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Aging transition is an emergent behavior observed in networks consisting of active (self-oscillatory) and
inactive (non-self-oscillatory) nodes, where the network transits from a global oscillatory state to an oscillation
collapsed state when the fraction of inactive oscillators surpasses a critical value. However, the aging transition
in quantum domain has not been studied yet. In this paper we investigate the quantum manifestation of aging
transition in a network of active-inactive quantum oscillators. We show that, unlike classical case, the quantum
aging is not characterized by a complete collapse of oscillation but by sufficient reduction in the mean boson
number. We identify a critical “knee” value in the fraction of inactive oscillators around which quantum aging
occurs in two different ways. Further, in stark contrast to the classical case, quantum aging transition depends
upon the nonlinear damping parameter. We also explain the underlying processes leading to quantum aging that

have no counterpart in the classical domain.
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I. INTRODUCTION

Coupled oscillators constitute an important framework to
understand several phenomena and processes in physics, bi-
ology, and engineering [1]. Depending upon the nature and
strength of coupling, diverse collective behaviors are identi-
fied, such as synchronization, oscillation suppression, cluster
formation, and chimera patterns [2—6]. In this context, Daido
and Nakanishi [7] in a seminal paper reported an interesting
emergent behavior in coupled oscillators, namely, the aging
transition. They considered a network of globally coupled
oscillators in which a fraction of oscillators are in the inactive
or non-self-oscillatory state and the rest of the oscillators
are in the active or self-oscillatory state. Remarkably, it was
shown that, when the fraction of inactive oscillators reaches
a critical value, the inactive oscillators bring down the whole
network to a non-self-oscillatory steady state. The transition
from macroscopic oscillatory state to a globally cessation state
due to the interplay of active-inactive oscillators mediated by
coupling was defined as the aging transition by Daido and
Nakanishi [7]. Note that the aging state is different from the
conventional amplitude death state: while the former state is
due to the interaction between active and inactive nodes [7,8],
in the latter state active oscillators interact among themselves
to achieve oscillation cessation state [9—12].

The aging transition is much relevant in biology and tech-
nology where maintaining oscillations is essential for the
proper functioning of the system (e.g., in brain waves in neu-
roscience [13], cardiopulmonary sinus rhythm of pacemaker
cells [14], and power grids [15]) as degradation (or aging)
of some nodes in these systems may lead to irrecoverable
pathological condition or system breakdown. Several studies
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were reported to either verify the transition in diverse systems
[16-19] or to propose schemes for revoking the transition
[20-22]. However, all the studies are made in the classical
domain (see Ref. [8] and references therein).

In this work, we ask the question “Does the aging transition
take place in the quantum domain, as well?” If yes, then
what will be its manifestation? Our study is motivated by the
recent endeavor of studying the well known results of classical
nonlinear dynamics in the quantum domain. It is intriguing
that most of the well known phenomena of classical nonlinear
dynamics behaves in a counter intuitive way in the quantum
domain [23]. A few prominent examples are, synchronization
[24-29], oscillation suppression [30,31], and symmetry-
breaking states [32—37]. These surprising results are attributed
to the presence of inherent quantum noise, discrete energy
levels, entanglement, which do not have any counterpart in
classical domain. Apart from the theoretical motivation, the
study of aging in the quantum domain is relevant due to the
fact that real-world quantum systems suffer unwanted losses,
for example, due to lossy cavity [38], mechanical dissipation
in optomechanical systems [39,40], loss of trapped-ion due to
collision [41], and dielectric losses of superconducting junc-
tion in circuit quantum electrodynamics [42].

In this paper we show that aging transition indeed occurs
in the quantum regime albeit its manifestation is different
from that of the classical one. We consider a network of cou-
pled active-inactive quantum Stuart-Landau oscillators under
global diffusive coupling. Using the formalism of open quan-
tum systems, we define the notion of active and inactive nodes
in the quantum domain based on the nature of dissipators in
the quantum master equation. We show that, quantum aging
is not characterized by a complete cessation to a collapsed
state but a rapid decrease in the mean boson number with
increasing fraction of inactive oscillator. We observe that there
exists a critical “knee” value of the fraction of the inactive
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units around which the network exhibits two different trend
of decrement in the mean boson number. We also find that
the quantum aging transition is very much dependent upon
the nonlinear damping parameter of individual node, which
is opposite to its classical counterpart. Finally, we provide
possible explanations to the quantum aging process based
on the disparate relaxation process of the active and inactive
oscillators.

II. CLASSICAL AGING TRANSITION

For a better understanding of the quantum aging transition,
let us start with a brief discussion on its classical counterpart
[7]. The mathematical model of N diffusively coupled iden-
tical Stuart-Landau oscillators under global coupling is given
by (using a slightly different form than Ref. [7] to make it
compatible with the quantum model),

G, Vo
%:<4w+%—m%@%+ﬁ§]w—wx (1)

J'=1

where o; = x; + iy; is the complex amplitude of the jth oscil-
lator having eigenfrequency w (j = 1,2, - -- N). Here G; and
k are the linear pumping rate and nonlinear damping rate of
the jth oscillator, respectively. V' is the coupling strength: for
V =0, Eq. (1) represents uncoupled classical Stuart-Landau
oscillators. In the uncoupled system, G; determines the ac-
tiveness of the jth oscillator: If G; > 0, then the oscillator is
active and shows limit cycle oscillation; however, if G; < 0,
then the oscillator is inactive, i.e., non-self-oscillatory.

The network of N coupled oscillators consists of two
groups of nodes: N, nodes (N, < N) are active and N; nodes
are inactive, with N, + N; = N. In the active group, an oscil-
lator has G; =a > 0 (j € {1,2, ..., N,}) and in the inactive
group, a node has G; = —b <0 (j e {N,+1,...,N}). We
define the fraction of inactive nodes in the network as p =

% = ]% The aging transition can be tracked using the nor-
malized order parameter Q,; = %, where Z = zlv Z?’:l aj.

Here Z(p) and Z(0) are the values of Z for the fraction of
inactive oscillators equal to p and zero, respectively. Using a
linear stability analysis, it can be shown that beyond a critical
coupling strength (V,), if p goes beyond a critical value, given
by

a2V +b)
Pe= Sat by’ 2)

then the network collapses into a global non self-oscillatory
state [7]. From Eq. (2) the critical coupling strength is given
by V. = 5. The result is demonstrated in Fig. 1 for a = 4
and b = 2. It shows that for V > V(= 2), aging transition
occurs (i.e., Q. becomes zero from a nonzero value) even
if the fraction of inactive oscillator p < 1. Also, for V >V,
the critical value of p (i.e., p.) decreases with increasing V.
Interestingly, note that Eq. (2) does not depend upon «, i.e.,
classical aging transition does not depend upon the nonlinear
damping parameter.
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FIG. 1. Order parameter (Q.;) vs fraction of inactive oscillators
(p) showing aging transition in the network of coupled classical
oscillators. For active oscillators G; = a = 4 and for inactive oscilla-
tors G; = —b = —2. Inset: The phase space dynamics of uncoupled
(V = 0) active (A) and inactive (I) element. Other parameters are
N =100 and w = 2.

III. QUANTUM AGING TRANSITION
A. Model

Quantum master equation of N coupled quantum Stuart-
Landau oscillators under diffusive global coupling is given by
(30]

N
p =Y _{=ilH. p] + G;DI0;1(p) +xD[a;*](p)}
i—1 N— —

~

+

> Y 'Dlaj —a;1(p), 3)
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where H = wa;"a;. a; and a;" are bosonic annihilation and
creation operators of the jth oscillator, respectively. D[L] is
called the Lindblad dissipator having the form D[i,](p) =
LpLlt — %{ﬁﬁ, p}, where L is an operator (without any loss
of generality we set /i = 1). The operator O; of the second
term (shown in underbrace) is introduced to bring the notion
of active-inactive element (discussed in the next paragraph).
In the classical limit, i.e., G; > k, the master equation (3)
is equivalent to the classical amplitude equation (1) by the
relation: (a) = Tr(pa). Here ) 7 " indicates that the sum does
not include the condition j' = j.

Let us introduce the notion of active and inactive elements
into the quantum master equation. We identify that this can be
determined by the operator of the Lindblad dissipator associ-
ated with the coefficient G; [shown in Eq. (3) in underbrace]
in the following manner:

0. — a; for active oscillators,
77 Na; for inactive oscillators
j .

That is for O; = aj"', the dissipator G;D[O;](p) in Eq. (3)
describes a single boson (e.g., photon, phonon, etc.) gain
with a rate of G;; therefore, it gives rise to a stable quantum
limit cycle for the jth oscillator, making it a quantum active
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FIG. 2. [(a), (b)] Wigner function distribution in phase space
and [(c), (d)] occupation probability in Fock states for uncoupled
[(a), (c)] active oscillator (G; =4 and O; = aﬁ) and [(b), (d)] in-
active oscillator (G; = 2 and O; = a). Other parameters are @ = 2
and x = 0.2.

element. However, O; = a; gives a single boson loss with a
rate of G; and the jth oscillator exhibits quantum nonoscil-
latory or inactive behavior. Similar to the case of classical
system, the whole network is divided into two groups—one
group consists of N, active elements and the other consists
of N; inactive elements (N; = N — N,). Also, as usual p = %
denotes the fraction of inactive nodes present in the network.
Equation (3) was studied by Ishibashi and Kanamoto [30] in
the context of quantum amplitude death, where all the oscilla-
tors were taken as active (i.e., O; = a jT): It was shown that a
parameter mismatch among the coupled oscillators gives rise
to quantum amplitude death.

For the uncoupled state (V = 0), the Wigner-function
phase space representation of active and inactive elements are
shown in Figs. 2(a) and 2(b), respectively. The ring-shaped
Wigner function [43] of Fig. 2(a) represents a quantum limit
cycle (G; =4,0; = aﬂ'), i.e., an active element. A prob-
ability blob at the origin of Fig. 2(b) (with G; =2,0; =
a;) indicates that the element is non-self-oscillatory or inac-
tive. The corresponding occupation probability distribution
in Fock state are shown in Fig. 2(c) (for active elements)
and Fig. 2(d) (for inactive elements). In the inactive element,
indeed, ground state is the only occupied state, whereas, for
the active element, higher Fock levels are more populated.

For a large number of oscillators, one can factorize the
density matrix of the many-body system as p ~ ®" i=1P;j- This
corresponds to the mean-field approximation and reduces the
master equation Eq. (3) to a set of master equations for each
oscillator interacting with the mean field as follows [30]:

pj = — i[wajTaj, pil+ G;D[O;1(p;) + KD[aj2](pj)
n 2V(N — 1)

N Dla;1(p) + V(Ala;", pj1 — A*[a;, p,1),
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FIG. 3. (a) Quantum aging transition: Variation of order param-
eter Q with p for different values of coupling strength V. On the
curve for V =5, the star mark denotes the knee point of the curve.
Critical values of p and Q corresponding to the “knee” point are
denoted as p., and Q., respectively. (b) The variation of p., with
coupling strength V. (c) Variation of Q. with coupling strength V.
(d) p=0.8: the variation of mean boson numbers (ii,,;) with the
coupling strength (V') for the 20% active oscillators (dashed line),
and the whole network consisting of 80% inactive and 20% active
oscillators (solid line). Other parameters are @ = 2 and « = 0.2.

cand A*

where A and A* have the forms: A = 5 Z =1 {aj); =
. Here (A)j denotes the average of operator L

NZJ—I

with respect to the one-body density matrix p;.

B. Results and discussion

We numerically solve Eq. (4) by self-consistent method
using QuTiP [44,45]. As in the case of classical network,
here also we take G; =4 for the active elements [j €
{1,2, ..., Ny}], and we take G; = 2 for the inactive elements
[j € {N,+ 1, ..., N}]. In the network, we distinguish oscilla-
tory and oscillation collapsed state by computing the mean
boson number per oscillator: 7,y = 1lv Zj (a jTa ;). Based on
this, we define an order parameter, namely, the normalized
mean boson number

_ ﬁmf(p)
ﬁmf(o)’

where, 7i,,7(p) is the mean boson number per oscillator for a
particular p value and 7,7 (0) is the same for p = 0.

To observe the variation of average mean boson number
with increasing p value we plot Q with p in Fig. 3(a) for a
set of coupling strength V. For V < 2.73, O decreases mono-
tonically with increasing p that has a resemblance with the
classical case (cf. Fig. 1). However, beyond a critical value of
V & 2.73, the decrement rate of Q shows two characteristic
zones: In the first part, Q decreases rapidly with increasing
p; however, beyond a critical value p,, the curve takes the
form of an almost inclined straight line. We call the point on
the curve separating the sharp fall and the inclined straight
region as “knee” point. In Fig. 3(a) the knee point of the
curve corresponding to V =5 is shown by a star mark on

024204-3



BANDYOPADHYAY AND BANERIJEE

PHYSICAL REVIEW E 107, 024204 (2023)

p=0.2 p=0.5 p=0.8

(a) Active (b) Active (c) Active
=
x

llllll-.__lll.l-_ i
1 (d) Inactive (e) Inactive (f) Inactive
<
T
0 lll...- |Il_l_-

0 n 10 n n

FIG. 4. Fock state distribution of boson numbers for active (up-
per row) and inactive (lower row) elements at different p values
(coupling strength V = 5). [(a), (d)] p = 0.2(< pey), [(b), (€)] p =
0.5(< peg)- [(©), O] p = 0.8(> pcy). Note that for p > p,,, inactive
oscillators go to the ground state, however, active oscillators still pop-
ulate a few excited states. Other parameters are w = 2 and « = 0.2.

it. We consider these knee points as aging transition points
and denote the p values corresponding to these knee points
as p., and the corresponding order parameter as Q.. With a
further increment of p, the curve gradually approaches Q = 0
due to the presence of more and more inactive elements in the
network. We get O = 0 as p equals unity, which is a trivial
case as now all the oscillators are inactive.

The variations of p., and Q. with coupling strength V are
shown in Figs. 3(b) and 3(c), respectively. Figure 3(b) shows
that p., at first increases with increasing V, then for stronger
coupling strength it does not change appreciably and gets
saturated. This is unlike classical case, in which p. decreases
with increasing coupling strength [7]. However, Q. decreases
with increasing coupling strength, which is expected as strong
coupling is conducive for aging. We also verify that the mean
boson number of the active oscillators indeed decreases as
the result of the coupling between the active oscillators with
the inactive oscillators. We demonstrate this in Fig. 3(d) for
p = 0.8: it shows the variation of mean boson numbers (7, )
with the coupling strength (V') for the 20% active oscillators
(in red), and the whole network consisting of 80% inactive
and 20% active oscillators (in blue). It is evident that the mean
boson number of active oscillators decreases with increasing
V'; however, unlike the classical case, the mean boson num-
ber does not reach a zero value due the underlying quantum
processes.

The quantum aging scenario can be explained by carefully
inspecting the Fock distribution. Figures 4(a) and 4(d) show
the distribution of Fock states at a lower p value (p = 0.2)
for active and inactive groups. Comparing this scenario with
Fig. 2 (uncoupled case) one can observe that in the presence
of coupling (V > V), at first inactive elements become os-
cillatory and the active elements become less active. With
increasing p, amplitude of active and inactive oscillators de-
creases rapidly [see Figs. 4(b) and 4(e) for p = 0.5], which is
manifested by the shift of probability distribution towards the
ground state. Beyond the critical value p.,, active and inac-
tive oscillators behave in a different manner: all the inactive
oscillators now completely collapsed to the ground state [see

0

FIG. 5. Two parameter plot of Q in V-p space. Inset: The varia-
tion of Q with V at p = 0.7 (along blue dashed horizontal line). The
black square shows the critical value of V beyond which aging can
take place. Other parameters are @ = 2 and k = 0.2.

Fig. 4(f)], however, the active oscillators do not completely
go to the ground state, rather a few lower level states near
the ground state are still populated [see Fig. 4(e)]. This can be
understood from the nature of dissipator associated with active
and inactive oscillators in Eq. (3). For the inactive oscillators,
the dissipator (in the under brace) contains a single boson
absorption term, which allows for a complete relaxation to
the ground state. However, for active elements, damping is
governed only by two photon absorption process, which does
not allow a complete relaxation of the system to the ground
state.

Next, we present the quantum aging scenario in the V-p
space by visualizing the variation of the normalized order
parameter Q (shown in Fig. 5). The plot shows that up to a
certain value of coupling strength V (shown by a square mark
on the V axis), no aging transition occurs; beyond this value
of V the aging transition occurs with increasing p. Choosing
p = 0.7, we plot Q-V (along the horizontal line of Fig. 5),
which is shown in the inset of Fig. 5. It shows that beyond a
critical value of V, the order parameter Q decreases with V. In
the classical case, aging transition does not depend upon the
nonlinear damping parameter . However, in stark contrast,
we find that in the quantum case, ¥ very much controls the
quantum aging transition. Figure 6 demonstrates the variation
of O with p for three different exemplary values of x (V = 5):
it shows that a large « induces quantum aging at a lower p
value. The variation of p., with « in the inset supports this
fact. Intuitively, this may be because of the presence of active
oscillators with appreciable boson number in contrast to the
classical case, where the aging state is the trivial stable steady
state and hence the nonlinear damping does not have any
effect on the classical aging. Also note that larger « results
in a greater Q. value, i.e., nonlinearity degrades the quality of
aging in the quantum aging transition. This can be attributed to
the fact that, higher damping makes the oscillators to populate
only a few excited state near the ground state even in the
absence of aging, therefore, aging has a lesser role to bring
them further closer to the ground state.

IV. CONCLUSIONS

In this paper we have studied the quantum mechanical
analog of aging transition. We have considered a network
of active and inactive quantum oscillators and using a
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FIG. 6. Plot of p-Q showing the effect of nonlinear damping
parameter « on the quantum aging (V = 5). Inset: The variation of
Deq and Q with k.

mean-boson-number-based order parameter we have demon-
strated the quantum version of the aging transition. The
following are the key observations that make quantum aging
transition different from its classical counterpart. First, unlike
classical case, the quantum aging transition is not manifested
by the complete collapse of the network but by rapid decrease
in the average mean boson number. Second, the quantum
aging has two distinct processes associated with it: up to a
critical “knee” point, the order parameter decreases rapidly;
however, beyond that the rate of decrement slows down. In the
second part all the inactive elements populate the ground state,

which is allowed by the single boson loss process. However,
here active oscillators never completely populate the ground
state, because for them relaxation is governed by the two-
boson absorption process only. This scenario has no classical
counterpart and makes the quantum aging process unique.
Third, unlike classical aging transition, quantum aging de-
pends upon the nonlinear damping process. We have shown
that a strong nonlinear damping makes the aging process
weaker. We attribute this to the population of a few excited
states in the presence of strong nonlinear damping that does
not change appreciably by aging.

The study can be implemented in experiments by realizing
one boson loss (for inactive elements), one boson gain (for
active elements), and two boson absorption process (for both
active and inactive nodes). With the advancement of current
quantum technology, we believe that trapped-ion set ups and
optomechanical systems can provide a feasible experimental
platform for verifying the results. Our study has revealed
that the presence of a few inactive (or aged) elements in a
quantum network may lead to system dysfunction or collapse.
Therefore, sufficient measures have to be taken to avoid node
degradation due to possible losses [46,47].
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