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The coupled phase oscillator model serves as a paradigm that has been successfully used to shed light on
the collective dynamics occurring in large ensembles of interacting units. It was widely known that the system
experiences a continuous (second-order) phase transition to synchronization by gradually increasing the homo-
geneous coupling among the oscillators. As the interest in exploring synchronized dynamics continues to grow,
the heterogeneous patterns between phase oscillators have received ample attention during the past years. Here,
we consider a variant of the Kuramoto model with quenched disorder in their natural frequencies and coupling.
Correlating these two types of heterogeneity via a generic weighted function, we systematically investigate
the impacts of the heterogeneous strategies, the correlation function, and the natural frequency distribution on
the emergent dynamics. Importantly, we develop an analytical treatment for capturing the essential dynamical
properties of the equilibrium states. In particular, we uncover that the critical threshold corresponding to the onset
of synchronization is unaffected by the location of the inhomogeneity, which, however, does depend crucially
on the value of the correlation function at its center. Furthermore, we reveal that the relaxation dynamics of the
incoherent state featuring the responses to external perturbations is significantly shaped by all the considered
effects, thereby leading to various decaying mechanisms of the order parameters in the subcritical region.
Moreover, we untangle that synchronization is facilitated by the out-coupling strategy in the supercritical region.
Our study is a step forward in highlighting the potential importance of the inhomogeneous patterns involved
in the complex systems, and could thus provide theoretical insights for profoundly understanding the generic
statistical mechanical properties of the steady states toward synchronization.
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I. INTRODUCTION

Synchronization refers to an emergent phenomenon that
occurs in large ensembles of interacting oscillators. Such a
collective behavior has wide applications in diverse complex
systems ranging from physics and biology to human soci-
ety [1,2]. Unravelling the intrinsic mechanism behind such
self-organized behaviors has been a major subject of research
in the fields of nonlinear dynamics and network science [3].

The Kuramoto model introduced in 1975 has become a
classic for investigating synchronization transitions and other
related collective dynamics [4]. The model elucidates syn-
chronization at the onset of a nonequilibrium phase transition
unveiling the interplay between the tendency that each indi-
vidual phase oscillator has to oscillate at its native frequency
and the dissipative phase difference coupling attempting to
synchronize the system.

In the classical Kuramoto model, the coupling among the
phase oscillators is assumed to be uniform, and the system
undergoes a continuous (second-order) phase transition to-
wards synchronization. Correspondingly, the population may
aggregate to form a crowd of oscillators by either increasing
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the overall coupling strength or by decreasing the width (di-
versity) of natural frequencies of the phase oscillators [5–8].

Recently, there has been a great interest in exploring the
synchronized dynamics induced by the heterogeneous interac-
tions, in which the classical Kuramoto model was generalized
by considering the added effects. In contrast to the homoge-
neous interactions, there will inevitably be some variations
among oscillators in many realistic setups. Typical examples
include the intrinsic frequencies of the oscillators themselves
and the network topology encoding the connection structure,
which account for a sort of inhomogeneity of the coupled sys-
tem. The most notable dynamical consequence arising from
the correlation between these two types of heterogeneity is
the emergence of explosive synchronization [9,10], which is
characterized by an abrupt transition between the disordered
and ordered states. Investigating such an issue, therefore,
represents an important topic of research that provides a the-
oretical underpinning for understanding the relation between
dynamical structures and functional fittings of the complex
system [11–23].

In this work, we consider a variant of the Kuramoto
model of globally coupled phase oscillators incorporating
the correlation between the quenched disorder of the natu-
ral frequencies and the coupling, in which the correlation
is described by a generic weighted function. We reveal that
the coupling strategy, the correlation function, as well as the
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frequency distribution of the oscillators can greatly alter the
synchronized dynamics. In particular, we develop an analyti-
cal treatment that is capable of capturing the critical behaviors
for the onset of synchronization. Specifically, the critical
threshold corresponding to the emergence of synchronization
is expressed as an analytical formula that is unaffected by the
location of the heterogeneous correlation function. Moreover,
we demonstrate that the stability of the incoherent state, as
well as the associated eigenspectrum structure, remain the
same for both the in-coupling and out-coupling strategies.
Nevertheless, the relaxation dynamics of the disordered state
is significantly shaped by the coupling strategies. We develop
a framework for systematically exploring the relaxation dy-
namics of the equilibrium states induced by various weighted
functions. More importantly, we clarify the intrinsic decaying
mechanism for the macroscopic order parameters that are at
the heart of the Landau damping effects observed in coupled
oscillator systems. Using the methodology of the resonant
poles theory, the classical Kuramoto order parameter together
with the weighted order parameter are established in an an-
alytical formalism in the subcritical region. Furthermore, in
the supercritical regime, we untangle that synchronization is
facilitated by the out-coupling strategy even for the same
settings of the system.

The remainder of this paper is organized as follows. In
Sec. II, we briefly introduce the dynamical model incorpo-
rating the correlation into the coupling via a generic weighted
function. In Sec. III, we carry out a detailed linear stability
analysis of the incoherent state to obtain the critical point
for the onset of synchronization. In Sec. IV, we further ex-
plore the relaxation dynamics of the incoherent state in the
subcritical region. The two order parameters describing the
macroscopic dephasing effects are obtained in the analytical
form. In Sec. V, we explore the asymptotical behaviors of the
order parameters in the neighborhood of critical point. Finally,
we conclude with a discussion of our results in Sec. VI.

II. DYNAMICAL MODEL

To begin with, the generalized Kuramoto model consisting
of a population of globally coupled phase oscillators is ruled
by

θ̇i = ωi + 1

N

N∑
j=1

Ki j sin(θ j − θi ), i = 1, . . . , N. (1)

Here, θi(t ) is the instantaneous phase of the oscillator i, and
N > 0 is the size of the system (oscillator number). {ωi} are
the natural frequencies chosen randomly from a prescribed
distribution function g(ω). Ki j accounts for the coupling
scheme underlying the system that encodes the connectivity
patterns of the system.

The classical Kuramoto model implies that Ki j = K , with
K > 0 being the global (uniform) coupling strength, thereby
defining an all to all connected topology of the coupled
system. However, given a network structure, the matrix
K = {Ki j} describes the connectivity patterns between each
pair of phase oscillators encoding the underlying topology of
the connections. For example, in the case of an undirected and

unweighted graph, Ki j = Kji = 1, if the pair of oscillators θi

and θ j are linked. Ki j = Kji = 0, otherwise.
Besides the network structures affecting the synchronized

dynamics, there has been a great interest in exploring the
emergent dynamics by incorporating the additional inho-
mogeneity into the coupling. For instance, the element Ki j

may be endowed with a random variable representing the
quenched disorder of the system. The concrete example is
the conformists-contrarians model reported in [24], in which
Ki j is a random variable with mixed signs. Specifically, if
Ki j > 0, the interaction between each pair of oscillators is
excitatory that tends to attract each other. On the contrary, if
Ki j < 0, the associated interaction turns out to be inhibitory
that is prone to repulse each other. For that matter, such an
excitatory-inhibitory model is massively investigated shed-
ding light on various rhythmic dynamics observed in social
and neural networks [25–27].

It should be pointed out that the intrinsic frequencies them-
selves are random variables featuring a kind of heterogeneous
quenched disorder of the population. In this regard, it is
reasonable to assume an internal relation between the {ωi, j}
and {Ki j}. To achieve this, one may choose the matrix K
to be the form Ki j ∝ f (ωi, ω j ), where f (·) is an arbitrary
function of the natural frequencies described by either an
explicit or an implicit relation. Notably, this setting establishes
a correlation between the natural frequencies and the cou-
pling strength. For instance, the frequency-weighted coupling,
e.g., f (ωi, ω j ) = |ωi| or f (ωi, ω j ) = |ωi − ω j |, was used to
mimic the frequency-degree correlation in a networked os-
cillator system giving birth to the explosive synchronization
transition route [28,29]. It unveils that the frequency-weighted
coupling scheme displays a suppressive rule for the formation
of small clusters in the neighborhood of the critical point
for phase transition. Subsequently, such a consideration was
further extended to a wealth of different systems by taking
into account various weighted schemes, thereby leading to a
host of fascinating dynamical phenomena [30–39].

In order to advance the existing studies and highlight the
correlation between the coupling and frequency, we consider a
general form of the correlation function. Particularly, we focus
on a correlation function that is decomposable with respect
to the arguments, i.e., f (ωi, ω j ) = K f (ωi ) and f (ωi, ω j ) =
K f (ω j ). K > 0 parametrizes the attracting global coupling
strength. f (ωi ) and f (ω j ) are arbitrary weighted functions
characterizing correlations between the intrinsic properties of
the oscillators and the coupling. Here, and in the following,
the first and the second scenarios are termed as the in-coupling
and out-coupling, respectively. The goal of this work is to
systematically investigate how the heterogeneous structures
and the correlation functions influence the onset of synchro-
nization, as well as the generic properties of the relaxation
dynamics of the equilibrium states.

Before proceeding with the analysis, it is convenient to
introduce two order parameters to characterize the level of
synchronization, which are

Z (t ) = R(t )ei�(t ) = 1

N

N∑
j=1

eiθ j (t ) (2)
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and

Zw(t ) = Rw(t )ei�w (t ) = 1

N

N∑
j=1

f (ω j )e
iθ j (t ). (3)

Remarkably, Z (t ) denotes the classical Kuramoto order pa-
rameter corresponding to the centroid of the configuration
{eiθ j } placed on the complex unit circle. R(t ) ∈ [0, 1] mea-
sures the coherence of the system with R = 0 and R = 1
representing a totally disordered state and completely syn-
chronized state, respectively. �(t ) gives the average phase of
the population. Likewise, Zw(t ) is a sort of weighted order
parameter corresponding to the centroid of the configuration
{ f (ω j )eiθ j }. Note that Rw(t ) ∈ [0, 〈| f (ω)|〉] with 〈·〉 being the
ensemble average, and �w(t ) ∈ S1 locates the average phase
of the associated configuration.

Until otherwise stated, the size N is assumed to be infinity,
i.e., N → ∞ (thermodynamic limit). Throughout this paper,
we assume that the natural frequency distribution g(ω) and the
correlation function f (ω) are unimodal and symmetric func-
tions with respect to ω, i.e., g(ω) = g(−ω), f (ω) = f (−ω),
and g′(ω) < 0, f ′(ω) < 0 for ω > 0. As we shall see be-
low, these assumptions are essential for the emergence of
collective behaviors as well as their dynamical properties.
In particular, the special form of g(ω) and f (ω) implies
that the dynamical system is unchanged under the reflection
(θi, ωi ) → (−θi,−ωi ) and phase shift θi → θi + α (with α

being a constant phase shift) actions. Remarkably, the reflec-
tion and phase shift symmetry rolls out the occurrence of
Hopf bifurcation of the incoherent state that leads to the time-
dependent (standing wave) states in the supercritical region.
In the following, we will discuss in detail the model defined
above by investigating several aspects of its generic dynamical
properties both theoretically and numerically.

III. CRITICAL POINT FOR SYNCHRONIZATION
TRANSITION

In this section, we pay particular attention to determining
the critical coupling for the phase transition, beyond which the
stability of the incoherent state is inverted and the system gets
synchronized. As we shall see below, the generic correlation
function f (ω) plays an important role for the onset of synchro-
nization, as well as the emergence of long term dynamics.

Passing to the thermodynamic limit, a smooth single os-
cillator distribution ρ(θ, ω, t ) is needed to characterize the
dynamics of Eq. (1), in which ρ(θ, ω, t )dθ denotes the frac-
tion of oscillators with their phases lying in the interval
(θ, θ + dθ ) at a fixed time t and a given natural frequency ω.
The distribution ρ(θ, ω, t ) is 2π -periodic function of θ that
satisfies the normalization condition on S1,∫ 2π

0
ρ(θ, ω, t )dθ = 1. (4)

Correspondingly, the two order parameters Z (t ) and Zw(t ) in
the limit N → ∞ become

Z (t ) =
∫ +∞

−∞

∫ 2π

0
eiθρ(θ, ω, t )g(ω)dθdω (5)

and

Zw(t ) =
∫ +∞

−∞

∫ 2π

0
eiθρ(θ, ω, t ) f (ω)g(ω)dθdω. (6)

Since the dynamics of Eq. (1) is deterministic, the num-
ber of oscillators is conservative under the dynamics, which
implies a continuity equation of the form

∂ρ

∂t
+ ∂ (ρv)

∂θ
= 0. (7)

For the in-coupling case, the velocity field v(θ, ω, t ) is given
by

vin(θ, ω, t ) = ω + K f (ω)

2i
(Z (t )e−iθ − Z̄ (t )eiθ ). (8)

For the out-coupling, the velocity is

vout (θ, ω, t ) = ω + K

2i
(Zw(t )e−iθ − Z̄w(t )eiθ ). (9)

Throughout the paper, the bar denotes the complex conjugate.
For the incoherent state, the system is totally disordered,

at which the two order parameters Z (t ) = Zw(t ) = 0. The
stationary distribution corresponds to ρ0(θ ) = 1

2π
, which is a

trivial solution of Eq. (7). Next, we carry out a linear stability
analysis of Eq. (7) around the fixed point ρ0, which allows for
obtaining the critical point for the onset of synchronization.

Let ρ(θ, ω, t ) = ρ0 + εη(θ, ω, t ), with ε (0 < ε 	 1) and
η(θ, ω, t ) being the perturbative magnitude and function, re-
spectively. Inserting the perturbation into Eq. (7) up to the
linear order of ε, the linearized dynamics is obtained as

∂η

∂t
= −ω

∂η

∂θ
+ K f (ω)

2π
Re(e−iθ Z[η]). (10)

For convenience, we here take the in-coupling as an example
to showcase the program, and the out-coupling case can be
discussed in a similar way. Re(·) represents the real part, and
the perturbed order parameter becomes

Z[η] =
∫ +∞

−∞

∫ 2π

0
eiθη(θ, ω, t )g(ω)dθdω. (11)

The perturbation function η(θ, ω, t ) is 2π -periodic with
respect to θ , which implies a Fourier expansion of the form

η(θ, ω, t ) = 1

2π

+∞∑
n=−∞

ηn(ω, t )einθ . (12)

Here, η0(ω, t ) = 0 that is due to the normalization condition
of ρ(θ, ω, t ). Because the function η(θ, ω, t ) is real, we thus
have η−n(ω, t ) = η̄n(ω, t ). Consequently, the order parameter
Z[η] is reduced to

Z[η] =
∫ +∞

−∞
η−1(ω, t )g(ω)dω = ĝη−1(ω, t ), (13)

where ĝ denotes the integral operator. Obviously, Eq. (13)
implies that only the 1 − th Fourier modes (η±1) have con-
tribution to the order parameter. In this sense, the evolution
of the high-order Fourier modes (|n| > 1) can be disregarded,
since they do not contribute to the order parameter.
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The linearized dynamics Eq. (10) can be proceeded in each
independent Fourier subspace. In the 1 − th Fourier subspace,
it yields

dη1

dt
= −iωη1 + K f (ω)

2
ĝη1. (14)

The stability information of the incoherent state is totally de-
termined by 1 − th Fourier modes. To this end, let dη1

dt = λη1,
with λ ∈ C being the eigenvalue of the linearized dynamics.
Accordingly, the eigenfunction η1(ω) is solved as

η1(ω) = K f (ω)

2

ĝη1

λ + iω
. (15)

Applying the integral operator ĝ to both sides of Eq. (15),
and using the fact that ĝη1 is a constant, we thus obtain
the eigenvalue equation describing the linear growth of the
perturbation, which yields

1

K
= 1

2

∫ +∞

−∞

f (ω)g(ω)

λ + iω
dω. (16)

We emphasize that the eigenvalue equation (16) remains
true for the out-coupling scenario. This is because the
weighted order parameter Zw[η] now becomes

Zw[η] =
∫ +∞

−∞
η−1(ω, t ) f (ω)g(ω)dω = ĝwη−1(ω, t ), (17)

where ĝw stands for the weighted integral operator. The as-
sociated perturbation function η(θ, ω, t ) evolves according to

∂η

∂t
= −ω

∂η

∂θ
+ K

2π
Re(e−iθ Zw[η]). (18)

Similarly, the analysis can be performed in each Fourier sub-
space. Therefore, the 1 − th Fourier mode η1 is governed by

dη1

dt
= −iωη1 + K

2
ĝwη1. (19)

Eventually, the same eigenvalue equation as described by
Eq. (16) can be reobtained. On that basis, it can be concluded
that the stability property of the incoherent state is unaffected
by the possession of the coupling weight. In other words, the
in-coupling and out-coupling have the same critical point for
phase transition provided that the correlation function has the
same form.

To get analytical insights for the eigenvalue λ and the crit-
ical point, we first note that, for a unimodal g(ω) and f (ω), it
can be proven rigorously that λ ∈ R [40]. The corresponding
eigenvalue function begets

1

K
= 1

2

∫ +∞

−∞

λ

λ2 + ω2
f (ω)g(ω)dω. (20)

Second, we remark that λ > 0 so long as K > 0. Third, the
right-hand side of Eq. (20) is a strictly decreasing function
with respect to λ, which indicates that the roots to Eq. (20) do
not exist for a sufficiently small value of K . Specifically, for
K < Kc, the eigenvalues are absent. Therefore, the incoherent
state remains neutrally stable to perturbation characterized by
the continuous spectrum λ = iω sitting on the whole imagi-
nary axis. Conversely, the eigenvalue λ will across through the

FIG. 1. Critical point Kc vs. the control parameters with g(ω) =
γ

π (ω2+γ 2 )
and f (ω) = a2e−ω2

. The size N = 10000 is used to simulate
the system. (a) γ = 1.0. (b) a = 1.0. The solid lines correspond to
the theoretical predictions and the circles are numerical simulations.

imaginary axis as the coupling K increases, and the incoherent
state becomes linearly unstable once K > Kc. As a result, the
critical coupling Kc is obtained by imposing the condition
λ → 0+,

Kc = 2

πg(0) f (0)
, (21)

which uses the fact that the following identity holds:

lim
λ→0+

λ

λ2 + ω2
= πδ(ω). (22)

The formula above is a straightforward generalization of
the result obtained by Kuramoto. This analytical formulism
permits us to dissect the mathematical consequence of the
generic correlation function that gives rise to the occurrence
of synchronization. It reveals that the value of the correlation
function at its origin plays a critical role for the onset of
synchronization. On the one hand, for a small value of f (0),
the correlation hinders the occurrence of synchronization,
thereby leading to the increase of Kc. On the other hand, for
a large value of f (0), the correlation makes synchronization
transition easier to happen characterized by a decreasing effect
of Kc.

To make sense of it, we make specific choices of g(ω)
and f (ω), e.g., g(ω) = γ

π (ω2+γ 2 ) and f (ω) = a2e−ω2
. Then,

Kc = 2γ

a2 . Figure 1 plots the critical coupling Kc as a function
of the control parameters. In both panels, the solid lines and
the circles are, respectively, the theoretical predictions and
numerical simulations, which match well. The increasing and
decreasing behaviors of Kc indicate that the critical point
for the onset of synchronization can either be postponed or
accelerated by adjusting the width of frequency distribution
and the magnitude of correlation function at its center.

IV. SUBCRITICAL REGIME: RELAXATION DYNAMICS

As we have already shown that the critical point for phase
transition and the stability properties of the incoherent state
do not depend on the specific location of the correlation
function, and both coupling schemes yield the same eigen-
spectrum structure. More importantly, it demonstrates that
the microscopic incoherent state remains neutrally stable to
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perturbation in the subcritical region K < Kc. Nevertheless,
as a well-known result, the macroscopic order parameters
actually decay to zero in the long time limit before the syn-
chronization transition [41]. In this section, we continue to
explore the generic properties of the relaxation dynamics
of the incoherent state by taking into account both the in-
coupling and out-coupling circumstances. As we shall see
below, such a decaying effect is far more generic, which is
significantly shaped by the coupling strategies [42,43].

Addressing such an issue may be helpful in giving insights
into the intrinsic properties of the statistical mechanics of
the equilibrium states. It has been argued that the relaxation
dynamics of the equilibrium states is intimately related to
the critical slowing phenomenon and the susceptibility in
response to the external fields [44–48]. Remarkably, such
a dephasing mechanism is akin to the Landau damping ef-
fects in plasma physics [49]. Below, we provide a framework
for clarifying the inner decaying mechanism in both the in-
coupling and out-coupling schemes.

A. In-coupling

As the first step, we start with the in-coupling situation.
For the sake of notation, we set η−1(ω, t ) = z(ω, t ), which is
governed by the following linear differential equation:

dz

dt
= iωz + K f (ω)

2
ĝz = Lz, (23)

where L denotes the linear operator. It becomes apparent that
the formal solution of z(ω, t ) with its initial condition z(ω, 0)
is expressed as

z(ω, t ) = eLt z(ω, 0). (24)

The operator eLt is calculated in terms of the inverse Laplace
transform, which reads

eLt = 1

2π i
lim

y→+∞

∫ x+iy

x−iy
est (s − L)−1ds (25)

with t > 0 and x > 0.
The key task herein is to derive the explicit expression

for the resolvent (s − L)−1. For this purpose, let φ(ω) be an
arbitrary smooth function, we define

B(s)φ(ω) = (s − L)−1φ(ω)

=
(

s − iω − K f (ω)

2
ĝ

)−1

φ(ω). (26)

Multiplying both sides of Eq. (26) by the operator (s − L), we
have that

B(s)φ(ω)= (s − iω)−1φ(ω)+ K f (ω)

2
(s − iω)−1ĝ[B(s)φ(ω)].

(27)
Once again, applying the integral operator ĝ to both sides of
Eq. (27), we get

ĝ[B(s)φ] = ĝ

[
φ

s − iω

]
+ K

2
ĝ

[
f (ω)

s − iω

]
ĝ[B(s)φ], (28)

which is rearranged as

ĝ[B(s)φ] = ĝ
[

φ

s−iω

]
1 − K

2 ĝ
[ f (ω)

s−iω

] . (29)

Turning to the order parameter Z (t ), from the definition
Eq. (13), we have

Z (t ) = ĝz(ω, t )

= ĝ[eLt z(ω, 0)]

= 1

2π i
lim

y→+∞

∫ x+iy

x−iy
est ĝ[(s − L)−1z(ω, 0)]ds

= 1

2π i
lim

y→+∞

∫ x+iy

x−iy
est ĝ[B(s)z(ω, 0)]ds. (30)

Using the results above, the order parameter is expressed as a
simple form yielding

Z (t ) = L−1

[
D(s)

1 − Qw(s)

]
(31)

with L−1 being the inverse Laplace transform and the two
characteristic functions are respectively defined by

D(s) = ĝ

[
z(ω, 0)

s − iω

]
(32)

and

Qw(s) = K

2
ĝw

[
1

s − iω

]
. (33)

B. Out-coupling

The discussion of the out-coupling case becomes slightly
intricate. As before, the governing equation of the 1 − th
Fourier mode η−1(ω, t ) = z(ω, t ) now reduces to

dz

dt
= iωz + K

2
ĝwz = Lwz (34)

with Lw being the weighted linear operator. Similarly, the
formal solution of z(ω, t ) with the initial value z(ω, 0) is given
by

z(ω, t ) = eLwt z(ω, 0), (35)

and associated operator eLwt is defined by means of the inverse
Laplace transform,

eLwt = 1

2π i
lim

y→+∞

∫ x+iy

x−iy
est (s − Lw )−1ds (36)

with t > 0 and x > 0.
Analogously, the key step is to obtain the explicit expres-

sion for the resolvent (s − Lw )−1. To this aim, let

A(s)φ(ω) = (s − Lw )−1φ(ω)

=
(

s − iω − K

2
ĝw

)−1

φ(ω). (37)

Multiplying both sides of Eq. (37) by the operator (s − Lw ),
we then have

A(s)φ(ω) = φ(ω)

s − iω
+

K
2 ĝw[A(s)φ(ω)]

s − iω
. (38)

Applying the weighted integral operator ĝw to both sides of
Eq. (38) and using the fact that ĝw[A(s)φ(ω)] is a constant,
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we obtain

ĝw[A(s)φ] = ĝw

[
φ

s−iω

]
1 − K

2 ĝw

[
1

s−iω

] . (39)

With respect to the order parameters, we note that the
weighted order parameter Zw(t ) can be calculated in a similar
way that was done in the proceeding subsection. Straightfor-
ward calculations yield

Zw(t ) = L−1

[
Dw(s)

1 − Qw(s)

]
(40)

with the characteristic function Dw(s) defined by

Dw(s) = ĝw

[
z(ω, 0)

s − iω

]
. (41)

As for the classical order parameter Z (t ), it is controlled
by the weighted order parameter. To see it, Z (t ) is calculated
based on the original definition, we have that

Z (t ) = ĝz(ω, t )

= ĝ[eLwt z(ω, 0)]

= 1

2π i
lim

y→+∞

∫ x+iy

x−iy
est ĝ[(s − Lw )−1z(ω, 0)]ds

= 1

2π i
lim

y→+∞

∫ x+iy

x−iy
est ĝ[A(s)z(ω, 0)]ds. (42)

Clearly, Z (t ) can be obtained by invoking Eq. (38), which is
simplified as

Z (t ) = L−1

[
D(s) + Dw(s)

1 − Qw(s)
Q(s)

]
. (43)

The corresponding characteristic function Q(s) is defined by

Q(s) = K

2
ĝ

[
1

s − iω

]
. (44)

C. Discussion

Up to now, we have finished the derivations of the order
parameters described by Eqs. (31), (40), and (43). Remark-
ably, the inverse Laplace transforms are totally controlled by
the poles of the denominator appearing in each characteristic
function, which are precisely the resonant poles causing the
order parameters to decay. In order to invert the Laplace trans-
form, the calculations should be analytically continued to the
left complex plane with Re(s) < 0. It reveals that both the nat-
ural frequency distribution g(ω) and the correlation function
f (ω) play a central role for determining the resonant poles
and the decaying mechanisms of the order parameters. In fact,
f (ω) ≡ 1, then Dw(s) = D(s), and Qw(s) = Q(s), so the three
order parameters described by Eqs. (31), (40), and (43) are
exactly the same. This is an evident result since the weight
does vanish.

In the case of K = 0, the original order parameters
for the in-coupling and out-coupling scenarios are the
same, i.e., Z (t ) = L−1[D(s)] = ĝ[eiωt z(ω, 0)]. Correspond-
ingly, the weighted order parameter for the out-coupling is
Zw(t ) = L−1[Dw(s)] = ĝw[eiωt z(ω, 0)]. These order parame-
ters are respectively the Fourier transform of g(ω)z(ω, 0) and

g(ω) f (ω)z(ω, 0). It implies that each phase oscillator rotates
at its own angular frequency. Furthermore, the Riemann-
Lebesgue lemma ensures that the order parameters tend to
zero in the long time limit provided that z(ω, 0) is a smooth
bounded function. Namely, the order parameters of the inco-
herent state always relax to zero regardless of the distribution
g(ω) and correlation function f (ω).

It is worth mentioning that the three order parameters
described above are significantly different from each other,
even the correlation function f (ω) keeps the same form in
both cases. Nonetheless, we can prove that the classical order
parameters defined by Eqs. (31) and (43) are exactly the
same for a particular case. To see it, we assume that the
initial perturbed distribution of the incoherent state is inde-
pendent of the natural frequencies, i.e., ρ(θ, ω, 0) = ρ(θ, 0).
Based on this assumption, the 1 − th Fourier mode z(ω, 0) =∫ 2π

0 eiθρ(θ, 0)dθ = z0, which is a constant, we then have

D(s) = 2z0

K
Q(s) (45)

and

Dw(s) = 2z0

K
Qw(s). (46)

Hence

Zout (t ) = L−1

[
D(s) − D(s)Qw(s) + Dw(s)Q(s)

1 − Qw(s)

]

= L−1

[
D(s)

1 − Qw(s)

]
= Z in(t ), (47)

where superscripts ‘in’ and ‘out’ denote the in-coupling and
out-coupling, respectively.

To gain some analytical intuition of the order parameters,
we choose the frequency distribution g(ω) and the correlation
function f (ω) to be of the rational types, e.g., g(ω) = 1

π (ω2+1)

and f (ω) = 1
ω2+1 . Without loss of generality, we set z0 =

1 implying an identical initial distribution ρ(θ, 0) = δ(θ ).
Straightforward calculations yield

D(s) = 1

1 + s
= 2

K
Q(s) (48)

and

Dw(s) = 2 + s

2(1 + s)2
= 2

K
Qw(s). (49)

After some tedious computations, we eventually arrive at the
order parameters yielding

Z in(t ) = Zout (t ) = e
(−8+K )t

8 cosh

[√
K (16 + K )

8
t

]

+ e
(−8+K )t

8

√
K sinh

[√
K (16+K )

8 t
]

√
16 + K

(50)

and

Zout
w (t ) = 1

2
e

(−8+K )t
8 cosh

[√
K (16 + K )

8
t

]

+ e
(−8+K )t

8 (8 + K ) sinh
[√

K (16+K )
8 t

]
2
√

K (16 + K )
. (51)
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FIG. 2. Relaxation behaviors of the two order parameters in the subcritical region with g(ω) = 1
π (ω2+1)

and f (ω) = 1
ω2+1

. (a) K = 0.
(b) K = 0.5. (c) K = 1.0. (d) K = 1.5. The size N = 100000. The solid lines are theoretical predictions given by Eqs. (50) and (51), and the
circles are numerical simulations. The initial phases of the oscillators are set to zero, it is shown that the theoretical predictions, Eqs. (50)
and (51), are asymptotically valid for K > 0.

As shown in Fig. 2, we choose four typical values of K
to confirm these asymptotical results. Although the specific
expressions for the order parameters are complicated, the res-
onant poles can be obtained analytically, which are

s0,± = −1 + K

8
±

√
16K + K2

8
. (52)

Notably, the first pole s0,− represents a stable mode that is
always negative no matter how large the K is. Whereas the
second pole s0,+ goes through the negative real axis at the crit-
ical point Kc = 2, which is consistent with the result obtained
by Eq. (21). All the results suggest that the natural frequency
distribution g(ω) together with the correlation function f (ω)
have significant influences on the Landau damping rooted in
the occurrence of the resonant poles, as well as the decaying
form of the order parameters.

It should be pointed out that there exists a discrepancy
between the theory and numerics for the initial time with
K > 0 (see Figs 2(c) and 2(d). This can be understood as
follows. Theoretically, we remark that the relaxation dynam-
ics of the macroscopic order parameters are valid only in
the linear region. It implies that the corresponding micro-
scopic perturbed distribution should be near the incoherent
state. In other words, all the analytical expressions for the
time-varying order parameters [see Eqs. (31), (40), and (43)]
are asymptotically valid. This is because all the discussions
about the relaxation dynamics are based on the framework
of the linear stability analysis. Numerically, the initial phases
of the oscillators are chosen to be identical to obtain the
explicit formula of the order parameters. However, this initial
perturbation is far away from the linear region. Nevertheless,
the associated perturbation is getting closer and closer to the

linear region as the evolution of time. Consequently, the cor-
responding deviation between the theoretical predictions and
the numerical simulations will be smaller and smaller. This
explains why there exists a deviation between the theory and
the simulation during the initial transient time. Particularly,
this feature becomes more evident when K is slightly larger
than 0.

V. SUPERCRITICAL REGIME: SCALING BEHAVIORS

To have a far down insight into the synchronized dy-
namics induced by the frequency-coupling correlations, in
this section, we discuss how the heterogeneous schemes
under consideration affect the asymptotical behaviors of syn-
chronization near the critical threshold Kc, i.e., the scaling
behaviors of the order parameters.

For convenience, we start with the out-coupling scenario.
According to the definition of the weighted order parameter
Eq. (3), the governing equation (1) can be rewritten into the
mean-field form, which is

θ̇i = ωi + KRw sin(�w − θi ). (53)

As stated, the special forms of g(ω) and f (ω) imply that
the system possesses reflection symmetry, i.e., the dynam-
ics remains invariant under the transformation (θi, ωi ) →
(−θi,−ωi ). In turn, the mean-field phase �w(t ) can be set
to zero by shifting initial conditions. Therefore, Eq. (53) is
simplified as

θ̇ = ω − p sin θ, (54)

where p = KRw, and the index is dropped in the thermody-
namic limit N → ∞.

024206-7



CAN XU, XIN JIN, AND YONGGANG WU PHYSICAL REVIEW E 107, 024206 (2023)

For the unimodal and symmetric functions of g(ω) and
f (ω) considered in the paper, the equilibrium states require
that the macroscopic order parameters approach constants in
the limit t → ∞, or the auxiliary parameter p is independent
of time. From Eq. (54), the phase-locked condition satisfies
|ω| < p, which yields

sin θω = ω

p
, cos θω =

√
1 − ω2

p2
. (55)

Otherwise, the oscillators are drifting with |ω| > p that can
never be entrained by the mean field. The self-consistent equa-
tion for the weighted order parameter is expressed as

Zw = Rw = ĝw cos θω. (56)

Using the definitions above, Eq. (56) is reformulated as a
simple form

1

K
= Fw(p) =

∫ 1

−1

√
1 − x2Gw(px)dx, (57)

where x = ω
p and the virtual frequency distribution is defined

as Gw(px) = g(px) f (px). As for the classical Kuramoto order
parameter, it becomes

Z = R = ĝcos θω = p
∫ 1

−1

√
1 − x2g(px)dx. (58)

Equation (57), together with Eq. (58), describes the sta-
tionary behaviors of the order parameters for a given g(ω)
and f (ω). Remarkably, the incoherent state corresponds to
p = 0 yielding Kc = 1/Fw(0) = 2/πg(0) f (0), which recov-
ers Eq. (21) obtained from the linear stability analysis.

To proceed with the scaling analysis, let K = Kc + δK ,
with 0 < δK 	 1 being the small perturbation of the cou-
pling strength, the resulting perturbations of other parameters
are, respectively, given by p = 0 + δp, Rw = 0 + δRw, and
R = 0 + δR. Substituting these perturbations into Eq. (57) and
using Taylor series expansion for both sides, we have that

1

Kc
− δK

K2
c

= Fw(0) + F ′
w(0)δp + F ′′

w (0)

2
δp2. (59)

Obviously, the first term appearing in both sides of Eq. (59)
cancels each other out due to Eq. (21), while the second term
on the right-hand side of Eq. (59) vanishes because of the
symmetry condition of g(ω) and f (ω). Thus, we have

δK = − 1
2 F ′′

w (0)K2
c δp2. (60)

Note that δp2 = K2
c δR2

w, we thus have the weighted order
parameter at criticality as

δRw =
√

−2δK

K4
c F ′′

w (0)
. (61)

Regarding the Kuramoto order parameter, we obtain

δR = δ

[
p
∫ 1

−1

√
1 − x2g(px)dx

]
= πg(0)

2
δp. (62)

Using Eq. (61) and δp = KcδRw, we eventually arrive at the
asymptotical behavior of the order parameter near Kc yielding

δR = Cout

√
δK =

√
−16δK

πK4
c [g′′(0) + g(0) f ′′(0)]

, (63)

which we have used the fact that

F ′′
w (0) =

∫ 1

−1
x2

√
1 − x2Gw(0)dx

= π

8
[g′′(0) + g(0) f ′′(0)] (64)

and f (0) is set to be 1 that can be always achieved by rescaling
the coupling strength.

As for the in-coupling scenario, the discussion can be
performed in a similar way. To this end, the mean-field equa-
tion reads

θ̇i = ωi + K f (ωi )R sin(� − θi ). (65)

Similarly, by assuming � = 0 and defining q = KR, the self-
consistent equation is established as

1

K
=

∫ 1

−1

√
1 − y2G(qy)dy, (66)

where y = F (ω)/q, and F (ω) is defined by F (ω) = ω/ f (ω).
The virtual frequency distribution now becomes

G(qy) = g[F−1(qy)] f [F−1(qy)]

1 − qy f ′[F−1(qy)]
, (67)

where F−1 denotes the inverse function. Likewise, imposing
small perturbation away from the critical coupling Kc and
using Taylor series expansion about Eq. (66), we finally ob-
tain the asymptotical behavior of the order parameter in the
neighborhood of Kc yielding

δR = Cin

√
δK =

√
−16δK

πK4
c [g′′(0) + 3g(0) f ′′(0)]

. (68)

Taken together, we conclude that the square-root scal-
ing law of the order parameters maintains for both in- and
out-coupling correlations manifesting a mean-field character.
However, we reveal that the asymptotical coefficient for the
Kuramoto order parameter above Kc differs significantly. For
the considered model, g′′(0) < 0 and f ′′(0) < 0, we thus have
Cout > Cin (as shown in Fig. 3). This indicates that the ability
of synchronization for the out-coupling correlation is pro-
foundly enhanced compared with the in-coupling correlation
near the critical point Kc, i.e., synchronization is facilitated
by the out-coupling strategy even for the same correlation
function.

VI. CONCLUSIONS

To summarize, we considered a generalized Kuramoto
model of globally coupled phase oscillators, in which the
intrinsic frequencies and the global coupling are chosen deter-
ministically in a way such that these two types of disorder are
correlated via a generic weighted function. We explored the

024206-8



RELAXATION DYNAMICS OF PHASE OSCILLATORS WITH … PHYSICAL REVIEW E 107, 024206 (2023)

FIG. 3. The difference between two Kuramoto order parameters
considered in the in-coupling and out-coupling scenarios vs. the
perturbed coupling strength δK = K − Kc, i.e.,

�
R = Rout − Rin.

g(ω) = 1
π (ω2+1)

, f (ω) = e−aω2
. (a) and (b) correspond to differ-

ent parameters a. The solid lines are theoretical predictions with�
R = (Cout − Cin )

√
δK . The circles are numerical simulations with

N = 100 000 and Kc = 2.

impacts of the correlation function on the emergent dynamics
by taking into account both the in-coupling and out-coupling
schemes. We revealed that the coupling strategies of the
heterogeneity, the correlation function and natural frequency
distribution play the central role in system’s collective dynam-
ics, as well as the critical behaviors for the onset of synchrony.
In particular, we developed a general framework allowing for
grasping the main mechanism of the dynamical phenomena
underlying the coupled system.

With the aid of the linear stability analysis, we deduced the
analytical formula of the critical point for the onset of syn-
chronization. Interestingly, we found that the expression for
the critical point Kc does not change by the location of hetero-
geneity. However, its value is strongly influenced by the values
of the correlation function and frequency distribution at their
centers. Specifically, we showed that both the in-coupling and
out-coupling schemes yield the same eigenspectrum structure
of the incoherent state, thereby leading to the same stability
property of the system in K < Kc. Consequently, the critical

point Kc can be obtained by imposing the condition corre-
sponding to the instability of the incoherent state.

In terms of the methodology of the analytical continu-
ation, we further explored the relaxation dynamics of the
incoherent state in the subcritical region. Furthermore, we
developed a general framework for systematically capturing
the time-varying behaviors of the order parameters, the two
types of the order parameter are established in the analytical
form described by Eqs. (31), (40), and (43). We proved that
the microscopic incoherent state remains neutrally stable to
perturbation, whereas the macroscopic order parameters relax
to zero in the long time limit. We uncovered that such a
decaying mechanism arises from the resonant poles on the left
half complex plane, which are remarkably influenced by the
specific forms of the correlation function and its locations. In
particular, for the case of the rational g(ω) and f (ω), the or-
der parameters are expressed as a formula containing several
exponential components, in which each ingredient locates a
resonant pole that goes through the negative real axis at a
critical point manifesting the instability of the asynchronous
state.

Lastly, we explored the asymptotical behaviors of the
order parameters in the supercritical regime. Using the self-
consistent equations and perturbed approach in the vicinity
of Kc, we identified that the square-root scaling law of both
order parameters remains owing to the mean-field character.
Nevertheless, we untangled that synchronization is signifi-
cantly improved by the out-coupling scheme even for the same
correlation function.

We hope that our work may provide remarkable insights
for better understanding the generic statistical mechanical
properties of the steady states to synchronization in complex
systems.
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