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Seven-state rotation-symmetric number-conserving cellular automaton that is not isomorphic to
any septenary one
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We consider two-dimensional cellular automata with the von Neumann neighborhood that satisfy two proper-
ties of interest from a modeling viewpoint: rotation symmetry (i.e., the local rule is invariant under rotation of
the neighborhood by 90◦) and number conservation (i.e., the sum of all the cell states is conserved upon every
update). It is known that if the number of states k is smaller than or equal to six, then each rotation-symmetric
number-conserving cellular automaton is isomorphic to some k-ary one, i.e., one with state set {0, 1, . . . , k − 1}.
In this paper, we exhibit an example of a seven-state rotation-symmetric number-conserving cellular automaton
that is not isomorphic to any septenary one. This example strongly supports our plea that research into multistate
cellular automata should not only focus on those that have {0, 1, . . . , k − 1} as a state set.
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I. INTRODUCTION

Cellular automata (CAs) are discrete dynamical systems
that evolve according to a simple local rule, but can never-
theless produce very complex dynamics (see [1] or [2], for
instance). For this reason, such systems for several decades
are willingly used to build models of various phenomena, in
particular physical ones (see, for example, [3] or [4]).

The definition of a CA requires the choice of a cellular
space C, a neighborhood N of every cell, a state set Q, and
a local rule f . Although the specification of the quadruple
(C,N , Q, f ) has a great influence on the resulting model,
usually little attention is paid to what elements Q contains, but
only to how many there are. Therefore, theoretical research—
if it does not consider some general hypothetical state set
Q—mostly concerns the so-called k-ary CAs (binary, ternary,
quaternary, quinary, and so on), for which the state set equals
{0, 1, . . . , k − 1} for some integer k � 2 (see, for instance,
[5–8]).

The above approach seems justified for the following
reason. Suppose that C and N are fixed and that two finite
equinumerous sets Q and Q̃ are given. Then for each CA
A = (C,N , Q, f ), using any bijection φ : Q → Q̃, one can
define an isomorphic CA Ã = (C,N , Q̃, f̃ ), which means
that when identifying the states q and φ(q) (for any q ∈ Q),
the CAs A and Ã are indistinguishable (for the strict meaning,
see Definition 4). For example, in the one-dimensional
case, where the dynamics of a given cellular automaton
is usually represented by a space-time diagram, the fact
that two CAs A = (C,N , Q, f ) and Ã = (C,N , Q̃, f̃ ) are
isomorphic simply means that if we choose some collection
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of colors to represent the states of Ã and then for every
state q ∈ Q we use the same color as for the state φ(q),
then the corresponding space-time diagrams for A
and Ã will be exactly the same. Perhaps the most common
situation is when considering binary CAs and the set of states
can be named {0, 1} or {white, black} or {dead, alive} or
{healthy, sick} or {empty, occupied}, to name but a few.

However, in many situations, only CAs having some addi-
tional property P are considered (for instance, resulting from
the properties of the model being built). Since isomorphy
does not need to preserve P, for two equinumerous sets Q
and Q̃, the family of all Q-state CAs satisfying P may differ
significantly from the family of all Q̃-state CAs satisfying
P. For example, when modeling various kinds of physical
phenomena, very often some additional condition is imposed
on the local rule f related to the symmetries of the neigh-
borhood N (for instance, rotation invariance) or related to
some conservation laws (of mass, energy, and so on). While in
the former case we still do not have to worry about the choice
of Q, in the latter case, it is known that selecting Q may be
important.

We are encountering such a situation in the case of
two-dimensional rotation-symmetric number-conserving CAs
(RSNCCAs) with the von Neumann neighborhood (see Sec. II
for definitions). Tanimoto et al. [9] proved that such CAs
with at most four states are all trivial, regardless of Q, i.e.,
if just |Q| � 4, then the identity is the only RSNCCA with
such a state set. Later, Imai et al. [10] showed that the case
of five states is a bit more complicated: if the elements of a
given five-element set Q form an arithmetic progression, then
there are exactly four RSNCCAs with this state set Q; if the
elements of Q do not form an arithmetic progression, then
there is only one RSNCCA with this state set (the identity).
Thus the choice of Q has a big influence on the number of such
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CAs. However, it was also proved that the set {0, 1, 2, 3, 4}
can be treated as a basic set of states in the sense that any
five-state RSNCCA is isomorphic to some quinary RSNCCA,
i.e., with state set {0, 1, 2, 3, 4} (see [10]). An analogous result
was proved in [11] for the more complicated case of six
states: the authors showed that the set {0, 1, 2, 3, 4, 5} can
be treated as a basic set for all six-state RSNCCAs. Indeed,
there are exactly 116 senary RSNCCAs (with the state set
{0, 1, 2, 3, 4, 5}) and any six-state RSNCCA is isomorphic to
some of those 116 RSNCCAs. Thus, knowing the dynamics of
116 senary RSNCCAs, we know the dynamics of any six-state
RSNCCA.

The results of [9–11] lead to the open question whether or
not the following general statement holds.

Question 1. Is every RSNCCA with k states isomorphic to
some k-ary RSNCCA?

Although the proof technique used in [11] does not easily
generalize to larger state sets, it was believed that the answer
to Question 1 would be positive.

Unfortunately, reality turns out to be different. In this pa-
per, we demonstrate that the answer to the above question
is negative. More precisely, we provide an example of a
seven-state RSNCCA that is not isomorphic to any septenary
RSNCCA (i.e., with the state set {0, 1, 2, 3, 4, 5, 6}).

II. PRELIMINARIES

As cellular space we consider the two-dimensional infinite
grid Z2. At every discrete time step, every cell (i, j) in Z2 is
assigned a state from a given set Q. We assume the state set Q
to be a finite set of real numbers containing 0.

A configuration is any mapping from the grid Z2 to Q. The
set of all possible configurations QZ2

is denoted as X . For a
given configuration x ∈ X , the value of cell (i, j) is denoted
by xi, j . By Xfin we denote the set of all finite configurations,
i.e., those configurations that are almost everywhere equal to
zero:

Xfin = {x ∈ X | {(i, j) ∈ Z2 | xi, j �= 0} is finite}.

A configuration x ∈ X is called totally spatially periodic
if there exist positive integers p1 and p2 such that for each
(i, j) ∈ Z2 it holds that

xi, j = xi+p1, j = xi, j+p2

(see, for instance, [12]). In other words, a totally spatially
periodic configuration consists of some rectangular pattern
(with sizes p1 and p2) that is periodically repeated in both
dimensions of Z2. The couple (p1, p2) is referred to as the pe-
riod of x. The set of all totally spatially periodic configurations
is denoted as Xper.

Generally, a neighborhood is understood as an m tuple
(v1, v2, . . . , vm) of distinct vectors of Z2 that specify for a
given cell the relative positions of its neighbor cells (with
respect to that cell). In this paper, we consider the so-called
von Neumann neighborhood (with radius 1), for a given cell
consisting of the cell itself and its four adjacent cells; hence,
we use N = ((0,−1), (−1, 0), (0, 0), (1, 0), (0, 1)). For the
sake of convenience, for a given configuration x ∈ X we list

the states of the cells in the neighborhood of a cell (i, j) as

xi, j−1

xi−1, j xi, j xi+1, j

xi, j+1

.

The new state of a cell (i, j) depends only on the states of
the cells in its neighborhood at the previous time step through
a local rule f . Thus, in our case, the domain of f is given by

D =
⎧⎨⎩ u

l c r
d

| u, l, c, r, d ∈ Q

⎫⎬⎭.

A given local rule f : D → Q generates a global rule F :
X → X in the usual way: for any x ∈ X , the configuration
F (x) is given by

F (x)i, j = f

⎛⎝ xi, j−1

xi−1, j xi, j xi+1, j

xi, j+1

⎞⎠ .

By a CA we mean the quadruple (Z2,N , Q, f ).
In our investigation, we focus on CAs that have two proper-

ties that are important from the point of view of applications.
The first one is rotation symmetry, which means that the local
rule of the CA is invariant under rotation of the neighborhood
by 90◦.

Definition 1. A CA is called rotation symmetric if its local
rule f satisfies for any u, l, c, r, d ∈ Q,

f

⎛⎝ u
l c r

d

⎞⎠ = f

⎛⎝ r
u c d

l

⎞⎠. (1)

The second property of CAs we are interested in is number
conservation, which means that the sum of all the states in
any configuration remains constant throughout the evolution
of the automaton. Since the cellular space Z2 is infinite, it is
convenient to consider number conservation in the sense of
finite or periodic number conservation.

Definition 2. Let F be the global rule of a CA. We say that
this CA is finite number conserving if for any x ∈ Xfin, it holds
that ∑

(i, j)∈Z2

F (x)i, j =
∑

(i, j)∈Z2

xi, j .

Definition 3. Let F be the global rule of a CA. We say that
this CA is periodic number conserving if for any x ∈ Xper, it
holds that ∑

0�i<p1,0� j<p2

F (x)i, j =
∑

0�i<p1,0� j<p2

xi, j,

where (p1, p2) is the period of x.
Durand et al. [13] proved that Definitions 2 and 3 are

equivalent.
Theorem 1. A cellular automaton (Z2,N , Q, f ) is finite

number conserving if and only if it is periodic number con-
serving.

The above theorem allows us to use the term “number con-
serving” having in mind any of these two definitions. If a CA
is number conserving, then we also call its local and global
rules number conserving. In this paper, a two-dimensional
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CA with the von Neumann neighborhood that is both rotation
symmetric and number conserving will be abbreviated as an
RSNCCA.

A detailed characterization of all RSNCCAs with up to
five states, as mentioned in the Introduction, can be found in
[9,10]. The case of six states was considered in [11] (on finite
grids only, but this is the same as considering the infinite grid
using Definition 3), where a very tedious and technical ap-
proach allowed one to pick out all senary RSNCCAs from the
huge set of all two-dimensional rotation-symmetric CAs with
the state set {0, 1, 2, 3, 4, 5} and the von Neumann neighbor-
hood (note that the cardinality of this set is greater than 665/4,
a number with 1513 digits). It appeared that there are only 116
such RSNCCAs. Moreover, the authors gave a full characteri-
zation of the set of all RSNCCAs for any six-element state set,
from which it resulted, inter alia, that any six-state RSNCCA
is isomorphic to some senary RSNCCA (see [11] for details).
When stating that two CAs are isomorphic (sometimes the
term equivalent is also used), we have the following definition
in mind.

Definition 4. We say that a CA A = (Z2,N , Q, f ) is iso-
morphic to a CA Ã = (Z2,N , Q̃, f̃ ) if there exists a bijection
φ : Q → Q̃ such that for any u, l, c, r, d, x ∈ Q,

f

⎛⎝ u
l c r

d

⎞⎠ = x ⇔ f̃

⎛⎝ φ(u)
φ(l ) φ(c) φ(r)

φ(d )

⎞⎠ = φ(x).

(2)

The results of [9–11] can be summarized as follows.
Theorem 2. Let k � 6. Then every RSNCCA with k states

is isomorphic to some k-ary RSNCCA.
In the next section, we present a counterexample showing

that Theorem 2 cannot be generalized, even for k = 7.

III. COUNTEREXAMPLE

The method described in [11] allows one to enumerate all
septenary RSNCCAs with the help of a computer. One can
also use a much more general method introduced in [14] based
on the characterization of number-conserving CAs with the
von Neumann neighborhood. Either of these two ways results
in a complete list of all 30 144 septenary RSNCCAs, which
can be found in [15] (this dataset contains the full list, before
reduction according to conjugation or reflection dependency).

Now, let us define the following RSNCCA A∗ =
(Z2,N , Q, f∗), by setting Q = {0, 2, 3, 4, 5, 6, 8} and

f∗

⎛⎝ u
l c r

d

⎞⎠ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2N8(u, r, d, l ) if c = 0

8 − 2N0(u, r, d, l ) if c = 8

2 + N6(u, r, d, l ) if c = 2

6 − N2(u, r, d, l ) if c = 6

c otherwise,

where Nb(u, r, d, l ) denotes the number of occurrences of b
among u, r, d, l . The local rule f∗ thus has a very simple
interpretation in the language of particle representation: every
cell with eight particles gives two particles to each empty
cell in its neighborhood (therefore also every empty cell gets
two particles from each cell in its neighborhood having eight

8 8
0 0

4 4
4 4

6 6
2 2

8 4
0 4

6 4
2 4

8 2
0 6

8 6
0 2

×4 ×4

×8
×8×8

×1

×8

FIG. 1. Configurations with period (2,2) transformed by A∗ into
the homogeneous configuration with 4’s.

particles) and every cell with six particles gives one particle to
each cell in its neighborhood having two particles (therefore
also every cell with two particles gets one particle from each
cell in its neighborhood having six particles). The remain-
ing cells do not change their states. Since the local rule f∗
can be interpreted in such a simple way in terms of motion
of particles, one can see that it is rotation symmetric and
number conserving. We will argue that the RSNCCA A∗ =
(Z2,N , Q, f∗) is not isomorphic to any septenary RSNCCA.

Since there are as many as 7! possible bijections be-
tween two seven-element sets, a brute-force approach check-
ing for all septenary RSNCCAs whether Eq. (2) holds
or not requires 30 144 × 7! × 75 = 2 553 416 248 320 opera-
tions, which looks rather daunting. Instead, we propose to use
the method of invariants: for each RSNCCA A we define some
simple numerical parameter γ (A), which proves invariant un-
der isomorphy. Then we calculate the value of this parameter
for all septenary RSNCCAs. If no value turns out to be equal
to the value γ (A∗), then this proves that A∗ is not isomorphic
to any septenary RSNCCAs.

Let a b
c d denote the configuration x ∈ Xper with period

(2,2), for which x0,0 = a, x1,0 = b, x0,1 = c, and x1,1 = d . For
a given A = (Z2,N , Q, f ) and q ∈ Q, let γ (A, q) denote the
number of configurations x ∈ Xper with period (2,2) such that
F (x) is the homogeneous configuration in which all cells have
state q, i.e.,

γ (A, q) =
∣∣∣∣{ a b

c d ∈ Xper | F
(

a b
c d

)
= q q

q q

}∣∣∣∣
and let γ (A) = maxq∈Q γ (A, q).

It is easy to see that if A = (Z2,N , Q, f ) and Ã =
(Z2,N , Q̃, f̃ ) are isomorphic by a bijection φ : Q → Q̃, then
for any q ∈ Q it holds that γ (A, q) = γ (Ã, φ(q)), thus also
γ (A) = γ (Ã), which means that the parameter γ is invariant
under isomorphy.

For the example local rule f∗, one can calculate that
γ (A∗) = γ (A∗, 4) = 41. It is shown in Fig. 1 which config-
urations are transformed into the homogeneous configuration
with 4’s. To keep the schema readable, we grouped these
configurations according to significantly different patterns,
ignoring rotations and axial symmetries. For example, all
eight configurations 6 4

2 4 , 2 6
4 4 , 4 2

4 6 , 4 4
6 2 ,

2 4
6 4 , 4 4

2 6 , 4 6
4 2 , and 6 2

4 4 are transformed into
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TABLE I. Number of septenary RSNCCAs with a given value of
γ (A).

γ (A) 1 5 9 13 17

Number of septenary RSNCCAs 48 696 6048 9328 14024

4 4
4 4 , but we present only the first one and give the

information that it represents a group of eight configurations
(×8). We have calculated γ (A) for all septenary RSNCCAs
and only the following values were obtained: 1, 5, 9, 13,
and 17.

Table I presents the numbers of septenary RSNCCAs with
a given γ (A). As the largest possible value of γ (A) for any
septenary RSNCCA is 17, we conclude that A∗ is not isomor-
phic to any septenary RSNCCA.

IV. CONCLUSIONS

There was a common belief among CA researchers that it
suffices to consider CAs with the state set {0, 1, . . . , k − 1}.
The authors of [11] were asked by an anonymous reviewer
why they wrote down a complicated proof for the seemingly

obvious fact that every RSNCCA with six states is isomorphic
to some senary RSNCCA. The example in this paper shows
that such effort is necessary, since Theorem 2 does not gen-
eralize to higher values of k. For general CAs, it is merely
a matter of renaming states, so that one can always use the
state set {0, 1, . . . , k − 1}. However, number conservation (for
instance) imposes some additional additive structure on the
state set, implying that some natural arguments regarding the
renaming of states become invalid. One indeed has to be very
careful when performing such operation.

The local rule f∗ was inspired by some models in which
particles carrying different amounts of energy coexist. These
models are quite natural to consider in the context of number-
conserving CAs and our example shows that limiting the
attention to the most popular k-ary world is not always suf-
ficient.

Finally, we would like to share a positive conclusion from
our paper. Cellular automata are very often chosen by various
researchers for modeling physical phenomena and are then
usually assumed to be k-ary number-conserving CAs (if any
principles of conservation come into play). The presented
example shows that if we open ourselves to other sets of
states, we can get new kinds of models with different physical
properties.
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