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We consider the nonlinear dynamics of a diatomic polar molecule under a linearly polarized laser field. We
assume a model in which the molecule dipole is coupled with a time-dependent electric field. This system
presents a bound energy region where the atoms are bound, and a free-energy region where the atoms are
dissociated. Due to the nonalignment between the dipole axis and the laser direction, and the time dependence
of the external field, this system presents two and a half degrees of freedom, namely the vibrational degree,
the rotation degree, and the time. To investigate the system dynamics, instead of using the Poincaré surface-
of-section technique, we propose the use of the Lagrangian descriptor associated with the escape times. The
Lagrangian descriptor is a quantity that reveals complex structures in the phase space, whereas the escape times
are the time span in which a trajectory is initially in the bound region before escaping to the unbound region. The
combination of these two quantities allows us to distinguish between real stability regions from other complex
structures, including stickiness regions, and a different formation, which we call escape islands. With the help
of these tools, we find that for high-field amplitudes the inclusion of rotation leads to an increase of the stability
regions, which implies a decrease of the dissociation in comparison with the one-dimensional case.
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I. INTRODUCTION

A very important task in physics, with a vast number of
applications, is the investigation of the dynamics of atoms
and molecules under the action of time-dependent external
fields. The classical approaches have several motivations, in-
cluding finding quantum-classical correspondence allowing
for a useful nonlinear-dynamics interpretation; understanding
the influence of nonlinear forces on particle dynamics; the
possibility of controlling chaotic dynamics [1,2]; applications
to molecular process [3]; and laser control chemistry [4].

In this work, we investigate the nonlinear classical dy-
namics of a polar molecule under the influence of a linearly
polarized laser field. We consider the driven rotational forced
Morse potential [5] as a model for the study of the in-
teraction between the external field of the laser with the
diatomic molecule, considering the angular momentum of the
molecule, and the polarization angle between the applied laser
and the molecular dipole moment. This is a two-and-a-half
degrees of freedom system. The driven Morse oscillator is an
important model for studying the classical and quantum be-
havior of diatomic molecules [5–12]. The unperturbed Morse
oscillator presents two distinct types of motion: libration,
which corresponds to a bound vibrating molecule, and un-
bound motion, which corresponds to a free or colliding atomic
pair. The threshold energy that separates the two kinds of
motion defines the separatrix in the phase space. The coupling
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between the molecular dipole and a time-dependent external
field, produced by a laser, can induce changes in the dynamics
of the system. For null external field, the phase space is filled
by invariant tori and periodic orbits. As the amplitude of the
external field increases, resonance islands, chaotic orbits, and
periodic orbits can coexist [6].

The simplest autonomous systems that can exhibit chaos
are those with two degrees of freedom whose phase space
has four dimensions, and the Poincaré section (PS) technique
is a frequent tool to analyze the dynamics. For a system
with more degrees of freedom, this technique is not useful
for understanding the dynamics. To get around this problem,
several methods have been developed to study the dynamics of
high-dimensional systems [13]. Among them, a tool known as
a Lagrangian descriptor (LD), which focuses on the structures
of the phase space that are immersed in the chaotic region, was
introduced in Ref. [14] to study nonperiodic flows. It was also
applied in other systems such as maps [15], stochastic systems
[16], and in the identification of reactive islands responsible
for nonstatistical behavior in chemical reactions [17], among
others [18–24].

In the current work, we will apply the LD, associated
with the escape time (ET) technique, which represents the
time that an initial condition confined in the well takes to
escape the influence of the potential, to study and understand
a system with two and a half degrees of freedom. The PS
will also be useful to calibrate the ET when photoassociation
or photodissociation occur in a system without rotation and
with one and a half degrees of freedom. Next, the LD will
be used to visualize the dynamics, in place of the PS, for
the forced rotational Morse potential, which has one more
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degree of freedom. The combination of both techniques will
allow us to identify chaotic dynamics, stability islands, and
stickiness regions. These regions form archipelagos of small
islands of stability coming from the destruction of invariant
tori, and they provide a temporary confinement of orbits in
their areas. Stickiness, in general, occurs in the neighborhood
of greater stability islands, but it can also occur in small
regions immersed in the sea of chaos.

The paper is organized as follows: in Sec. II we present the
model under consideration, in Sec. III we introduce the LD
and ET techniques, in Sec. IV we present the results, and in
Sec. V we provide the final remarks and the conclusions.

II. THE MODEL

We consider the relative motion of a pair of colliding atoms
in the presence of a linearly polarized laser field. A suitable
unperturbed dimensionless Hamiltonian for describing the rel-
ative motion of the nuclei of a diatomic molecule with rotation
is given by [25,26]

H (x, px, pθ ) = p2
x

2
+ 1

2

p2
θ

(x + xe)2 + V (x) (1)

with

V (x) = 1
2 (e−2x − 2e−x ) (2)

in which x is the distance between the nuclei, px is its con-
jugate linear momentum, and pθ is the conjugate angular
momentum of the nuclei relative motion. V(x) is the Morse
potential. The energy of the bottom of the well is −0.5, and
the energy of the separatrix is given by V (x) = 0. So, for
negative energies the trajectories are bounded, representing a
vibrating molecule, and for positive energies the trajectories
are unbounded, representing free atomic pairs.

The laser-molecule interaction is described in the dipole
approximation by the term

Vlaser (x, η, θ, t ) = −μ(x, η)ε(t )cos(θ ), (3)

where ε(t) is the time-dependent electric laser field, μ(x,η) is
the dipole moment of the molecule that is going to be formed,
and θ is the polarization angle. We use a functional form for
the dipole moment, which allows us to control its shape and
its range through adjustable parameters [31], given by

μ(x, η) = e−ξ (x+xe )4 sin[ η (x + xe) ]

η
, (4)

with η, xe, and ξ being the dimensionless adjustable parame-
ters.

Depending on the choice of parameters, the dipole func-
tion given in Eq. (4) allows us to reproduce realistic dipole
functions [27–30]. The parameter η controls its oscillatory be-
havior, the parameter ξ sets its range, while xe gives the overall
displacement of the dipole. In addition, it has been shown that
the oscillatory behavior of the dipole function can prevent
trajectories from escaping the potential well, influencing the
dynamics of the system [31].

The external electric laser field is written as

ε(t ) = ε0sin(�t ), (5)

where ε0 and � are the amplitude and frequency of the laser,
respectively.

Hence, the model with two and a half degrees of freedom
that we are considering has the total Hamiltonian given by

H (x, px, θ, pθ , t )

= p2
x

2
+ 1

2

p2
θ

(x + xe)2 + 1

2
(e−2x − 2e−x )

− ε0 sin(�t ) e−ξ (x+xe )4 sin[ η (x + xe) ]

η
cos(θ ) (6)

and the corresponding equations of motion are

dx

dt
= px, (7a)

d px

dt
= p2

θ

(x + xe)3 + (e−2.x − e−x )

+ε0 sin(�t )
e−ξ (x+xe )4

η
[η cos[η (x + xe)]

− 4 ξ (x + xe)3][sin[η (x + xe)] ] cos(θ ), (7b)

dθ

dt
= pθ

(x + xe)2 , (7c)

d pθ

dt
= −ε0sin(�t ) e−ξ (x+xe )4 sin[ η (x + xe) ]

η
sin(θ ). (7d)

The equations above generate the entire dynamics of the
system. Note that if pθ = 0, if the variable θ is constant,
and if we have only two time-dependent equations of motion
associated with the one-and-a-half degrees of freedom case, it
is possible to use the stroboscopic PS to visualize the struc-
tures present in the phase space (x, px ). On the other hand, if
pθ �= 0, the angle θ is no longer constant and the system has
two and a half degrees of freedom, so that we need other tools
to study the dynamics.

III. LAGRANGIAN DESCRIPTOR AND THE ESCAPE TIME

To understand the dynamics of the rotational case, we will
start with the nonrotational case and use the PS for the config-
urations of interest with the objective of calibrating the results
from the LD, which can reveal the structures that are hidden
in the chaotic regions of the system. Next, the ET will be used
to distinguish the regular structures of the chaotic regions and
identify the regions of stickiness.

The PS, for the 1.5 degrees of freedom, is constructed as
follows: a grid of initial conditions is given and evolved in
time. Whenever the oscillatory term of the electric field is null,
that is, when t = (2nπ/�), n = 0, 1, 2 . . ., we collect the x
and px generating the PS for the established set of parameters.

The LD measured is based on the computation of an arc
length of a trajectory, and it is extended along the trajectories
by considering the integration of the velocity field for an
interval of time. We use the definition proposed in [32–35],
which allows us to identify the structures of the phase space
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with little computational effort. We introduce the definition of
the LD as

Mp(z0, τ ) =
∫ τ

−τ

(|ẋ|p + | ṗx|p + |θ̇ |p + | ṗθ |p)dt . (8)

To construct the LD, we integrate the equations of motion
through a fourth-order Runge-Kutta method with a fixed step,
h = 10–6. This value was defined after several convergence
tests for each initial condition and for a long integration
time. For each iteration, we calculate (x, px, θ, pθ ,) and sub-
stitute them in Eqs. (7a)–(7d), thus obtaining the velocity field
(ẋ, ṗx, θ̇ , ṗθ ). Next, we have the value of LD computing the
integral in Eq. (8). This process is repeated for a grid of initial
conditions. The color map is a projection of the LD in the
plane (x, px). Note that the most important issue is not to
analyze the absolute values of the LD but the change of their
values (their colors).

It is important to emphasize that the integration time τ and
the parameter p play important roles in the calculation of the
LD. It was shown, in a recent study [35], that these parameters
are associated with the quantity of structures revealed in the
dynamics. The ideal value of τ and the norm p are found
through trial and error.

Finally, we calculate the ET from the initial conditions of
the system. We evolve each trajectory with initial negative
energy over time, and when this trajectory reaches a positive
energy, positioned such that x > 5 and px > 0, we say that it
escapes the action of the potential well. When this occurs, we
define this time as being the TE .

IV. RESULTS AND DISCUSSION

In this section, we apply the techniques proposed in the
previous section to the system with two and a half degrees of
freedom, and we show that they are effective for studying the
changes that occur in the dynamics with the introduction of
rotation. For that, we first present the PS, the LD, and the ET
for the one-and-a-half-dimensional system.

Throughout this study, we will use the following values for
the parameters of the dipole moment: η = 1, ξ = 1, and xe =
1, while for the electric field we will consider two different
amplitudes—ε0 = 0.0805 and 0.50—and a fixed frequency
ω = √

3. Finally, the parameters of the LD are p = 0.4 and
τ = 105. These parameters were chosen to allow a better
visualization of the maps.

To generate the PS for the nonrotating system, we consider
the following grid of initial conditions x0 = [–1 : 2.5] and
px0 = [–1.0 : 1.0] with steps 0.1 for both variables. To build
the LD and ET, we consider x0 = [–1 : 2.5], 
x0 = 0.05,
px0 = [–1.0 : 1.0], and 
px0 = 0.05.

Figure 1(a) shows the PS, in which we can see a resonance
island centered at the equilibrium point (x, px ) = (0, 0) and
two other islands, immersed in a chaotic sea. Figure 1(b)
presents the corresponding LD, where we can observe the
same islands and the chaotic regions shown in Fig. 1(a).
We also observe some new structures that are not present in
the PS, such as the structures located between x ∼ [–0.5 : 0]
and px ∼ [–0.75 : –0.4] and between x ∼ [0.9 : 1.5] and px ∼
[–0.1 : 0.5]. Figure 1(c) shows the ET for each initial condi-
tion. The black color corresponds to long ET, and therefore

FIG. 1. For the nonrotating system, we show (a) a Poincaré sec-
tion, (b) a Lagrangian descriptor, and (c) escape time. The parameters
are E0 = –0.12, ε0 = 0.0805, ω = √

3, η = 1, ξ = 1, and xe = 1.

the initials conditions in these regions do not escape from
the influence of the potential well. Note that the additional
structures revealed by the LD correspond to the islands of
resonance. Furthermore, Fig. 1(c) shows that around all the
islands the orbits will be trapped for a long time before escap-
ing due to the stickiness. For instance, around the islands at
x ∼ [1.4 : 1.8] and px ∼ [0 : 0.25] the orbits in their neigh-
borhood have high ET, in the interval TE ∼ [1823 : 1999],
indicating the action of the stickiness.

Now, we introduce rotation so that the system is described
by two and a half degrees of freedom, represented by the
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FIG. 2. For the rotational system, we show in (a) a Lagrangian
descriptor and (b) escape time. The parameters are E0 = –0.12, ε0 =
0.0805, ω = √

3, η = 1, ξ = 1, and xe = 1.

relative position of the atoms and their conjugate linear mo-
mentum, the angle between the electric field and the molecular
dipole and their conjugate angular momentum, and time. In
this scenario, the PS technique becomes inadequate because
the dynamics is four-dimensional and the projections in the
planes of phase present crossings of tori. So, we study the
influence of the rotation by using the LD and the ET. We
compose both of these techniques because the LD alone is
not able to distinguish real islands of stability from other
complex islandlike structures. To construct the LD and the
ET for the rotational system, we consider the same initial
conditions—x0 = [–1 : 2.5], 
x0 = 0.05, px0 = [–1.0 : 1.0],
and 
px0 = 0.05—assuming that all orbits have the initial
energy E0 = –0.12. The value of the initial angle is θ0 = π ,
and the conjugate angular momentum is found from

pθ0 = (x0 + xe)
√

2E0 − p2
x0 − (e−2x0 − e−x0 ). (9)

Figures 2(a) and 2(b) show that the addition of the rota-
tion changes the number and the position of the equilibrium
points of the system. In contrast to the three resonance is-
lands seen in the nonrotating case, now a single region of
stability is perceived. Note that Fig. 2(b) shows that this re-
gion has infinite ET (indicated in black). On the other hand,
it is also possible to see that the initial conditions around
this region, and the other resonance islands, have high ET,

FIG. 3. For the nonrotating system, we show (a) a Poincaré sec-
tion, (b) a Lagrangian descriptor, and (c) escape time. The parameters
are E0 = –0.12, ε0 = 0.50, ω = √

3, η = 1, ξ = 1, and xe = 1.

TE ∼ [1764 : 1999], which characterizes again the stickiness
in the system. Therefore, we can conclude that for the set of
parameters used, the nonlinear dynamics techniques allowed
us to study the dynamics of the system and to identify the pos-
sibilities of photoassociation and photodissociation even for
the 2.5-degrees-of-freedom case. Stable and unstable struc-
tures as well as stickiness are revealed in the system.

We now repeat this study for the same parameters but for a
higher electric field amplitude, ε0 = 0.50. For the case with-
out rotation, in Fig. 3(a), which shows the PS, we can see that
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FIG. 4. For the rotational system, we show (a) a Lagrangian
descriptor and (b) escape time. The parameters are E0 = –0.12,
ε0 = 0.50, ω = √

3, η = 1, ξ = 1, and xe = 1.

there is only a small island of stability around the equilibrium
point, the rest of the dynamics being represented by chaos.
On the other hand, the LD shows that some islands exist that
seem to be stable, such as the one in x = [0.25 : 0.75] and
px = [–0.7 : –0.5], and x = [1.1 : 1.5] and px = [0.1 : 0.3],
but Fig. 3(c) shows that the trajectories that are in these struc-
tures have ETs of TE < 29. These regions have a shorter ET
than the trajectories that are in their chaotic neighborhoods.
Furthermore, the only trajectories that do not escape from the
potential are those in black that are close to the equilibrium
point, whose neighborhood presents stickiness. In the next fig-
ures, we present the LD and ETs for the system with rotation.

Figure 4(a) shows that when rotation is introduced with
a high amplitude, the stable region (the region with infinite
escape time) increases considerably, that is, for this case the
rotation avoids the initial conditions to reach positive energy
and x > 5. Furthermore, we see that the initial conditions in
these regions have escape times between TE ∼ [425 : 599],
showing stickiness around the equilibrium point. Due to this
increasing of the stable region, we note that the introduction
of rotation should decrease the photodissociation probabil-
ity. Finally, comparing Fig. 3(c) with Fig. 4(b) we see that
there are regions shown by a predominantly pink color, i.e.,
with small ET taking islandlike shapes, which could be con-
fused with islands of stability. We call such islands structures

“escape islands.” Note that these structures are only present
in a high-amplitude electric field regime.

In performing a qualitative analysis for the results of the
LD and the ET, we verified that within the escape islands there
is, in principle, an inversely proportional behavior between
them, that is, when one increases the other decreases. For
instance, consider the escape island in Figs. 4(a) and 4(b)
located at x ∼ [–0.5 : 0] and px ∼ [–0.4 : 0.4]. Figure 4(a)
shows that the values of the LD of the inner island (blue) are
greater than those of the LD of the outer island (light pink). On
the other hand, Fig. 4(b) shows that the inner island (purple)
has a smaller ET compared to the outer island (pink). This
relationship between the LD and the ET can be observed in
all escape islands. However, this observation does not seem
to be true for other regions. In fact, we observe that the stable
region centered at x ∼ 0.75 and px ∼ 0 in Fig. 4(b), which has
the largest values of ET in this plot, corresponds to the largest
values of the LD in Fig. 4(a). This rather complex correlation
will be investigated in future work.

V. CONCLUSION

In this work, we study the dynamics of a polar molecule
under a linearly polarized laser field. The problem is mod-
eled by the driven Morse oscillator with rotation. Since it
is not possible to obtain the PS for systems with two and
a half degrees of freedom, we analyze the system through
the application of two complementary nonlinear dynamics
techniques, namely the Lagrangian descriptor and the escape
times. We initially consider the system with one and a half
degrees of freedom and construct the PS. Then we calculate
the Lagrangian descriptor for the system, but it is not possible
to determine which structures of the phase space have stable
and unstable behavior only by analyzing the LD. Therefore, to
complement the analysis we calculate the escape times of the
initial conditions. We show that the LD and the escape times
faithfully reproduce the dynamics observed through the PS.
Then, we introduce one more degree of freedom, the rotation,
to the system, and through the LD and the ET techniques
we study the dynamics of the forced Morse potential with
rotation. We observe the existence of islandlike structures in
which the escape times of the initial conditions are smaller
in relation to their neighborhood, and we call them “escape
islands.” We could also visualize the stickiness around sta-
ble islands. Furthermore, we note that the introduction of
rotation modifies the structure of the phase space, changing
the position and the number of the equilibrium points. In
particular, we have verified that for high-field amplitudes, the
rotation leads to an increase of the stability region, which
in turn should lead to a decrease of the photodissociation
probability. This result is in agreement with previous quantum
and semiclassical investigations of polar diatomic molecule
dissociation under chirped pulses [36,37]. Physically, the de-
creasing of the dissociation probability with the inclusion of
rotation can be attributed to the addition of the new degree of
freedom: the energy pumped by the laser field can now also be
distributed to the rotational modes, instead of being delivered
exclusively to the vibrational motion. This behavior influences
the probabilities of photodissociation, photoassociation; and
the initial escape conditions [38–41]. Thus, we will use the LD
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and ET to study the behavior of these probabilities in future
work.
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