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Chaos in the three-site Bose-Hubbard model: Classical versus quantum
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We consider a quantum many-body system—the Bose-Hubbard system on three sites—which has a classical
limit, and which is neither strongly chaotic nor integrable but rather shows a mixture of the two types of behavior.
We compare quantum measures of chaos (eigenvalue statistics and eigenvector structure) in the quantum system,
with classical measures of chaos (Lyapunov exponents) in the corresponding classical system. As a function
of energy and interaction strength, we demonstrate a strong overall correspondence between the two cases.
In contrast to both strongly chaotic and integrable systems, the largest Lyapunov exponent is shown to be a
multivalued function of energy.
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I. INTRODUCTION AND OVERVIEW

How to translate classical chaos to quantum systems has
been studied since the very beginning of quantum mechanics
[1]. Classical chaos is the sensitivity of dynamics to initial
perturbations [2], while quantum chaos manifests itself in var-
ious quantum properties, such as in level spacing distributions
[3–5]. Level spacings of quantum models with an integrable
classical limit typically follow Poisson’s law [6], while level
spacings of models with a classically chaotic limit typically
obey Wigner distributions [7,8] typical of random matrices.
In this work we will address the question how classical chaos
relates to quantum notions of chaos in a many-body system
that is neither integrable nor strongly chaotic, but rather shows
a mixture of both behaviors, i.e., is a “mixed” system.

Regular and chaotic motion coexist in the phase space
of mixed classical Hamiltonian systems, and corresponding
quantum systems show a combination of chaotic and non-
chaotic features. For Hamiltonian systems with a few degrees
of freedom, mixed behavior is considered generic [9–24].
In contrast, mixed systems are less commonly considered in
many-body systems. In particular, in the thermodynamic limit
(limit of large number of sites), proximity to integrability is
expected to have negligible effects and systems are expected
to be driven to be chaotic and ergodic by infinitesimal pertur-
bations away from integrable points [25–33]. In this work, we
will consider the classical limit instead of the thermodynamic
limit, by considering a system of N bosons and taking the
N → ∞ limit on a fixed lattice geometry. For a small number
of lattice sites, this can lead to mixed behavior both for the
quantum system and for the classical limit.

To connect the classical and quantum worlds we will refine
the classical phase space into energy manifolds and compare
with eigenvalues and eigenstates of the quantum Hamiltonian
in the corresponding energy ranges.

The sensitivity to initial conditions of the classical mo-
tion will be measured by the largest Lyapunov exponent
λmax. It is generically not possible to calculate the largest

Lyapunov exponents analytically or exactly; we will therefore
estimate them numerically by integrating classical motion up
to a finite time, the finite-time Lyapunov exponents (FTLEs).
We will use the terms “Lyapunov exponents” and “FTLEs”
interchangeably—it is to be understood that all presented data
for λmax are best available numerical estimates and that ana-
lytically exact values are generally not available.

The model we consider is the celebrated Bose-Hubbard
model. It attains a classical limit for fixed number of sites
L and increasing particle number N . In this limit it is
equivalent to the well-known discrete nonlinear Schrödinger
equation (DNLS) [34–37], which is a classical Hamiltonian
system. The DNLS can be regarded as a mean-field approxi-
mation or as a classical limit of the Bose-Hubbard model. As a
classical limit, it is widely used as the basis for semi-classical
studies of the Bose-Hubbard model [38–59]. The behavior of
the quantum model has been compared to that of the DNLS
[60–70]. When considering the classical limit, it is convenient
to parametrize the interaction by � = UN , where U is the
onsite interaction and N is the number of particles. In the
limits � → 0 and � → ∞ it can be analytically solved and
is therefore integrable. In the special case of L = 2 sites the
model is integrable for all �. For finite � the Bose-Hubbard
model on three or more sites is known to be nonintegrable
[71,72]. Despite being nonintegrable, for L = 3 and to some
extent for L = 4 the system is not strongly chaotic but rather
highly mixed [41,62,66,70,73–80]. We will mainly restrict our
analysis to L = 3 sites. (In the Appendix, for comparison we
present some classical results for L = 4 and L = 7 sites.)

We will compare the FTLEs for the classical system to
several chaos indicators on the quantum side—level statis-
tics, eigenstate statistics, and the scaling of fluctuations of
eigenstate expectation values (EEVs). Figure 1 provides an
overview of the results. Here we show chaoticity as a function
of interaction parameter � and relative energy. Chaos is vi-
sualized as grayscale heatmaps, where the intensity indicates
how chaotic that region is—the lighter the more chaotic.
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FIG. 1. Heatmap of classical chaos indicator (a) and quantum chaos indicators (b), (c), and (d). Relative energy 0 corresponds to the
minimal (ground state) energy while 1 corresponds to the maximal energy and � is the onsite interaction strength. The lighter the color
the more chaotic. (a) Fraction of states with positive largest Lyapunov exponent. (b) Kullback-Leibler divergence of the distribution of level
ratios from the distribution of level ratios of Gaussian orthogonal matrices; capped at 0.15. (c) Excess kurtosis of eigenstates; capped at 24.
(d) Exponent of the exponential decay of ETH fluctuations with Hilbert space size of normalized operators, clipped between 0 and 0.3.

Figure 1(a) shows chaos of the classical Bose-Hubbard
model, while Figs. 1(b), 1(c) and 1(d) show chaos measures
of the quantum system. In Fig. 1(a) we show the fraction
of positive FTLEs of the classical model. We consider a
FTLE as positive if it is greater than 10−4, and zero other-
wise. In Fig. 1(b) we show the deviation of level statistics
of the quantum model from Wigner’s GOE distribution mea-
sured by the Kullback-Leibler divergence. In Fig. 1(c) we
show how much eigenstates of the quantum model deviate
from Gaussian states via the kurtosis. The kurtosis obtained
from the eigenstate coefficients in two different bases are
combined—the larger of the two is used at every point of
the heatmap. In Fig. 1(d) we show the exponent in the
size-dependence of the fluctuations of eigenstate expectation
values (EEVs). This is motivated by the scaling of the eigen-
state thermalization hypothesis (ETH) and may be described
as the size dependence of ETH fluctuations in approaching
the classical limit [79]. The data in Figs. 1(b) and 1(c) are for
N = 150 bosons, while the exponents in Fig. 1(d) are obtained
by fitting EEV fluctuations between N = 90 and N = 170.
Overall, we have found these quantum results to be broadly
independent of N .

Figure 1(a) reveals features of the classical phase space,
i.e., the phase space of the three-site discrete nonlinear
Schrödinger equation. For � � 1 all Lyapunov exponents are
close to 0. For � > 1 regions with a nonzero fraction of
positive Lyapunov exponents emerge at intermediate energies.
At � ≈ 3 there are positive largest FTLEs at most energies,
except for smallest and largest energies. For � > 3 the region
of nonzero fractions of positive Lyapunov exponents shrinks
and shifts to lower energies, where it survives even for the
largest � = 100 we investigated. These results highlight the
mixed nature of the classical phase space. In particular, zero
and nonzero Lyapunov exponents exist at the same energy for
the same �. This will be further elaborated in Sec. III and
Fig. 2.

The same shape of the heatmap in Fig. 1(a) is observed
in panels (b)–(d) as well. The white bars at the top right
of the quantum plots do not show chaotic regions; these are
finite-size defects (gaps in the spectra which are larger than
the energy windows used to compile the heatmaps). The exact

measures used in these panels and the subtleties encountered
for the quantum cases will be detailed in Secs. IV, V, and
VI, which focus, respectively, on level statistics, panel (b), on
eigenstate amplitude statistics, panel (c), and on EEV scaling,
panel (d).

The overall visual agreement between classical chaos re-
gions, panel (a), and quantum chaos regions, panels (b)–(d),
is striking. Chaotic energy regions of the classical phase space
correspond generally to chaotic regions of the spectrum of the
quantum Hamiltonian. Even fine structures in the heatmaps
show some agreement. For 1 < � < 3 small bulbs appear
at the chaotic-regular boundary in the classical spectrum (a),
which can be recognized in the level statistics (b) as well as in
the kurtosis of eigenstates (c). We conclude that overall there
is a close correspondence of chaotic and nonchaotic regions
of the classical model and the quantum model. There are, of
course, some discrepancies, also among the various quantum
measures, and various artifacts due to the particular measures
used. These issues will be discussed in the body of this paper.

In Sec. II we introduce the version of the quantum Bose-
Hubbard model we use, and its classical limit. Lyapunov
exponents of the classical model are analyzed in Sec. III,
where the data of Fig. 1(a) is explained, and other ways of
using the FTLEs to demarcate chaotic and nonchaotic regions
are explored. In Sec. IV we investigate the eigenvalues of the
quantum model leading to the results shown in Fig. 1(b). In
Sec. V eigenstates are compared to Gaussian states and the
numerical derivation of Fig. 1(c) is explained. In Sec. VI, we
describe quantifying chaos using EEV scaling exponents, and
explain how Fig. 1(d) is obtained. We end the main text with
some discussion in Sec. VII. In the Appendices, we provide
an outline of how to calculate Lyapunov exponents, and we
also show and briefly discuss Lyapunov exponents for L = 4
and L = 7 sites.

II. MODEL AND PARAMETRIZATIONS

A. Quantum model and classical limit

We will investigate Bose-Hubbard systems restricted to
open-boundary chains of length L, with nearest neighbor
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FIG. 2. FTLE estimates for largest Lyapunov exponent λmax for the classical limit, Eq. (5). The numerical estimates for λmax are plotted
against energy, for several different values of the interaction parameter �. From left to right � is (a) � = 0.43, (b) � = 0.93, (c) � = 2.48,
(d) � = 6.58, and (e) � = 24.77.

hoppings and onsite interactions. The quantum Hamiltonian
is

H = −1

2

∑
〈 j,l〉

Jj,l a
†
j al + U

2

L∑
j=1

n j (n j − 1), (1)

where 〈 j, l〉 denotes summation over adjacent sites (l = j ±
1), a†

j and a j are the bosonic creation and annihilation op-

erators for the jth site and n j = a†
j a j is the corresponding

occupation number operator. Jj,l = Jl, j is the symmetric tun-
neling coefficient and U is the two-particle onsite interaction
strength. We choose J1,2 = 1.5 and Jj,l = 1 for j, l � 2 to
avoid reflection symmetry. The number of bosons N is con-
served by the Hamiltonian. We introduce the tuning parameter
� = UN . The Hilbert space dimension D of the quantum
Hamiltonian is D = (N+L−1

L−1

)
. For constant L, this grows with

boson number N as D ∼ NL−1.
The Bose-Hubbard model has a classical limit for N → ∞

while keeping the number of sites L fixed. This limit can be
taken by renormalizing the creation and annihilation operators
via a → a/

√
N = ā, so [ā†

j , ā j] = 1/N = h̄eff → 0 for N →
∞, where we let h̄ = 1. The renormalized Hamiltonian is then
given by

H̄ = H/N = −1

2

∑
〈 j,l〉

Jj,l ā
†
j āl + �

2

∑
j

n̄ j (n̄ j − 1/N ), (2)

where n̄ = ā†ā. The corresponding classical Hamiltonian H in
the large N-limit is then obtained by replacing the operators
ā, ā† by complex numbers ψ , ψ∗:

H = −1

2

∑
〈 j,l〉

Jj,lψ
∗
j ψl + �

2

∑
j

|ψ j |4. (3)

Conservation of the total number of particles N in the quantum
systems enforces

∑
j

|ψ j |2 = 1, (4)

so the phase space of the classical model is restricted to the
real hyper-sphere S2L−1 ⊂ R2L.

The dynamics of the classical Bose-Hubbard Hamiltonian
are given by Hamilton’s equations of motion

i
∂

∂t
ψ j = ∂H

∂ψ∗
j

= −1

2

∑
〈 j,l〉

Jj,lψl + �|ψ j |2ψ j, (5)

which is also known as the discrete nonlinear Schrödinger
equation, or the discrete Gross-Pitaevskii equation.

Identifying the complex plane C with the real plane R2

one can rewrite the L complex equations in Eq. (5) as 2L
real equations. For computational reasons we chose Cartesian
coordinates and let x = Re ψ and y = Im ψ . Then Hamilton’s
equation of motion read

∂H
∂x j

= −
∑
〈 j,k〉

Jj,kxk + 2�
∑

j

(
x2

j + y2
j

)
x j (6)

and

∂H
∂y j

= −
∑
〈 j,k〉

Jj,kyk + 2�
∑

j

(
x2

j + y2
j

)
y j . (7)

In the limits � → 0 and � → ∞, both the quantum and
the classical systems are integrable. If � = 0, then Eqs. (1)
and (3) reduce to free particle Hamiltonians. If � → ∞, then
one effectively can neglect J , so that Eq. (1) is diagonal in
the computational basis of mutual eigenstates of nj and the
equations of motion Eq. (5) are decoupled.

In the remainder of the paper we mainly focus on the Bose-
Hubbard model on L = 3 sites, so as to focus on a system
with very mixed behavior. Computationally, since the Hilbert
space size D grows only quadratically in N for L = 3, we are
able to consider the quantum Hamiltonian far into the classical
limit (small h̄eff = 1/N) while keeping the Hilbert space size
accessible for numerical diagonalization.

B. Relative energy and energy intervals

Our classical-quantum comparison is energy-resolved. For
each �, we will compare the degree of chaos in individual
energy regions of the classical system with the degree of chaos
in corresponding energy regions of the quantum system.

Numerically, for each interaction � the possible energies
are divided into 100 evenly spaced energy intervals. We also
rescale and shift the energy for each � to define the relative
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energy

Ẽ = E − Emin

Emax − Emin
, (8)

which takes values in the range [0,1]. For the classical system,
Emin and Emax are the lowest and highest possible classical
energies. For the quantum system, they are, respectively, the
lowest eigenenergy (ground state energy) and the highest
eigenenergy. Each energy interval corresponds to an interval
of Ẽ having width 0.01. When we refer to the interval at
relative energy Ẽ , we mean the interval [Ẽ − 0.01, Ẽ ].

For the classical calculation [Fig. 1(a), Sec. III], Lyapunov
exponents are collected for phase space points whose energy
is in the desired interval. For the quantum eigenvalue statistics
[Fig. 1(b), Sec. IV], the spacing between eigenvalues within
the desired interval is analyzed. For quantum measures based
on eigenstates [Figs. 1(c) and 1(d), Secs. V and VI], all eigen-
states whose eigenvalues lie in the interval are considered.

III. CLASSICAL LYAPUNOV EXPONENTS

In this section we describe the largest Lyapunov exponents,
λmax, of the classical model, Eq. (5). Some background on
Lyapunov exponents and their numerical calculation (calcu-
lating FTLE’s) is provided in Appendix B.

In ergodic Hamiltonian systems, λmax depends solely on
the single conserved quantity, the energy. We will show that
the Bose-Hubbard system on three sites is not an ergodic
system in this sense—there exist states with the same energy
but different largest Lyapunov exponents.

A. Preliminaries

For the L-site system, because there are 2L real equa-
tions of motion, we have 2L different Lyapunov exponents
λmax = λ1 � · · · � λ2L. These exponents are arranged in L
pairs of equal magnitude and opposite sign. Two pairs are zero
because of the conservation of energy and the conservation of
norm, Eq. (4). Thus, at most L − 2 exponents can be positive.
For L = 3, which we will focus on, there is at most one
positive Lyapunov exponent. This is λmax.

The classical phase space is continuous, so a numerical
calculation of the Lyapunov exponents for all states is not
possible. One could sample states according to a uniform dis-
tribution on the phase space. Due to the conservation of total
norm (4), the classical phase space is restricted to the sphere
S5 in R6. Choosing the 2L components of the state from
a Gaussian distribution, and then normalizing the resulting
state, amounts to sampling uniformly on S5. Unfortunately,
sampling uniformly on S5 can lead to a dearth of samples
for small energies and large energies. To sample uniformly in
energy we divide the energy spectrum into 100 evenly spaced
intervals and sample states uniformly within these energy
intervals by the rejection method. We sample states uniformly
on S5 and reject samples unless the energy of the state lies in
the desired energy interval. In this way for each interaction �

we sample up to 104 states uniformly distributed in energy.
Obtaining good estimates of Lyapunov exponents is nu-

merically challenging for imperfectly chaotic systems. The
system needs to be evolved for long times. The FTLE’s

presented in this work are obtained by evolving up to times
one million time units. The units of time and energy are un-
ambiguously specified by the choice of site hopping strengths
(Jj,l = 1 except for the leftmost bond).

B. Numerical observations

In Fig. 2 we plot FTLE’s of sampled states against the
energy of these states, for several interaction parameters �.
Only estimates of the largest Lyapunov exponent λmax are
presented—the other LE’s are either zero or the negative of
λmax.

For � = 0, the model is integrable and hence λmax = 0.
Figure 2(a) shows the numerical estimates for λmax for

nonzero but still small � (� ≈ 0.43). The numerical estimates
for all six Lyapunov exponents have the same order of magni-
tude, 10−6. This implies that λmax is either zero or vanishingly
small up to some finite value of the interaction.

For larger �, Figs. 2(b)–2(e), we find cases of λmax being
unambiguously nonzero, together with cases of the FTLE
being smaller than the cutoff 10−4, which we interpret as λmax

being zero. In each of these panels, there are low-energy and
high-energy regimes where there are only zero λmax, and a
central energy regime with nonzero positive λmax. For smaller
�, the positive-λmax behavior is concentrated at higher ener-
gies (there is an extended λmax = 0 range of low energies),
Fig. 2(b). For large �, the converse is true: λmax > 0 is seen
at lower energies, Figs. 2(d) and 2(e).

In general, when there are nonzero exponents, they coexist
with zero exponents at the same energy, i.e., the λmax versus
energy function is multivalued. The only exception is in the
intermediate-interaction Fig. 2(c), � ≈ 2.48, for which an en-
ergy window with a single nonzero branch is seen. In fact, for
any � � 1, there appears always to be some energy window
where λmax is multivalued—we did not see any exceptions.

The coexistence of zero and nonzero λmax is a peculiar
manifestation of the mixed nature of the system. This is in
contrast to integrable systems (for which λmax is always zero
except a measure zero set) and to strongly chaotic or ergodic
systems (for which λmax is always positive except a measure
zero set). To highlight this contrast, we give examples of
systems with stronger chaos, the same Hamiltonian on L = 4
sites and L = 7 sites, in the Appendix, Fig. 8.

In an ergodic system the largest Lyapunov exponent is
a smooth single valued function of energy. We showed that
λmax is not a single valued function, but rather often has two
branches. One can ask whether each branch is smooth. There
are some noisy features in the plots, especially in Figs. 2(a),
2(b), and 2(e). Presumably, these are finite-time effects, and
each branch would resolve into smooth lines if we could
integrate up to infinite times. While this conjecture could not
be verified conclusively, we observed that integrating up to
longer times generally reduces the noisy aspect.

In one case, Fig. 2(d), λmax even appears to have three
branches (one zero and two nonzero). We have not seen
any indication that this is a finite-time effect, although we
cannot rule it out. The data suggests that the mixed nature
of the system even allows for three λmax values. Apparently,
the same fixed-energy region of phase space can consist of
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FIG. 3. Average largest Lyapunov exponent λ̄max per relative en-
ergy interval renormalized by (a) β� given by Eq. (9) and (b) γ�

given by Eq. (10).

a regular (nonchaotic) submanifold as well as two different
submanifolds with different nonzero λmax!

In Fig. 1(a) we used as an indicator of chaos the fraction of
λmax which are nonzero; the same measure has been used in
Ref. [81].

C. Using the magnitude of Lyapunov exponents

The procedure of using the fraction of nonzero λmax’s to
characterize chaos neglects the magnitudes of λmax altogether.
One could also make use of the magnitude as a chaos indi-
cator. This raises the issue of comparing values of λmax for
different systems (systems with different interactions �). We
consider two ways of rescaling the λmax values; the resulting
heatmaps in Fig. 3 show reasonable agreement with that in
Fig. 1(a).

The magnitude of λmax depends on the timescales of the
dynamics of the system. From Eq. (5) one could expect that
the timescale, on which configurations of the system change
in the chaotic parts of the phase space, will be given by the
inverse of the maximum of the Hamiltonian parameters, J and
�. We fixed J12 = 1.5 and J23 = 1 throughout the paper so
max(J,�) = max(1.5,�). This timescale is only an upper
bound on the possible timescales of a trajectory. But it suffices
as a gauge of the magnitude of the largest Lyapunov exponent.
In Fig. 3(a) we show the average largest Lyapunov exponent
λmax per energy interval, rescaled by

β� = max(1.5,�). (9)

The resulting heatmap in Fig. 3(a), by construction, shows
appreciable chaos in the same region as in Fig. 1(a). But
Fig. 3(a) shows more detail as it encapsulates the information
about the magnitude of λmax as well. We observe the highest
intensities in the mid of the spectrum for 1 < � < 10. From
there it falls of in all directions. At the top end of Fig. 3(a) we
observe a dip in intensity and a sudden increase again, before
λ̄max becomes zero. These reflect the dips seen in Figs. 2(c)
and 2(d).

Another approach is to rescale all largest Lyapunov expo-
nents in a system with fixed interaction � by the maximal
largest Lyapunov exponent λmax in that specific system. A
problem occurs when all largest Lyapunov exponents are
close to zero, as for Bose-Hubbard systems with � � 1. In

these systems there is simply no appreciable positive λmax.
Therefore we choose the cutoff 10−4 by which all Lyapunov
exponents are minimally divided. The rescaling parameter is

γ� = max
[
10−4, max

ψ
λmax(ψ )

]
, (10)

where the maximum runs over all states ψ in the phase space
and λmax(ψ ) denotes the corresponding largest Lyapunov ex-
ponent. A heatmap of the average largest Lyapunov exponent
λ̄max with this rescaling is shown in Fig. 3(b).

The overall features are the same as in Fig. 3(a). There
are some artifacts at the boundary between chaotic and non-
chaotic regions, around � ≈ 0.7 in Fig. 3(b), presumably
because of numerical uncertainties when λmax is around 10−4.
The intensity of the heatmap does not decrease with � beyond
� ≈ 10, unlike Fig. 3(a) where this decrease is built into the
scaling function β�.

IV. EIGENVALUE STATISTICS

In this section we will compare the distribution of spacing
ratios of energy levels of the Bose-Hubbard trimer to the level
ratio distribution of Gaussian orthogonal random matrices and
Poisson level ratios. We will compare the first moment and the
whole distribution and describe how we numerically obtain
the results leading to Fig. 1(b).

A. Definitions and background

For ordered energy levels Eα < Eα+1 of a Hamiltonian we
denote energy level spacings by sα = Eα+1 − Eα . Instead of
examining the distribution of sα itself, it has become common
to investigate instead the distribution of spacing ratios [82,83]

rα = sα+1

sα

and r̃α = min

(
rα,

1

rα

)
. (11)

Studying the ratio distribution bypasses the need to unfold the
energy spectrum (to account for the density of states). The
quantity r̃α has the additional advantage that it has bounded
support, r̃α ∈ [0, 1]. In the following, when we refer to level
spacing ratios, we mean r̃α (and not rα).

The level spacing ratio distribution for matrices in the
Gaussian orthogonal ensemble (GOE) is given approximately
by [83]

pGOE(r̃) = 2

ZGOE

r̃ + r̃2

(1 + r̃ + r̃2)5/2
, (12)

where the normalization constant is ZGOE = 8/27. This is
the expected spectral behavior of highly chaotic systems. For
uncorrelated (Poisson) eigenvalues, the ratio distribution is
[83]

pPoi(r̃) = 2

(r̃ + 1)2
. (13)

In both cases, the distribution is understood to vanish outside
[0,1]. GOE spectra have level repulsion, pGOE(0) = 0, while
Poisson spectra do not, pPoi(0) = 0.

It is usual to compare level spacing distributions over the
complete spectrum (sometimes omitting spectral edges) with
standard distributions like GOE or Poisson. In this work, we
would like to characterize the degree of chaos at different en-
ergies; hence, we compare the distributions obtained from the
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(a) (b) (c)

(d) (e)

FIG. 4. (a)–(d) Level ratio distributions for combinations of in-
teraction � and relative energy Ẽ . (a) � ≈ 0.28 and Ẽ = 0.25,
(b) � ≈ 2.48 and Ẽ = 0.4, (c) � ≈ 12.33 and Ẽ = 0.65, and
(d) � ≈ 0.28 and Ẽ = 0.13. Solid and dashed lines are pGOE(r̃) and
pPoi(r̃), respectively. (e) KL divergence of the distribution of the level
ratios over the full spectrum from the GOE distribution (solid line).
Dashed line denotes the upper cutoff (0.15) of the KL divergence in
Fig. 1(b).

energy levels within each of the energy intervals described in
Sec. II B. Such energy-resolved comparisons of level statistics
have appeared, e.g., in Refs. [67,79,84].

To compare with GOE or Poisson distributions, we use a
common measure of the difference between two distributions,
namely the Kullback-Leibler (KL) divergence [85]. The KL
divergence between an observed distribution P(z) and a refer-
ence distribution Q(z) is

DKL(P|Q) =
∫ ∞

−∞
P(z) log

P(z)

Q(z)
dz. (14)

This quantity vanishes if P(z) is identical to Q(z). Generally,
a larger KL divergence indicates stronger deviation of P(z)
from Q(z). In this work, P(z) will be the ratio distributions
obtained from the Bose-Hubbard energy levels within each
energy interval. We will use either the GOE or the Poisson
distribution, Eq. (12) or Eq. (13), as the reference Q(z).

B. Numerical Observations—Entire distribution
and KL divergence

In Figs. 4(a)–4(c) we show the observed ratio distribu-
tions for three different combinations of relative energy Ẽ
and interaction parameter �. Similar figures have appeared
in Ref. [73]. Since these distributions are estimated from
a finite number of energy eigenvalues within the respective
energy windows, they are shown as histograms. The data
here is extracted from calculations with N = 150 bosons; the
histograms are expected to converge to a smooth distribution
in the limit N → ∞.

For visual guidance, the parameters (�, Ẽ ) corresponding
to the panels in Fig. 4 are marked with respective symbols in
Fig. 5(a).

FIG. 5. Distance of the mean of the level ratios 〈r̃〉 from (a) the
GOE level ratio mean 〈r̃〉GOE and (b) the Poisson level ratio mean
〈r̃〉Poisson. The markers in panel (a) indicate the systems shown in
Fig. 4. The square corresponds to Fig. 4(a), the star to 4(b), the
rhombus to 4(c), and the circle to 4(d).

The distribution in Fig. 4(a) is visually seen to be close
to the Poisson case. Hence we expect the KL divergence
from the Poisson distribution (DPoi) to be small and the KL
divergence from the GOE (DGOE) to be large. The situation in
Fig. 4(b) is the opposite (close to GOE), while Fig. 4(c) shows
an intermediate case. These expectations are borne out by the
calculated KL divergences:

(a) DPoi ≈ 0.05, DGOE ≈ 0.4;

(b) DPoi ≈ 0.22, DGOE ≈ 0.06;

(c) DPoi ≈ 0.16, DGOE ≈ 0.29.

In Fig. 1(b), we used DGOE as a quantifier of chaos and pre-
sented its values in the entire (�, Ẽ ) plane as a heatmap. We
capped the values at 0.15, meaning that values DGOE > 0.15
are considered fully nonchaotic and are not distinguished.
There is some arbitrariness in the exact choice of this value,
but the main results—the overall shape in Fig. 1(b) and its
close correspondence with the classical case, Fig. 1(a)—are
not strongly affected by the use of a cutoff. In Fig. 4(e), we
show DGOE for the complete energy spectrum as a function
of �, to provide a visual sense of the role of the cutoff in
separating chaotic from nonchaotic parameter values.

C. Average ratio

Often only the first moment (mean) of the level ratio dis-
tribution is used as a measure of closeness to GOE or Poisson
behavior.

The mean of level ratios for the GOE and Poisson cases
are 〈r̃〉GOE ≈ 4 − 2

√
3 ≈ 0.53590 and 〈r̃〉Poi = 2 log 2 − 1 ≈

0.38629 [83]. In cases (a), (b), and (c) above, the means are
0.39, 0.51, and 0.44, i.e., they are, respectively, close to 〈r̃〉Poi,
close to 〈r̃〉GOE, and intermediate, as expected.

In Fig. 5 we use the absolute distance from (a) 〈r̃〉GOE

or from (b) 〈r̃〉Poi as possible alternate measures of chaos.
Compared to Fig. 1(b), we see that the same information
is captured—a more chaotic region at intermediate � and
intermediate Ẽ is clearly visible in both these cases. Overall,
the mean of level ratios is closer to 〈r̃〉GOE inside this region
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and closer to 〈r̃〉Poi outside. Even the fine structures at the
boundary between the two regions, previously seen in the
classical case in Fig. 1(a), are visible.

However, there are some artifacts. The most prominent is
the arc at the left (small �) region, in Fig. 5(a). The reason
is that, at small �, the spectrum shows features specific to
the free-boson case, deviating from the Poisson model of
completely uncorrelated models. We can see this in Fig. 4(d),
which corresponds to a (�, Ẽ ) combination falling on the
arc of Fig. 5(a). The distribution is neither Poisson-like nor
GOE-like: it is nonzero for r̃ → 0 and has a pronounced peak
at r̃ → 1. Together, these lead to an average 〈r̃〉 ≈ 0.52 which
is coincidentally close to 〈r̃〉GOE. The deviation from Poisson
at very small � is also seen in Fig. 5(b), in the form of a darker
region at the very left of the heatmap.

To summarize: the chaos-regular demarcation in the (�, Ẽ )
plane can also be visualized using the mean 〈r̃〉, modulo some
artifacts.

V. EIGENSTATE STATISTICS

In this section, we discuss characterizing chaoticity in the
Bose-Hubbard system using the deviation of eigenstate struc-
ture from those of GOE matrices. We describe the calculations
leading to Fig. 1(c).

The eigenstates of random GOE matrices are uniformly
distributed on the (D − 1)-dimensional unit sphere SD−1. For
large D, a uniform distribution on SD−1 is well approximated
by a D-dimensional Gaussian distribution with independent
entries and mean zero and variance 1/D [86,87]. To com-
pare the Bose-Hubbard system with the GOE case, we will
compare the coefficients of Bose-Hubbard eigenstates with
the Gaussian distribution with mean 0 and variance 1/D. It
has been observed that mid-spectrum eigenstates of chaotic
and ergodic many-body systems generally have coefficients
with a near-Gaussian distribution [67,88–96], in accord with
Berry’s conjecture [97]. However, eigenstates of integrable or
many-body-localized systems, as well as eigenstates at the
spectral edges of nominally chaotic systems, typically have
markedly non-Gaussian distributions [88,89,92,98].

To compare distributions of eigenstate coefficients, we
used the excess kurtosis, κ , of the set of coefficients. The
kurtosis is the fourth standardized moment. The excess kur-
tosis of a distribution is the difference between the kurtosis of
that distribution and the kurtosis of a Gaussian distribution,
which is 3. Thus, large values of κ represent larger devi-
ations from Gaussianity and hence from GOE and chaotic
behavior, whereas small values represent more chaotic be-
havior. When we report values of the kurtosis, we always
mean the excess kurtosis κ , even when the word “excess” is
omitted.

The deviation of many-body eigenstates from Gaussian-
ity could also be measured using the KL divergence, as in
Ref. [89], or using the inverse participation ratio (IPR) or
multifractal exponents, as in Refs. [67,68,91,92,98–100]. We
expect these measures to provide very similar overall pictures
as the one we present using the kurtosis. In fact, when the
mean is negligible (which is true for most eigenstates except-
ing some at the spectral edges), the kurtosis is proportional to
the IPR.

FIG. 6. Histograms of eigenstate components of Bose-Hubbard
systems with N = 100 particles, in the computational basis. In panels
(a)–(c), the interaction and energy intervals, (�, Ẽ ), are the same as
those used in Figs. 4(a)–4(c). Panels (d)–(f) are zoomed into the right
tails of panels (a)–(c). The black dashed line indicates the standard
deviation. The black solid line is a Gaussian density with mean 0 and
standard deviation 1/D. The excess kurtosis is (a) κ1 ≈ 1.6, (b) κ1 ≈
0.8, (c) κ1 ≈ 122.

Eigenstate coefficients are defined with respect to a basis.
We will investigate eigenstates of the Bose-Hubbard system
with respect to three bases:

(1) the computational basis, which is given by the mutual
eigenstates of the number operators ni;

(2) the mutual eigenbasis of the hopping operators a†
i a j ,

i.e., the eigenbasis of the noninteracting (free) system;
(3) the eigenbasis of a perturbed free system with hopping

terms Ji j = 1 and small onsite perturbing potentials
∑

i εini

with values ε1 = −0.01, ε2 = 0.02 and ε3 = −0.03 on the
three sites.

We name the kurtosis of the coefficients in the three bases
as κ1, κ2, κ3, respectively. In Fig. 1(c), the quantity presented
is obtained from a combination of the first and third choices
above, namely max(κ1, κ3).

We assume that the distributions underlying the eigenstate
components of two eigenstates close in energy are similar. As
before, we divide the energy spectrum of each Bose-Hubbard
system with interaction strength � into 100 equally spaced
intervals and refer to them by their relative energy Ẽ . We
compute the kurtosis κ for every eigenstate and average the
calculated kurtosis over each energy interval. If the mean is
zero, then the averaged kurtosis in an energy interval equals
the kurtosis of all components of all eigenstates in that energy
interval.

In Figs. 6(a)–6(c), we show the eigenstate coefficient dis-
tributions in the computational (ni) basis, for the three (�, Ẽ )
combinations used previously in Fig. 4. (Visual guidance to
these three parameter combinations is provided in Figs. 5(a)
and 7(a) using corresponding symbols.) The calculated excess
kurtosis for these cases are, respectively, κ1 ≈ 1.6, κ1 ≈ 0.8,
and κ1 ≈ 122. The case (b) is thus closest to Gaussian, fol-
lowed by (a), while case (c) is very far from Gaussian. This is
consistent with the visual appearance of the full distributions.
It is also consistent with the comparison of the tails of the
distributions against the tails of the Gaussian distribution, as
shown in panels (d)–(f).
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FIG. 7. Kurtosis of eigenstate coefficients, for three different bases (a) κ1, (b) κ2, and (c) κ3, listed in the text. In the heatmaps (a)–(c) the
kurtosis is cut off at 24 in each case. Markers in panel (a) indicate the (�, Ẽ ) values for which histograms are shown in Fig. 6. The kurtosis
heatmap shown in the Introduction, Fig. 1(b), is a combination of panels (a) and (c) here—for each (�, Ẽ ), the larger of the two values is
chosen in Fig. 1(b). Panel (d) shows vertical slices of panel (a) for values of � denoted in the legend of panel (d).

We note in Fig. 6(b) that the coefficient distribution, al-
though closest to Gaussian, has a large peak near zero. Even
in the most chaotic region of the (�, Ẽ ) plane, the eigenstates
depart considerably from the random-matrix case. Ultimately,
the deviation from Gaussianity of eigenstates is a manifesta-
tion of the three-site Bose-Hubbard system being a very mixed
system.

The peak of the coefficient distribution is reminiscent of
peaks observed in the distribution of hopping operator ele-
ments in the eigenstate basis of the Hamiltonian, [73], which
was attributed to small stability islands in the classical phase
space.

In Fig. 7(a) we show the kurtosis κ1 for eigenstates in the
computational basis as a heatmap in the (�, Ẽ ) plane. Com-
paring with previous sections, we see that small κ1 correlates
with nonzero Lyapunov exponents and GOE level statistics,
while intermediate and large κ1 correlates with zero Lyapunov
exponents and non-GOE level statistics. The shape of the
small-κ1 region matches the more chaotic region identified
previously using classical Lyapunov exponents or using level
statistics. Even subtle features from the heatmaps in the pre-
vious sections, such as the bulges around � ≈ 1 and Ẽ ≈ 0.5
are visible.

For small �, the kurtosis in the computational basis in
Fig. 7(a) shows intermediate rather than large kurtosis, thus
failing to fully capture the highly nonchaotic nature of the
system in this region. The reason is probably that the small-�
eigenstates are so different from the computational basis states
(which are � → ∞ eigenstates) that they have overlap with a
large number of the basis states, leading to a small IPR (hence
small kurtosis).

A complementary view is obtained via κ2 in Fig. 7(b),
where � = 0 eigenstates have been used as basis. (Because
of the large degeneracy at � = 0, there is some computational
arbitrariness in the choice of this basis.) This basis now has the
opposite problem—it fails to show the nonchaotic nature of
large-� region. The problem is partially alleviated by choos-
ing as basis the eigenstates of a noninteracting Hamiltonian
with small onsite perturbing potentials; the resulting excess
kurtosis κ3 is shown in Fig. 7(c).

For random-matrix eigenstates, one expects Gaussian be-
havior with respect to any basis, except possibly a (Lebesgue)
measure zero set. In Fig. 7, the high-chaos region is marked
by low kurtosis in all three basis choices, consistent with the
idea of basis-independence. The other regions appear more or
less Gaussian-like depending on basis choice. To demarcate
the highly chaotic region from less chaotic regions, we can
use a combination of kurtosis calculations, taking the larger
one from the kurtosis obtained in the first and third basis, i.e.,
max(κ1, κ3). This is what we did in Fig. 1(c).

VI. SCALING OF EIGENSTATE EXPECTATION VALUES

According to the eigenstate thermalization hypothesis
(ETH) [101–104], the expectation values of physical opera-
tors in eigenstates become smooth functions of energy in the
thermodynamic limit—the fluctuations of eigenstate expecta-
tion values (EEV’s) decreases with system size in a specific
manner [105]. Instead of the thermodynamic limit, one could
also ask how EEV fluctuations die off in the classical limit
N → ∞ [79], which is the limit we are considering in this
work. We examine the operator

Ā = a†
2a1

N
.

The fluctuations of the EEV’s of this operator, σ (Ā), scale as
a power law,

σ (Ā) ∼ D−e,

with the Hilbert space dimension D = (N+L−1
L−1

)
. If the eigen-

states of the system were fully chaotic, i.e., if the eigenstate
coefficients were well-approximated by Gaussian independent
variables, then one can show that the scaling exponent would
be e = 1

2 [79]. The deviation from e = 1
2 is thus a measure of

departure from chaoticity.
In Fig. 1(d), we have presented a heatmap of the exponents

e, determined numerically, for each energy window and inter-
action parameter. The exponents are determined by fitting the
σ (Ā) versus D data, for system sizes ranging from N = 90
to N = 170 in steps of 10, i.e., D ranging from ≈4 000 to
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≈15 000. As found in Ref. [79], even in the most chaotic
regions of the (�, Ẽ ) plane, the exponent falls well below
the ideal value 1

2 . The numerically observed exponent ranges
from 0 in the regular regions to ≈0.3 in the most chaotic
regions. The resulting heatmap, Fig. 1(d), is noisier and less
sharp than those obtained from the other measures discussed
in previous sections. But the overall demarcation of chaotic
and nonchaotic regimes is clearly visible.

VII. CONTEXT AND DISCUSSION

In this article we considered a quantum many-body model
that has a classical limit and is well-known to be “mixed,” the
Bose-Hubbard trimer. We compared the classical Lyapunov
exponents of the classical limit against quantum measures of
chaos obtained from eigenvalues (statistics of level spacing
ratios) and eigenstates (coefficient statistics, fluctuations of
expectation values of an operator). Overall, the agreement in
the chaos-regular demarcation between the classical case and
the various quantum measures is very good.

This reflects the general agreement of chaos measures be-
tween quantum systems and their classical limit, when such
a limit exists, observed computationally in many different
Hamiltonian systems over decades. Perhaps most promi-
nently, single-particle systems in a potential (“billiards”) have
an obvious classical limit—one simply treats the system clas-
sically. The literature on quantum-classical correspondence in
different billiard systems is vast. Other than billiards, classical
and quantum chaos measures have been compared in coupled
rotors or coupled tops [9,10,23,106,107], bosonic systems
[61,64,66], the Dicke model and other spin-boson systems
[81,108–116], the Sherrington-Kirkpatrick model [117], and
spin systems [15,20,118,119]. A common theme is that, for
spin systems or systems with angular momentum, the large-
spin (or large angular momentum) limit is the classical limit,
whereas for bosonic systems, the large-boson-number system
is the classical limit.

For classical systems, it is common in the literature to
demarcate chaotic and nonchaotic regimes using Poincaré
sections [9,12,13,15,15,43,73,108,109,114,115]. We have fo-
cused instead on the Lyapunov exponent, and presented it as
a multibranched function of energy. Inspired by Ref. [81], we
have used the fraction of Lyapunov exponents which are pos-
itive as a chaos measure, and we compared it with other ways
of exploiting the FTLE results to demarcate highly chaotic
and less chaotic behaviors. It is clear that, if the phase space at
fixed energy is separated into regular and chaotic regions, then
the Lyapunov exponent plotted against energy (with many
phase space points sampled in each energy window) will have
to be a multivalued plot. We hope that explicitly presenting
and analyzing this multivalued dependence will contribute to
the intuition available on mixed systems.

For quantum systems, we used several measures: (1) the
statistics of level spacing ratios based on eigenvalues alone;
(2) the coefficients of eigenstates, based on eigenstates ex-
pressed in different bases; (3) the scaling of fluctuations of
eigenstate expectation values (EEVs), based on eigenstate
properties. Level spacing statistics and eigenstate coefficients
have been been considered and used as chaos measures for
several decades. The EEV fluctuation scaling is based on

understanding that has emerged in recent years, motivated by
studies of thermalization and ETH.

Of course, there are other interesting measures of quan-
tum chaos that could be considered for comparison. A new
candidate is the out-of-time-ordered correlator or OTOC
[57,81,120,121] whose behavior (exponential growth) defines
a quantum Lyapunov exponent for chaotic systems. For our
mixed system, we were unable to unambiguously identify
or rule out exponential regimes in the dynamics, for the pa-
rameter combinations we attempted. It remains unclear to us
whether the OTOC is a useful measure for numerically demar-
cating more-chaotic parameter regimes from less-chaotic and
nonchaotic parameter regimes in mixed systems.

Another measure of chaos is the fractal dimension of eigen-
states, which was presented in Refs. [67,68] for a quantum
Bose-Hubbard chain, not in the classical (fixed L large N)
limit but rather for parameters relevant to the thermodynamic
(large L fixed N/L) limit. The authors found a similar chaotic
region for intermediate � and Ẽ . In contrast to the kurtosis
of eigenstates for the Bose-Hubbard trimer studied in this
article, the fractal dimension in Refs. [67,68] does not show
non-Gaussian mid spectrum eigenstates. This strengthens the
conjecture that the non-Gaussianity is a consequence of the
mixedness of the system.

There are some peculiar features in both the eigenvalue
and eigenstate statistics, whose origins remain unclear and
might be clarified in future studies. In Fig. 5(a), the arc in the
small-� part of the heatmap is due to the level spacing having
peculiar statistics, as shown in Fig. 4(d), due to a signifi-
cant number of successive equal spacings. In the eigenvector
statistics, there are some mid-spectrum states that are highly
non-Gaussian, even at intermediate �, as seen through the
dark nearly horizontal line in Fig. 7(a) at intermediate ener-
gies, and the dark curved line in Fig. 1(c), running through the
more-chaotic light-colored region at intermediate energies.
Presumably, such peculiar features are less likely to appear in
more fully ergodic systems, such as the Bose-Hubbard system
with larger number of sites.
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APPENDIX A: LYAPUNOV EXPONENTS FOR MORE
CHAOTIC SYSTEMS

In Fig. 8 we present, for comparison, FTLE’s calculated
for the four-site chain and the seven-site chain. The classical
Hamiltonian is the same as that presented in Sec. II.

The systems are increasingly more chaotic with increas-
ing L. The arguably most remarkable signature of mixedness
in the L = 3 case was the multibranched behavior of the
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FIG. 8. FTLE estimates for the classical largest Lyapunov ex-
ponent λmax plotted against energy, for the classical limits of
Bose-Hubbard chains with (a) L = 4 and (b) L = 7 sites. The interac-
tion parameter is � = 1.52. The variational equations were evolved
to time t = 106.

Lyapunov exponents, as presented in Fig. 2 in the main text.
For the L = 4 case, which is more chaotic, some signature of
the same phenomenon can be seen at small and large energies,
Fig. 8(a). In the L = 7 case, which is much more chaotic, the
phenomenon is absent, Fig. 8(b).

Obtaining good estimates for the Lyapunov exponents is
more challenging for mixed systems. Comparing Fig. 2 and
the two panels of Fig. 8, we see cleaner (less noisy) data
for larger L, for the same time of propagation, even though
there are more variables and equations (2L) to be evolved for
larger L.

APPENDIX B: NUMERICAL CALCULATION
OF LYAPUNOV EXPONENTS

In this Appendix, we provide an outline of how the largest
Lyapunov exponent is estimated numerically [122,123]. Cal-
culation of the full set of Lyapunov exponents is slightly more
involved and so not described here.

We will use the symbol ψ (t ) to represent a state or phase
space point of the classical system at time t . For the Bose-
Hubbard chain, ψ (t ) is a vector of L complex variables, or 2L
real variables. The symbol ψ0 will be used for the initial state,
i.e., ψ0 = ψ (0). (In the main text, subscripts to ψ have been
used as site indices, but there should be no confusion with our
use of the subscript 0 here.)

Intuitively, the largest Lyapunov exponent λmax is given by

etλmax ≈ ‖ψ̃ (t ) − ψ (t )‖
‖ψ̃0 − ψ0‖

, (B1)

at large times. Here ψ (0) = ψ0 and ψ̃ (0) = ψ̃0 are two initial
states which are “close” to each other, and ψ and ψ̃ are
time-evolving according to Hamilton’s equations of motion

i d
dt ψ = ∂H

∂ψ∗ . The largest Lyapunov exponent λmax is indepen-
dent of the choice of the norm in Eq. (B1), as long as the phase
space is finite-dimensional.

Equation (B1) implies that if the largest Lyapunov ex-
ponent λmax is positive the two states ψ and ψ ′ separate
exponentially, while a zero largest Lyapunov exponent λmax =
0 means an at most polynomial spread. For Hamiltonian
systems the Lyapunov exponents come in pairs of equal
magnitude and opposite sign, so that the largest Lyapunov ex-
ponent λmax is at least 0. This is a consequence of Liouville’s
theorem.

To calculate the Lyapunov exponent numerically, one
might be tempted to choose two initially close states and
calculate the right-hand side of Eq. (B1) for large times t .
Unfortunately, this does not work for bounded systems.

This problem is circumvented by solving the so-called vari-
ational equations. Denote the time-evolution of the dynamical
system corresponding to Hamilton’s equation of motion as

�(t, ψ0) = ψ (t ), where ψ (0) = ψ0. (B2)

The dynamical system obeys the semi-group property �(t +
s, x0) = �[s,�(t, x0)] for all times t and s. Eq. (B1) now
reads in terms of � and φ0 = ψ0 − ψ̃0 as

etλmax ≈ ‖�(t, ψ0 + φ0) − �(t, ψ0)‖
‖φ0‖ . (B3)

By linearizing Eq. (B3) we obtain the largest Lyapunov expo-
nent as

λmax = lim
t→∞

1

t
log

∥∥∥∥∂ψ�(t, ψ )|ψ=ψ0

φ0

‖φ0‖
∥∥∥∥. (B4)

Note that ∂ψ� is in general a matrix so the product · denotes
the matrix-vector product. The existence of the above limit is
ensured by Osedelets theorem [124]. One can show that ∂ψ�

evolves in time according to so called variational equations

i
d

dt
∂ψ�(t, ψ ) = ∂ψ∂ψ∗H[ψ (t )]∂ψ�(t, ψ ), (B5)

where ∂ψ∂ψ∗H denotes the Hessian of the Hamiltonian H
in the variables ψ and ψ∗ and the initial condition is
∂ψ�(0, ψ0) = Id.

In Eq. (B4) the knowledge of the full matrix ∂ψ�

is not required. Only the deviation vector φ(t ) =
∂ψ�(t, ψ )|ψ=ψ0φ0/‖φ0‖ is needed. The deviation vector
evolves according to the variational equations (B5) as well.
This follows from the linearity of d/dt .

In principle one could now evolve Hamilton’s equations to-
gether with the variational equations to obtain φ(t ) for some
large time t and determine λmax via Eq. (B4). However, for
positive λmax the norm of φ(t ) will blow up exponentially
and will quickly be unmanageable by finite precision. This
is circumvented by renormalizing φ(t ) and restarting the time
evolution, whenever it becomes too large.
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