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Quenching of oscillations via attenuated coupling for dissimilar electrochemical systems
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The coupled dynamics of two similar and disparate electrochemical cells oscillators are analyzed. For the
similar case, the cells are intentionally operated at different system parameters such that they exhibit distinct
oscillatory dynamics ranging from periodic to chaotic. It is observed that when such systems are subjected
to an attenuated coupling, implemented bidirectionally, they undergo a mutual quenching of oscillations. The
same holds true for the configuration wherein two entirely different electrochemical cells are coupled via
bidirectional attenuated coupling. Therefore, the attenuated coupling protocol seems to be universally efficient in
achieving oscillation suppression in coupled oscillators (similar or heterogeneous oscillators). The experimental
observations were verified by numerical simulations using appropriate electrodissolution model systems. Our
results indicate that quenching of oscillations via attenuated coupling is robust and therefore could be ubiquitous
in coupled systems with a large spatial separation prone to transmission losses.
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I. INTRODUCTION

Collective behaviors observed in coupled nonlinear os-
cillators range from the inception of spatiotemporal chaos
[1,2], synchronization [3–5], and suppression of oscilla-
tions [amplitude death (AD) and oscillation death (OD)]
[6]. These phenomena of suppression of oscillations are
ubiquitous and have been observed in numerous physical,
chemical, and biological systems [7–12]. They were first
observed experimentally in organ pipes by Lord Rayleigh
in the 19th century [13,14]. This quenching of oscillations
can be provoked using different techniques such as time-
delayed coupling [7,15–20], conjugated coupling [6,21–23],
ill-matched timescales [24], and attenuated coupling [25].
The mutual suppression of oscillations is a double edged
sword: advantageous and therefore desirable in certain sit-
uations, or detrimental, hence avoidable, in other situations
[12,26–30]. Among all the above works, Refs. [7,12] stand
out as seminal contributions that have inspired our control
strategy. In a previous work, the suppression of oscilla-
tions using attenuated coupling was achieved for similar
oscillators exhibiting autonomous periodic and aperiodic
dynamics [25].

In the present paper, we extend this attenuated control
protocol to dissimilar systems in an effort to test the ro-

bustness of this technique. For this purpose, two entirely
different electrochemical cells were configured and coupled.
Analogously, two entirely distinct model systems simulating
the dynamics of electrochemical corrosion were subjected to
attenuated coupling. The paper is organized as follows: In
the following section we describe in detail the experimental
electrochemical cell device (iron/sulfuric acid) [31–33] and
the corresponding evolution equations for a corrosion model
[34,35]. In Sec. III, an entirely different electrochemical setup
(copper/acetic acid) [36,37] is described in conjunction with
an appropriate numerical model [38,39]. In Sec. IV we present
both experimental and numerical results observed for different
combinations of the two systems. Finally, a brief conclusion
in conjunction with the possible applications of this work are
presented in Sec. V.

II. SYSTEM 1

A. Experimental setup 1

This electrochemical cell consists of three electrodes. In
this case the anode is an iron disk (Alfa Aesar, 6.3 mm
diameter, 99.99% purity) shrouded by epoxy, the cathode is
a graphite rod (6.15 mm diameter), and the reference is a
saturated calomel electrode. This was designed to ensure that
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FIG. 1. The schematic of the experimental setup of system 1:
(a) The three-electrode electrochemical cell consists of iron (purity
99.99%, diameter 6.3 mm) as the anode, a graphite rod (diameter
6.15 mm) as the cathode, and a saturated calomel electrode as the
reference. (b) The cross-sectional view shows the placement of the
electrodes.

the anodic reactions (electrodissolution) were restricted to
the surface of the anode exposed to the electrolytic solution.
The electrolyte solution was a mixture of 1.0M sulfuric acid,
0.4M potassium sulfate, and a specific concentration of potas-
sium chloride, selected depending on the desired dynamics
(chaotic or periodic). A volume of approximately 100 ml was
maintained in the cell at room temperature. The schematic of
this experimental setup is presented in Fig. 1. In the case of
potentiostatic experiments, the anodic voltage V (0) between
the anode and the reference electrode is maintained constant.
This anodic voltage acts as the control parameter for the sys-
tem dynamics. Consequently, the current I between the anode
and the cathode (anodic current) is the system observable
that normally changes its dynamical properties. More details
regarding this experimental system are provided in previous
works [31–33].

B. Numerical model 1

The first-order differential equations of the Koper-Gaspard
model are given in a dimensionless form [34,35],

ė = v − e

r
− mk(e)u, (1)

u̇ = −1.25d1/2k(e)u + 2d (w − u), (2)

ẇ = 1.6d (2 − 3w + u), (3)

where v is the applied (circuit) potential, e is the “true” elec-
trode potential appearing across the interfacial double layer,
r is an adjustable series resistance, d is the transfer rate,

and k(e) is the heterogeneous rate constant determining the
rate of electron transfer. To account for the mass transport
from the solution to the anode a simple two-diffusion-layer
model is applied. Variables u and w are the normalized con-
centrations of the electroactive species, respectively, in the
so-called “surface” and “diffusion” layers, while m is the
concentration in the bulk. Equations (1)–(3) are studied under
potentiostatic conditions with circuit potential v as the control
parameter. For monitoring the behavior we use the total cur-
rent i = (v − e)/r which is an easily measurable function of
the system variables. Since the model equations are not stiff,
a simple fourth-order Runge-Kutta method has been applied
for integration. The potential-dependent rate constant k(e) is
given by a prototype function,

k(e) = k1θ
2 + k2 exp[nα(e − e0)], (4)

where e0 is the dimensionless standard potential, nα is the
transfer coefficient, and θ is related to the surface coverage
by some electroactive species. The value of θ is approximated
by a sigmoidal function,

θ =
{

1 for e � ed ,

exp[−b(e − ed )2] for e > ed .
(5)

Equations (4) and (5) give rise to a potentially unstable
electrochemical flux. The extended dynamics of this model,
including bifurcation diagrams, can be found in previously
published works [34,35]. It needs to be pointed out that there
exist an established model [40] for the electrodissolution of
iron in sulfuric acid. However, in the present experimen-
tal configuration, an additional component has been added
(potassium chloride) in order to introduce chaotic behavior.
Since this established model is two dimensional (2D), it is un-
able to capture the dynamics of the modified electrochemical
cell, showing chaotic behavior. Therefore, the above Koper-
Gaspard model, with similar underlined electrodissolution
mechanisms, was chosen since it has three degrees of free-
dom and is capable of exhibiting both periodic and chaotic
dynamics.

III. SYSTEM 2

A. Experimental setup 2

The electrochemical cell was a PAR model K0066/K0060
(Princeton Applied Research). The electrodes were a
0.20-cm2 copper rotating disk used as the anode, a model
K0077 saturated calomel reference electrode (SCE), and a
2.88-cm2 platinum foil used as a cathode electrode. The
copper was obtained in the form of a rod (6 mm diameter,
99.99% purity) from Sputtering Targets Manufacturer. The
acetate buffer supporting electrolyte solution was prepared
from 30 ml of 2M sodium acetate and 70 ml of glacial acetic
acid (purity � 99.7%). Ambient solution temperatures were
used. The copper electrode pretreatment consisted of wet
sandings down to a grit size of 1000 (2–4 µm). The PAR
model 616 rotating disk electrode unit was connected with
the PINE AFRDE-5 bipotentiostat. The periodic and chaotic
oscillatory data were collected using the appropriate digital
to analog converter (DAC) interface platform. More details
regarding this experimental system are provided in previous
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FIG. 2. The schematic of the experimental setup of system 2:
(a) The three-electrode electrochemical cell consists of copper (pu-
rity 99.99%, diameter 6 mm) as the anode, platinum sheet (area of
1.8 × 1.6 cm2) as the cathode, and a saturated calomel electrode as
the reference. (b) The cross-sectional view shows the placement of
the electrodes.

works [36,37]. The schematic of this experimental setup is
presented in Fig. 2.

B. Numerical model 2

The numerical model [38,39] is a kinetic rate equa-
tion model for metal passivation. The electrochemical system
under consideration is the passivation of the reactive surface
of a metal electrode in an electrochemical cell. The chemical
kinetics of the passivation model includes the formation of
two surface films, MOH and MO, where M represents the
metal atom. It combines elements from surface reaction mod-
els by Talbot and Oriani [39] for MOH and by Sato [41] for
MO formation. The chemical kinetics lead to the following
dimensionless equations.

Ẏ = p(1 − θOH − θO) − qY, (6)

θ̇OH = Y (1 − θOH − θO) − (exp−βθOH +r)θOH

+ 2sθO(1 − θOH − θO), (7)

θ̇O = rθOH − sθO(1 − θOH − θO), (8)

where Y is the concentration of metal ions in the electrolyte,
θOH and θO are the respective fraction of the metal surface
covered by each film, p, q, r, and s are parameters related to
chemical rate constants, and β represents the non-Langmuir
nature of MOH film formation in the Talbot-Oriani model
[38,39]. A standard fourth-order Runge-Kutta algorithm was
used to integrate the model equations.

FIG. 3. Quenching of oscillations via coupling of two system
1’s exhibiting different autonomous dynamics. (a) Experiments: Dy-
namics of two coupled electrochemical cells follow the sequence of
nncoupled (2 min)→coupled with attenuation (3 min)→uncoupled
(∼2 min). The coupling strength was γ = 0.28 and the attenuation
factor was α = 0.2. The autonomous chaotic behavior was pro-
voked by maintaining an anodic potential of V1(0) = 390 mV (top
panel) and by adding 80 mM potassium chloride in the solution.
The autonomous periodic behavior was provoked by maintaining an
anodic potential of V2(0) = 360 mV (lower panel) and by adding
40 mM potassium chloride in the solution. (b) Numerics: Corre-
sponding sequence for two coupled model equations. The parameters
which are constant for both the oscillators are r = 0.02, m = 120,
d = 0.119 15, k1 = 2.5, k2 = 0.01, nα = 0.5, e0 = 30, ed = 35, and
b = 0.5. The autonomous chaotic behavior (red) was provoked by
v1 = 36.74 and the autonomous periodic behavior was provoked by
v2 = 36.725. The coupling strength was γ = 2.0 and the attenuation
factor was α = 0.8. In (b), insets (i) and (ii) are the zoomed version of
the areas corresponding to 385–410 and 795–820 integration steps,
respectively.

IV. RESULTS

A. System 1-system 1

Two electrochemical cells involving the electrodissolution
of iron in sulfuric acid buffer were considered. Furthermore,
numerics involving two Cu-phosphoric acid models are an-
alyzed. The two experimental cells were mutually coupled
under the coupling scheme V1,2 = V1,2(0) + γ (αI2,1 − I1,2).
In this coupling term V (0) is the corresponding rest potential
of each cell, I corresponds to the observable anodic current,
γ is the coupling strength, and α is the attenuation factor. The
parameter α was tuned precisely to observe the complete dead
state (as shown in Fig. 3).

Analogously, the coupling term introduced in the numeri-
cal model in Eq. (1) can be written as γ (αe2,1 − e1,2), where
γ and α were defined previously and e is one of the model
variables. Figure 3 shows both experimental and simulation
results indicating quenching of oscillations for the appropriate
set of coupling parameters provided in the figure caption. The
autonomous dynamics considered here are chaotic and period
1, respectively.
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FIG. 4. Quenching of oscillations via coupling of two system
2’s exhibiting different autonomous dynamics. (a) Experiments: Dy-
namics of two coupled electrochemical cells follow the sequence of
uncoupled (2 min)→coupled with attenuation (3 min)→uncoupled
(∼2 min). The coupling strength was γ = 0.06 and the attenuation
factor was α = 0.5. The autonomous chaotic behavior was provoked
by maintaining an anodic potential of V1(0) = 800 mV at a rotation
rate of 1300 rpm (top panel). The autonomous periodic behavior
was provoked by maintaining an anodic potential of V2(0) = 820 mV
(lower panel) at a rotation rate of 1000 rpm. (b) Numerics: Corre-
sponding sequence for two coupled model equations. The parameters
which are constant for both the oscillators are p = 2 × 10−4, q =
1 × 10−3, r = 2 × 10−5, and β = 5. The autonomous chaotic be-
havior (red) was provoked by s1 = 9.7 × 10−5 and the autonomous
periodic behavior (blue) was provoked by s2 = 9.63 × 10−5. The
coupling strength was γ = 0.01 and the attenuation factor was α =
0.8. In (b), insets (i) and (ii) are the zoomed version of the areas cor-
responding to (3.92–4.05) × 105 and (7.96–8.12) × 105 integration
steps, respectively.

B. System 2-system 2

Two electrochemical cells involving the electrodissolution
of copper in acetic acid buffer were considered. Furthermore,
numerics involving two units of the model system for the
electrodissolution of a metal surface in an aqueous media are
analyzed. The two experimental cells were mutually coupled
under the coupling scheme V1,2 = V1,2(0) + γ (αI2,1 − I1,2).
In this coupling term V (0) is the corresponding rest potential
of each cell, I corresponds to the observable anodic current, γ
is the coupling strength, and α the attenuation factor. Analo-
gously, the coupling term introduced in the numerical model
in Eq. (6) can be written as γ (αθOH2,1 − θOH1,2 ), where γ

and α were defined previously and θOH is one of the model
variables. Figure 4 shows both experimental and simulation
results indicating quenching of oscillations for the appropriate
set of coupling parameters provided in the figure caption. The
autonomous dynamics considered here are chaotic and period
1, respectively. The attenuation factor α was chosen carefully
to observe the quenching of oscillations.

C. System 1-system 2

Finally, the ultimate test for the performance of this
quenching method was conducted. For this purpose two en-

FIG. 5. Quenching of oscillations via coupling of system 1
and system 2 exhibiting different autonomous dynamics. (a) Ex-
periments: Dynamics of two coupled electrochemical cells follow
the sequence of uncoupled (2 min)→coupled with attenuation
(3 min)→uncoupled (∼2 min). The coupling strength was γ = 0.20,
the attenuation factor was α = 0.3, and the amplitude rescaling factor
was δ = 0.35. The autonomous chaotic behavior (red) of system 1
was provoked by maintaining an anodic potential of V1(0) = 580 mV
(top panel) and by adding 74 mM potassium chloride in the solution.
The autonomous periodic behavior of system 2 was provoked by
maintaining an anodic potential of V2(0) = 850 mV (lower panel)
at a rotation rate of 1200 rpm. (b) Numerics: Corresponding se-
quence for two coupled model equations. The autonomous chaotic
behavior (red) of system 1 was provoked by a set of parameters:
r1 = 0.02, m = 120, d = 0.119 15, k1 = 2.5, k2 = 0.01, nα = 0.5,
e0 = 30, ed = 35, b = 0.5, and v = 36.74. The autonomous periodic
behavior (blue) of system 2 was provoked by a set of parame-
ters: p = 2 × 10−4, q = 1 × 10−3, r = 2 × 10−5, β = 5, and s =
9.63 × 10−5. The coupling strength was γ = 0.20, the attenuation
factor was α = 0.1, the amplitude scaling factor was δ = 250, and
the frequency scaling factor was τ = 1000. In (b), insets (i) and (ii)
are the zoomed version of the areas corresponding to 385–410 and
795–820 integration steps, respectively.

tirely different electrochemical cells were considered. These
cells not only have dissimilar anodes (copper and iron), but
also the electrolytic solutions (acetic acid buffer and sulfuric
acid) are different. Consequently, the autonomous dynamics
of anodic current had dramatically different amplitudes and
frequencies. Therefore, appropriate scaling amplitude (δ) and
frequency (τ ) had to be included when required. To reiterate,
two electrochemical cells involving the electrodissolution of
iron/sulfuric acid and copper/acetic acid were coupled. These
cells were mutually coupled under the coupling scheme:
V1 = V1(0) + γ (αI2 − δ−1I1) and V2 = V2(0) + γ (αI1 − δI2).
In these equations [V1(0), I1] and [V2(0), I2] are the rest poten-
tials and anodic currents of iron and copper cells, respectively.
The parameter γ is the coupling strength, α the attenuation
factor, and δ the amplitude scaling. In this case no frequency
scaling was necessary (τ = 1).

Analogously, the coupling terms introduced in the nu-
merical models in Eqs. (1) and (6) can be written as
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FIG. 6. Quenching of oscillations via coupling of system 1
and system 2 exhibiting different autonomous dynamics. (a) Ex-
periments: Dynamics of two coupled electrochemical cells follow
the sequence of uncoupled (2 min)→coupled with attenuation
(3 min)→uncoupled (∼2 min). The coupling strength was γ = 0.14,
the attenuation factor was α = 0.3, and the amplitude rescaling factor
was δ = 0.35. The autonomous chaotic behavior (red) of system 1
was provoked by maintaining an anodic potential of V1(0) = 480 mV
(top panel) and by adding 74 mM potassium chloride in the solution.
The autonomous period-2 behavior of system 2 was provoked by
maintaining an anodic potential of V2(0) = 800 mV (lower panel)
at a rotation rate of 1100 rpm. (b) Numerics: Corresponding se-
quence for two coupled model equations. The autonomous chaotic
behavior (red) of system 1 was provoked by a set of parameters:
r1 = 0.02, m = 120, d = 0.119 15, k1 = 2.5, k2 = 0.01, nα = 0.5,
e0 = 30, ed = 35, b = 0.5, and v = 36.74. The autonomous period-2
behavior (blue) of system 2 was provoked by a set of parame-
ters: p = 2 × 10−4, q = 1 × 10−3, r = 2 × 10−5, β = 5, and s =
9.66 × 10−5. The coupling strength was γ = 0.20, the attenuation
factor was α = 0.1, the amplitude scaling factor was δ = 250, and
the frequency scaling factor was τ = 1000. In (b), insets (i) and (ii)
are the zoomed version of the areas corresponding to 385–410 and
795–820 integration steps, respectively.

γ (αδ−1e − Y ) and γ (αδY − e), where γ , α, and δ were de-
fined previously and Y and e are the chosen model variables.
Furthermore, all the three evolution equations of system 2
[Eqs. (6)–(8)] were multiplied by τ , the frequency scaling
parameter.

Figures 5–7 show three sets of experimental and simula-
tions results indicating quenching of oscillations for dissimilar
systems at different combinations of chaotic/periodic dynam-
ics, for the appropriate sets of coupling parameters provided in
the figure captions. In Fig. 5(a), α is chosen as 0.3 to observe
the quenching of oscillations. For the α value to be higher than
0.3, both oscillators do not exhibit complete dead state when
the coupling is on. Therefore, in each configuration, at fixed
values of other parameters, only the attenuation factor α was
monitored to observe the quenching of oscillations from both
the oscillators.

FIG. 7. Quenching of oscillations via coupling of system 1
and system 2 exhibiting different autonomous dynamics. (a) Ex-
periments: Dynamics of two coupled electrochemical cells follow
the sequence of uncoupled (2 min)→coupled with attenuation
(3 min)→uncoupled (∼2 min). The coupling strength was γ = 0.14,
the attenuation factor was α = 0.2, and the amplitude rescaling factor
was δ = 0.35. The autonomous chaotic behavior (red) of system 1
was provoked by maintaining an anodic potential of V1(0) = 500 mV
(top panel) and by adding 74 mM potassium chloride in the solution.
The autonomous periodic behavior of system 2 was provoked by
maintaining an anodic potential of V2(0) = 840 mV (lower panel)
at a rotation rate of 1600 rpm. (b) Numerics: Corresponding se-
quence for two coupled model equations. The autonomous chaotic
behavior (red) of system 1 was provoked by a set of parameters:
r1 = 0.02, m = 120, d = 0.119 15, k1 = 2.5, k2 = 0.01, nα = 0.5,
e0 = 30, ed = 35, b = 0.5, and v = 36.74. The autonomous periodic
behavior (blue) of system 2 was provoked by a set of parame-
ters: p = 2 × 10−4, q = 1 × 10−3, r = 2 × 10−5, β = 5, and s =
9.70 × 10−5. The coupling strength was γ = 0.20, the attenuation
factor was α = 0.1, the amplitude scaling factor was δ = 250, and
the frequency scaling factor was τ = 1000. In (b), insets (i) and (ii)
are the zoomed version of the areas corresponding to 385–410 and
795–820 integration steps, respectively.

V. SUMMARY AND DISCUSSION

In this paper, we report the quenching of oscillations in two
bidirectionally coupled electrochemical cells when their indi-
vidual signals were attenuated before passing on to the other
oscillator. These results seem to be robust for the similar cells
(system 1-system 1, system 2-system 2) exhibiting different
dynamical behaviors as well as dissimilar (system 1-system
2) cells. This attenuation presented before feeding the signal
to the other oscillator is used to mimic a physical situation
wherein there is an attenuation of signal amplitude due to
various transmission losses. Interestingly, a cessation of os-
cillations was observed when the signal attenuation crosses a
threshold. These experimental observations were reproduced
in corresponding numerical models.

These results are a considerable extension upon our pre-
vious work wherein a mutual suppression of oscillations was
observed for similar systems exhibiting qualitatively identi-
cal dynamics. This renders the phenomena of quenching of
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oscillations, in the presence of attenuated coupling, almost
universal. Our results are relevant to the scenario of coupled
systems, regardless of whether the individual units are similar
or dissimilar, as long as they have significant spatial separation
and hence are liable to a loss of signal strength during the
information transmission. For example, neuronal cells, of the
same or different genre, coupled over a large distance may
suffer from signal attenuation at the receiver’s end. Therefore,
attenuation-induced oscillation suppression suggests an alter-
nate mechanism for control of oscillatory behavior in neuronal
systems [42,43]. Such attenuation of signals also underpins

models of distance-dependent coupling that is believed to be
widespread in ecological systems [44].

To summarize, attenuated coupling, under appropriate
implementation conditions, could lead to the spontaneous sta-
bilization of steady states and offers a potent, almost universal
technique for oscillation quenching in coupled nonlinear os-
cillators.
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