2k )]T as follows:

ek = κ2k

K/2∑
n=1

Cknen, k = 1, . . . , K/2, (40)

where Ckn is a real 2 × 2 matrix given by

Ckn =
(

Re(Mkn) −Im(Nkn + Kkn)
Im(Mkn) Re(Nkn + Kkn)

)
,

with Mkn = eiβ

2k(2k+1) 〈(h1+ pẐ1)P1
2nP1

2k〉, Nkn = eiβ

2k(2k+1) 〈h1P1
2n

P1
2k〉, and Kkn = −ieiβ

2k(2k+1) 〈qẐ1P1
2nP1

2k〉.
According to the implicit function theorem, the exis-

tence of the asymmetric solution branch that bifurcates
continuously from the symmetric solution requires that the
determinant of the coefficient matrix in Eq. (40) vanishes:

det (D − IK ) = 0, (41)

where IK denotes the K × K-dimensional identity matrix and
the matrix D is given by

D =

⎛
⎜⎜⎝

κ2C11 κ2C12 · · · κ2C1,K/2

κ4C21 κ4C22 · · · κ4C2,K/2
...

...
. . .

...

κKCK/2,1 κKCK/2,2 · · · κKCK/2,K/2

⎞
⎟⎟⎠.

We note that each matrix block Ckn is completely deter-
mined after solving Eq. (39a) for the symmetric solution Z1

and then it depends on the parameter α and the coefficients κn

with odd n.
Solving simultaneously Eqs. (39a) and (41), we can find

such a critical relationship between the coefficients κ� that the
asymmetric solution branch bifurcates off the symmetric one
as follows:

f (α, κ1, . . . , κK ) = 0. (42)

It is obvious that, for the case of K = 2, Eq. (41) reduces to
Eq. (24) and Eq. (42) is expressed by Eq. (25).

C. Piecewise-constant coupling function

We illustrate the universal occurrence of the asymmet-
ric spiral wave chimeras via the piecewise-constant coupling
function given by

Gpc(r, r′) =
{

δ1
4π

if 0 < γ (r, r′) � πr,
δ2
4π

if πr < γ (r, r′) � π,
(43)

where r ∈ (0, 1) is a radius parameter. The balancing con-
dition

∫
S2 Gpc(r, r′)dr′ = 0 yields a relation expression be-

tween the parameters δ1, δ2, and r as follows:

cos πr = δ1 + δ2

δ1 − δ2
.

Note that we can set either δ1 or δ2 to be a constant by
rescaling time in Eq. (1). Below we fix δ2 to be δ2 = −0.3
and choose δ1 as an independent control parameter governing
the coupling function Gpc.

Via the direct numerical simulations of Eq. (1) with the
piecewise-constant coupling function (43), we observe the
stable asymmetric two-core spiral chimera states in a wide
parameter region.

Figure 12(a) shows the numerically found stability di-
agram for different types of chimera states in the (α, δ1)
plane when δ2 = −0.3. We see that asymmetric two-core spi-
ral chimeras occur in the parameter region located between
those of symmetric spiral chimera and higher-order chimera
exhibiting the complicated chimera patterns. The snapshot
of a representative of asymmetric two-core spiral chimera
is depicted in Fig. 12(b). In the white region of Fig. 12(a),
labeled higher-order spiral chimera, complicated chimera pat-
terns were observed.

To get further insight into the transition from symmetric
spiral chimera to asymmetric one, we consider the finite-rank
approximation obtained via truncating the Legendre series
of the coupling function. For the coupling function Gpc, the
coefficients of the Legendre expansion in Eq. (2) are given by

κ1 = 3
4 (δ1 − δ2) sin2 πr, (44a)

κ2 = 5
4 (δ1 + δ2) sin2 πr, (44b)

κ3 = 7
16 (δ1 − δ2)(5 cos2 πr − 1) sin2 πr, (44c)

κ4 = 9
16 (δ1 + δ2)(7 cos2 πr − 3) sin2 πr, . . . . (44d)

For the two-rank approximation of the form

Gpc ≈ G2 ≡ 1

4π
(κ1P1 + κ2P2),

the bifurcation condition giving rise to the asymmetric spiral
chimera is determined by Eq. (25). Substituting Eqs. (44a)
and (44b) into Eq. (25), we can obtain the transition point from
the symmetric two-core spiral chimera to the asymmetric one
in the (α, δ1) parameter plane. In Fig. 12(a), the dash-dotted
(red) line indicates the transition boundaries obtained by the
two-rank approximation. We can see that the two-rank ap-
proximation already exhibits a good agreement with the result
from direct numerical simulations of Eqs. (1) and (43).

Now we consider an improved approximation of the cou-
pling scheme such that the coupling function contains four
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FIG. 12. Asymmetric spiral chimeras for the piecewise-constant coupling function (42). (a) Stability diagram in the (α, δ1) parameter
plane for δ2 = −0.3. Open circles indicate the stability boundaries, resulting from direct numerical simulations of Eqs. (1) and (42), where the
solid lines are guides to the eye. Dash-dotted (red) and dashed (blue) lines denote theoretical predictions for the transition from the symmetric
two-core spiral chimera to the asymmetric one, obtained by two-rank and four-rank approximations of coupling function, respectively. (b) Phase
snapshot of asymmetric spiral chimera observed for parameter values (α, δ1) = (1, 1.9). (c) The longitudinal profile R(θ ) and the � value for
the chimera state shown in panel (b). Solid lines denote the simulation result, obtained from calculating Eq. (4) after numerically integrating
Eqs. (1) and (42). Dash-dotted (red) and dashed (blue) lines correspond to theoretical results obtained by two- and four-rank approximations
of the piecewise-constant coupling (42), respectively.

nonvanishing Legendre harmonics

Gpc ≈ G4 ≡ 1

4π

4∑
�=1

κ�P�.

The symmetric two-core spiral chimera is described by

Z1 = [a1P1
1 (cos θ ) + a3P1

3 (cos θ )
]
eiφ,

for which Eq. (39a) can be written by

a1 = κ1eiβ

2

〈
P1

1 (x)
[
a1P1

1 (x) + a3P1
3 (x)

]
h1
〉
, (45a)

a3 = κ3eiβ

12

〈
P1

3 (x)
[
a1P1

1 (x) + a3P1
3 (x)

]
h1
〉
. (45b)

According to Eq. (41), the bifurcation condition for the asym-
metric spiral chimera to occur is given by∣∣∣∣κ2C11 − I2 κ2C12

κ4C21 κ4C22 − I2

∣∣∣∣ = 0. (46)

When replacing the values of κ1, κ2, κ3, and κ4 with those
given by Eq. (44), the complex Eq. (45) and real Eq. (46) are
equivalent to five real equations for the five real unknowns a1,
Re(a3), Im(a3), �, and δ1.

We solved numerically Eqs. (45) and (46) to obtain δ1

as a function of α, of which the result are depicted by the
dashed (blue) line in Fig. 12(a). We can observe that the tran-
sition boundary to the asymmetric spiral chimera, obtained by
four-rank approximation of Gpc, is in better agreement a bit
more with the result from the direct numerical simulations of
Eqs. (1) and (43), as compared to the two-rank approximation.

Figure 12(c) shows the spatial profile R(θ ) and � value
for the asymmetric spiral chimera state shown in Fig. 12(b).
The solid lines correspond to the result from direct nu-
merical integration of Eqs. (1) and (43), where the order
parameter was quantified by Eq. (4) and the � value was
evaluated by the phase velocity of oscillators in the coherent
domain. In Fig. 12(c), the dash-dotted and dashed lines indi-
cate the theoretical results, obtained by solving Eq. (12) with

two- and four-rank approximations Gpc ≈ G2 and Gpc ≈ G4,
respectively.

VI. CONCLUSION

In summary, we have demonstrated the existence of asym-
metric spiral chimera that consists of incoherent cores of
different size on the spherical surface of nonlocally coupled
identical oscillators. Such asymmetric spiral chimeras might
be thought of as a genuine chimera state since under the in-
fluence of symmetric coupling scheme there occurs symmetry
breaking in both aspects: The incoherent cores have different
sizes as well as the coherent and incoherent domains coexist.

For the nonlocal coupling function with two harmonic
modes, we have rigorously explored the bifurcation struc-
ture along the Ott-Antonsen invariant manifold to present a
complete stability diagram for a variety of stationary spiral
chimera patterns as well as a breathing asymmetric spiral
chimera state. The conditions for the genesis of asymmetric
spiral chimeras are derived, which reveals that the asymmetric
spiral chimera state emerges via a supercritical symmetry-
breaking bifurcation from the symmetric spiral chimera. For
the general nonlocal coupling scheme, the asymmetric spiral
chimeras occur in consequence of a competition between the
odd and even modes of the Legendre expansion of the cou-
pling function. Numerical simulations of the model system
show good agreement with the theoretical results from the
Ott-Antonsen ansatz equations.

We anticipate that the driving mechanism for the emer-
gence of asymmetric spiral chimeras can be used and applied
to search for asymmetric multicore spiral chimeras in experi-
ments and realistic nature systems.
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APPENDIX: DERIVATION OF CHARACTERISTIC
EQUATION FOR THE POINT SPECTRUM

For the case of the coupling function with two Legendre
harmonics given by Eq. (3), we substitute the ansatz

(
ξ (r, t )
ξ ∗(r, t )

)
=
(

q1(r)
q2(r)

)
eλt

into Eq. (30) to obtain

λq(r) = J (r)q(r) +
2∑

�=1

�∑
m=−�

Y m
� (r)Q�(r)c�m, (A1)

where q(r) = (q1(r)
q2(r)), J (r) = (η(r) 0

0 η∗(r)), Q1(r) = 2π
3 κ1

Q(r), and Q2(r) = 2π
5 κ2Q(r) with a matrix

Q(r) =
(

e−iα −z2
0(r)eiα

−z∗2
0 (r)e−iα eiα

)
.

The constant vectors c�m are given by

c�m = 〈[Y m
� (r)

]∗
q(r)

〉
S2 , (A2)

where the angular bracket represents a spatial average
over the surface of sphere: 〈 f (r)〉S2 ≡ 1

4π

∫
S2 f (r)dr =

1
4π

∫ π

0 sin θ
∫ 2π

0 f (r)dφdθ .
Assuming that det[λI2 − J (r)] 	= 0, we solve Eq. (A1) for

q(r) and substitute it into Eq. (A2) to obtain homogeneous
equations for c�m as

c�m =
2∑

k=1

k∑
n=−k

〈[
Y m

� (r)
]∗

Y n
k (r)E (r; λ)Qk (r)

〉
S2 ckn, (A3)

where E (r; λ) = [λI2 − J (r)]−1. Defining w j and c j as
(w1, . . . ,w8)T := (Y 0

1 ,Y 1
1 ,Y −1

1 ,Y 0
2 ,Y 1

2 ,Y −1
2 ,Y 2

2 ,Y −2
2 )T and

(c1, . . . , c8)T := (c10, c11, c1,−1, c20, c21, c2,−1, c22, c2,−2)T ,
Eq. (A3) can be rewritten by

c j =
8∑

k=1

Bjk (λ)ck, for j = 1, . . . , 8,

where Bjk is a two-dimensional matrix given by

Bjk (λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2π
3 κ1
〈
w∗

j (r)wk (r)E (r, λ)Q(r)
〉
S2

for k = 1, 2, 3,
2π
5 κ2
〈
w∗

j (r)wk (r)E (r, λ)Q(r)
〉
S2

for k = 4, 5, 6, 7, 8.

(A4)

As a result, we obtain the characteristic equation for the point
spectrums λ of L in the form of Eq. (33).

Each matrix block Bjk includes double integrals. For the
spiral chimera states given by Eq. (13), however, the integrals
with respect to the variable φ can be calculated, reducing
the double integral calculations into simple integration with
respect to θ , or equivalently, to x ∈ [−1, 1]. Furthermore,
employing the symmetries of the spiral chimera states given
by Eq. (13), we can find that some of matrix blocks vanishes:
B12 = B13 = B15 = B16 = B21 = B27 = B28 = B31 = B37 =
B38 = B42 = B43 = B45 = B46 = B51 = B54 = B57 = B58 =
B61 = B64 = B67 = B68 = B72 = B73 = B75 = B76 = B78 =
B82 = B83 = B85 = B86 = B87 = 0. As a result, the matrix B
can be written by

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B11 0 0 B14 0 0 B17 B18

0 B22 B23 0 B25 B26 0 0
0 B32 B33 0 B35 B36 0 0

B41 0 0 B44 0 0 B47 B48

0 B52 B53 0 B55 B56 0 0
0 B62 B63 0 B65 B66 0 0

B71 0 0 B74 0 0 B77 0
B81 0 0 B84 0 0 0 B88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A5)

where the nonvanishing matrix blocks are given as in the
following:

B11 = κ1

2

(
e−iα

〈
x2

λ−η

〉
0

0 eiα
〈

x2

λ−η∗
〉
)

,

B14 = κ2

√
15

20

(
e−iα

〈 x(3x2−1)
λ−η

〉
0

0 eiα
〈 x(3x2−1)

λ−η∗
〉
)

,

B17 = 3κ2

20

√
5

2

(
0 0

e−iα
〈 x(1−x2 )h∗2Ẑ∗2

λ−η∗
〉

0

)
,

B18 = 3κ2

20

√
5

2

(
0 eiα

〈 x(1−x2 )h2Ẑ2

λ−η

〉
0 0

)
,

B22 = B33 = κ1

4

(
e−iα

〈
1−x2

λ−η

〉
0

0 eiα
〈

1−x2

λ−η∗
〉
)

,

B23 = −κ1

4

(
0 eiα

〈 (1−x2 )h2Ẑ2

λ−η

〉
0 0

)
,

B25 = 3
√

5κ2

20

(
e−iα

〈 x(1−x2 )
λ−η

〉
0

0 eiα
〈 x(1−x2 )

λ−η∗
〉
)

,

B26 = −
√

2B18,

B32 = −κ1

4

(
0 0

e−iα
〈 (1−x2 )h∗2Ẑ∗2

λ−η∗
〉

0

)
,

B35 = −
√

2B17,

B44 = κ2

8

(
e−iα

〈 (3x2−1)2

λ−η

〉
0

0 eiα
〈 (3x2−1)2

λ−η∗
〉
)

,
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B47 = B84 =
√

3

2

κ2

8

(
0 0

e−iα
〈 (3x2−1)(1−x2 )h∗2Ẑ∗2

λ−η∗
〉

0

)
,

B48 = B74 =
√

3

2

κ2

8

(
0 eiα

〈 (3x2−1)(1−x2 )h2Ẑ2

λ−η

〉
0 0

)
,

B52 = B63 = 5κ1

3κ2
B25, B53 = 5κ1

3κ2
B26,

B55 = B66 = 3κ2

4

(
e−iα

〈 x2(1−x2 )
λ−η

〉
0

0 eiα
〈 x2(1−x2 )

λ−η∗
〉
)

,

B56 = −3κ2

4

(
0 eiα

〈 x2(1−x2 )h2Ẑ2

λ−η

〉
0 0

)
,

B62 = 5κ1

3κ2
B35, B71 = 5κ1

3κ2
B18, B81 = 5κ1

3κ2
B17,

B65 = −3κ2

4

(
0 0

e−iα
〈 x2(1−x2 )h∗2Ẑ∗2

λ−η∗
〉

0

)
,

B77 = B88 = 3κ2

16

(
e−iα

〈 (1−x2 )2

λ−η

〉
0

0 eiα
〈 (1−x2 )2

λ−η∗
〉
)

.

For the asymmetric spiral chimera states given by Z =
(a + b cos θ ) sin θeiφ , the functions Ẑ = Ẑ (x), η = η(x) and
h = h(x) are to be taken as in the following:

Ẑ = (a + bx)
√

1 − x2, η = i
√

�2 − (1 − x2)|a + bx|2,
h = 1

� +
√

�2 − (1 − x2)|a + bx|2
.
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