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Distributions of the Wigner reaction matrix for microwave networks
with symplectic symmetry in the presence of absorption
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We report on experimental studies of the distribution of the reflection coefficients, and the imaginary and
real parts of Wigner’s reaction (K) matrix employing open microwave networks with symplectic symmetry and
varying size of absorption. The results are compared to analytical predictions derived for the single-channel
scattering case within the framework of random-matrix theory (RMT). Furthermore, we performed Monte Carlo
simulations based on the Heidelberg approach for the scattering (S) and K matrix of open quantum-chaotic
systems and the two-point correlation function of the S-matrix elements. The analytical results and the Monte
Carlo simulations depend on the size of absorption. To verify them, we performed experiments with microwave
networks for various absorption strengths. We show that deviations from RMT predictions observed in the
spectral properties of the corresponding closed quantum graph and attributed to the presence of nonuniversal
short periodic orbits does not have any visible effects on the distributions of the reflection coefficients and the K
and S matrices associated with the corresponding open quantum graph.
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I. INTRODUCTION

Quantum chaotic scattering was introduced 70 yr ago to
describe properties of large complex quantum systems [1–3].
Due to decoherence controllable experimental investigations
of complex quantum systems are extremely difficult. A mul-
titude of physical problems from the field of quantum chaos
were experimentally tackled with the help of microwave net-
works and cavities simulating, respectively, quantum graphs
[4–6], and billiards [7–13]. The present paper shows how
microwave networks can be applied for the experimental study
of properties of Wigner’s reaction (K) matrix for quantum
systems with symplectic symmetry. The experimental results
are compared to exact analytical results for the single-channel
scattering case [14] and to Monte Carlo simulations based on
random-matrix theory (RMT).

Quantum graphs consisting of one-dimensional wires con-
nected by vertices were introduced more than 80 yr ago by
Pauling [15]. They are not only employed as basic mathemat-
ical objects [16–18], but are also indispensable in modeling
of physical networks in the limit where the lengths of the
wires are much bigger than their widths [4,19]. They have
been used to simulate a large variety of systems and models,
e.g., superconducting quantum circuits [20], quantum circuits
in tunnel junctions [21], and realizations of high-dimensional
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multipartite quantum states [22]. Quantum graphs consisting
of bonds of incommensurable lengths provide invaluable tools
for the study of closed [23] and open [24,25] quantum-chaotic
systems.

Because of the formal equivalence of the Schrödinger
equation describing quantum graphs and the telegraph equa-
tion of the corresponding microwave networks [4,5,26] the
latter can be used to simulate the former. Indeed, mi-
crowave networks have been realized for the study of closed
and open quantum-chaotic systems for all three Wigner-
Dyson symmetry classes. Within RMT these are associated
with the Gaussian ensemble (GE) of random matrices with
corresponding universality class [27]. If time-reversal (T )
invariance is conserved, the appropriate ensemble is the Gaus-
sian orthogonal ensemble (GOE) for integer-spin systems
[4,28–32] and the Gaussian symplectic ensemble (GSE) for
half-integer spin systems [6,33–37]. For systems for which
T invariance is violated, it is the Gaussian unitary ensemble
(GUE) [4,5,26,38–40].

Spectral properties of quantum graphs belonging to the
symplectic universality class have been analyzed in mi-
crowave networks of corresponding geometry [6,36,41] also
parametric ones [35]. In such experiments the scattering (S)
matrix is measured as function of the microwave frequency.
The (M × M )-dimensional K matrix K̂ of a scattering system
with M open channels is related to the associated S matrix Ŝ
as [42,43]

K̂ = i(Ŝ − 1M )(Ŝ + 1M )−1, (1)
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with 1M denoting the M-dimensional unit matrix. The im-
portance of the K matrix stems from the fact that it links
the properties of the dynamics in the reaction region with
the scattering processes observed in the asymptotic region,
whereas the S matrix provides a relation between the outgoing
and incoming waves. But most importantly, the imaginary part
of the K matrix is proportional to that of the local Green’s
function, which is known in solid-state physics as the local
density of states [14,44]. Furthermore, the electric impedance
of a microwave cavity Ẑ is directly related to the K matrix
Ẑ = iK̂ [12,45].

The K matrix was studied experimentally in single-port
measurements using microwave cavities [43,45,46] and in mi-
crowave networks [28,47–49] for GOE systems. Furthermore,
distributions of the off-diagonal elements of the S matrix
of typical quantum-chaotic scattering systems were studied
experimentally in Refs. [11,50,51] in microwave cavities with
partially violated T invariance. The S and K matrices were
investigated for complete violation of T invariance with mi-
crowave networks in Ref. [39] and in Ref. [26] for the case
of large absorption. The situation is different for open chaotic
systems with symplectic symmetry for which the K matrix has
not been studied so far. In this paper we report on elaborate
experiments with microwave networks which were performed
to close this gap.

In Sec. II we review general properties of closed and open
quantum systems belonging to the symplectic universality
class and structure of the associated Hermitian and unitary
scattering matrices. We will specify the design of the quantum
graphs with symplectic symmetry that are considered in the
present paper. Then we will introduce the experimental setup
in Sec. III, the features of random matrices from the GSE
and the corresponding random scattering matrix in Sec. IV.
In Sec. V we will present the results of the experiments and
finally discuss them in Sec. VI.

II. SALIENT FEATURES OF T INVARIANT
HALF-INTEGER SPIN SYSTEMS

In this section we briefly review the properties of Hamil-
tonian systems which belong to the symplectic universality
class. A detailed and comprehensive description can be found
in Ref. [2]. The Hamiltonian is classified by its properties un-
der application of the time-reversal operator T̂ = ÛC, where
Û is a unitary matrix and C denotes complex conjugation. For
spinless particles the conventional time-reversal operation is
complex conjugation T̂ = C and T̂ 2 = 1. If T invariance is
violated, the associated Hamiltonian is complex Hermitian,
Ĥ = Ĥ† and, thus, belongs to the unitary symmetry class,
whereas, if it is preserved, T̂ Ĥ T̂ −1 = Ĥ , it becomes real sym-
metric in a T -invariant basis and belongs to the orthogonal
universality class.

For half-integer particle systems with T invariance T̂
squares to −1, T̂ 2 = −1, implying that, if ψ is an eigen-
function of the Hamiltonian Ĥ , then T̂ ψ is also one for
the same eigenvalue and is orthogonal to ψ , 〈ψ |T̂ ψ〉 =
0. Thus, the eigenvalues of Ĥ exhibit Kramer’s de-
generacy. Accordingly, we may choose a basis of the

form B = {|1〉, |2〉 . . . , |N〉, |T̂ 1〉, |T̂ 2〉, . . . , |T̂ N〉} for a 2N-
dimensional Hamiltonian. In this basis the T̂ operator adopts
the form

T̂ = ŶC, Ŷ =
(

0̂N −1N

1N 0̂N

)
, (2)

where 0̂N is the (N × N)-dimensional zero matrix and the
Hamiltonian can be written as

Ĥ =
(

Ĥ0 V̂

V̂ † Ĥ1

)
, Ĥ0 = Ĥ†

0 , Ĥ1 = Ĥ†
1 . (3)

Here, Ĥ0, Ĥ1, V̂ are (N × N)-dimensional matrices. Time-
reversal invariance implies that the Hamiltonian equals its
symplectic transpose Ĥ = Ŷ ĤT Ŷ T with ĤT denoting the
transpose of Ĥ , yielding that Ĥ1 is the complex conjugate of
Ĥ0, Ĥ1 = Ĥ∗

0 , and V̂ T = −V̂ , i.e.,

Ĥ =
(

Ĥ0 V̂

−V̂ ∗ Ĥ∗
0

)
, Ĥ0 = Ĥ†

0 , V̂ = −V̂ T . (4)

Proceeding as described in Ref. [2] and rearranging the ba-
sis B defined above to Bq = {|1〉, |T̂ 1〉, . . . , |N〉, |T̂ N〉}, Ĥ
can be written in the quaternion representation, that is, in
terms of an N × N matrix whose matrix elements are (2 × 2)-
dimensional quaternion matrices,

ĥmn = h(0)
mn12 + hmn · τ, n, m = 1, . . . , N. (5)

Here, τ = −iσ with the components of σ, σi, i = 1–3,
referring to the three Pauli matrices. Time-reversal invari-
ance implies that the matrices ĥnm are quaternion real,
h(μ)

mn = h(μ)∗
mn , μ = 0, l . . . , 3, and Hermiticity yields h(0)

mn =
h(0)

nm, hmn = −hnm, and, thus, ĥnn = h(0)
nn 12.

To generate random matrices for the GSE Ĥ0 is replaced
by a random matrix from the GUE and, similarly, the entries
of V̂ are Gaussian distributed with zero mean and the same
variance as the off-diagonal elements of Ĥ0. Equivalently, the
matrix elements of ĥnm in Eq. (5) are replaced by Gaussian
distributed random numbers with zero mean, where the vari-
ance of the matrix elements h(0)

nn is by a factor of
√

2 larger
than that of h(μ)

nm , n �= m.
The design of the quantum graphs used in the present

paper was chosen such that the corresponding Hamiltonian
[6,35] attains the form given in Eq. (4). Accordingly, they are
constructed from two quantum graphs with the same geom-
etry belonging to the unitary symmetry class, referred to as
GUE graphs in the following. Each GUE graph consists of V
vertices where corresponding vertices are denoted by i and i′
with i, i′ = 1, . . . ,V . In the notation introduced above i and i′
correspond to |i〉 and |T̂ i〉, respectively. The vertices are con-
nected by bonds according to the connectivity matrix Ĉ, which
has vanishing diagonal elements Cĩĩ = 0 and off-diagonal ele-
ments Cĩ j̃ = 1 if vertices ĩ and j̃ are connected and Cĩ j̃ = 0
otherwise. Here, ĩ = i for 1 � ĩ � V , and ĩ = V + i corre-
sponds to i′ for V + 1 � ĩ � 2V . Corresponding bond lengths
coincide Li j = Li′ j′ . In our realizations the GUE graphs are
connected at four vertices, e.g., at i0, j′0 and j0, i′0 through
bonds with same lengths Li0 j′0 = Lj0i′0 . In order to comply
with the requirement V̂ = −V̂ T , that is, Vi0 j′0 = −Vj0i′0 , an
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additional phase of π is introduced on one of the bonds, e.g.,
on that connecting i0 and j′0. The wave-function components
ψĩ j̃ (x) on the bonds are solutions of the one-dimensional
Schrödinger equation,(

−i
d

dx
− Aĩ j̃

)2

ψĩ j̃ (x) + k2ψĩ j̃ (x) = 0, (6)

where Â = −ÂT denotes the magnetic vector potential which
induces T -invariance violation, and Ai j = −Ai′ j′ on corre-
sponding bonds in Ĥ0 and Ĥ �

0 , respectively. The coordinate
x varies along the bond from x = 0 at vertex ĩ to x = Lĩ j̃

at vertex j̃. On the bonds that couple the GUE graphs the
Schrödinger equation (6) with Aĩ j̃ = 0 applies.

The wave-function components are subject to boundary
conditions imposed at the vertices that ensure continuity and
conservation of the current [52]. We restrict here to Neumann
boundary conditions, which can be modeled experimentally
with microwave networks [4]. They constitute a special case
of δ-type boundary conditions [16,52–54]. The eigenwave
numbers of quantum graphs with these boundary conditions
are determined by solving the equation [52],

det ĥ(k) = 0, (7)

with

hĩ j̃ (k) =

⎧⎪⎨
⎪⎩

−
∑
m̃ �=ĩ

cos (kLĩm̃)
Cĩm̃

sin (kLĩm̃)
, ĩ = j̃,

Cĩ j̃e
−iAĩ j̃ Lĩ j̃−iϕĩ j̃ [sin(kLĩ j̃ )]

−1, ĩ �= j̃,

(8)

where ϕĩ j̃ = π for (ĩ = i0, j̃ = j′0) and zero otherwise. For
the magnetic vector potential we chose |Aĩ j̃ | = π

2 on some
or all of the bonds of the GUE graphs. The choice of the
sign of Aĩ j̃ , namely, Ai j = −Ai′ j′ on corresponding bonds of
the two GUE graphs ensures that the associated submatrices
are complex conjugate to each other. The components of the
associated eigenvectors yield the values of the wave functions
at the vertices and, thus, the eigenfunctions [52].

A schematic of a realization of a GSE graph is shown in the
inset of Fig. 1. There, i0 = 1, i′0 = 1′ and j0 = 2, j′0 = 2′ and
the vector potentials Â introduced on the two GUE graphs are
indicated by the phases +π

2 , respectively, −π
2 . In Refs. [23,25]

it was proven rigorously, that quantum graphs with Neumann
boundary conditions generally exhibit spectral properties of
a typical wave-chaotic system if the bond lengths are incom-
mensurate.

In Refs. [6,35,36] experiments with microwave networks
that model such quantum graphs yielded that their spectral
properties are close to those of random matrices from the
GSE. Deviations from the RMT predictions, also observed in
numerical studies where much longer eigenvalue sequences
are available, can have two origins. First, in the quantum
graphs under consideration the GUE graphs are coupled
through two bonds only. To convince oneself that random
matrices of the form Eq. (4) with rank of V̂ less than N exhibit
a level repulsion ∝s4 one can proceed as in Refs. [2,41,55] to
derive the corresponding Wigner surmise, that is, the nearest-
neighbor spacing distribution for N = 2, which was shown
for the GSE to agree well with that of random matrices from
the GSE [34]. Actually, it has been demonstrated in Ref. [56]

FIG. 1. (a) Three-dimensional and (b) two-dimensional schemes
of the microwave network with symplectic symmetry. It is con-
structed from two geometrically identical GUE subgraphs, marked
black and turquoise in (b). Time-reversal invariance violation is
induced by T-shaped circulators of opposite orientation introduced
at corresponding vertices, that lead to an additional phase π

2 , re-
spectively, − π

2 as indicated in (b). The subgraphs are connected at
two vertex pairs marked by (1, 2′) and (2, 1′) through coaxial cables
that comprise phase shifters (PS1 and PS2) that induce a relative
phase π of the waves traveling through them. Different realizations
of the GSE graph were obtained by increasing the lengths of two
corresponding bonds with phase shifters (PS3 and PS4) by the same
amount. The absorption strength was changed by introducing 20 1 or
2 dB attenuators.

that the spectral properties and properties of the eigenvec-
tors of random matrices from the GOE or GUE of the form
Eq. (3) that are coupled by a rank 1 and a full perturbation
matrix V̂ , respectively, agree well. Second, quantum graphs
with Neumann boundary conditions comprise eigenfunctions
that are localized on a fraction of them. Their contributions
could be extracted explicitly experimentally and numerically
for parametric GSE graphs in Ref. [35].

Furthermore, it has been demonstrated in Refs. [25,57,58]
that the correlation functions of the S-matrix elements of
open quantum graphs agree with RMT predictions [42,59]
for quantum chaotic scattering systems. The motivation of
the present paper was to test the applicability of RMT for
quantum chaotic scattering systems to open GSE graphs and
to investigate the effect of such nonuniversal features on fluc-
tuation properties of the S matrix. Open quantum graphs are
realized by attaching leads, that couple the graph to the en-
vironment to corresponding vertices of the two GUE graphs.
The S matrix of a quantum graph with M̃ = 2M open channels
can be brought to the form [52]

ŜV (k) = 2iŴ T

[
ĥ(k) + i

2
ŴŴ T

]−1

Ŵ − 1M̃

= [iŴ T ĥ−1(k)Ŵ − 1M̃][iŴ T ĥ−1(k)Ŵ + 1M̃]−1, (9)

which is similar in form to that derived on the basis of the
S-matrix formalism for compound nucleus reactions [60], see
Sec. IV. Here, the (M̃ × 2V)-dimensional matrix Ŵ is the
coupling matrix which accounts for the coupling of leads to
M̃ vertices, and ĥ(k) is given in the basis B. We chose M̃ = 2
and attached leads to the ports marked by P1 and P1′ in
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Fig. 1 at the vertices marked by 3, 3′, that is, ŴPĩ j̃ = 1 for
ĩ = 1, j̃ = 3, and ĩ = 1′, j̃ = V + 3 and zero otherwise.

The S matrix is T invariant if T̂ ŜV T̂ −1 = Ŝ†
V with T̂ de-

fined in Eq. (2), that is, when the S matrix equals its inverse,
ŜV = Ŝ−1

V . Applying the T̂ operator to ŜV in the presentation
given in the second line of Eq. (9) shows that this indeed is the
case for the design under consideration since the T̂ operator
commutes with ĥ(k) and with Ŵ , which is a real matrix that
complies with the form Eq. (4). Such as in the Hermitian
case the unitary S matrix can be written in the quaternion
representation with basis Bq [2],

ŝmn = s(0)
mn12 + smn · τ. (10)

Time-reversal invariance implies that s(0)
mn = s(0)

nm and smn =
−snm where, in distinction to the Hermitian case, the coeffi-
cients s(0)

mn, smn are in general complex numbers. For the case
M̃ = 2, i.e., M = 1, the antisymmetry property implies that
the S matrix is diagonal,

Ŝ =
(

SP1P1 SP1P1′

SP1′P1 SP1′P1′

)
= s(0)

11 12, (11)

that is, SP1P1 = SP1′P1′ = s11, yielding for the K matrix
Eq. (1),

KPĩP j̃ = i
[s11 − 1]

[s11 + 1]
δPĩP j̃ . (12)

Thus, the S-matrix elements can be expressed as ŜPĩPĩ ≡ s11 =
reiθ = √

Reiθ , where r, R, and θ are the scattering amplitude,
reflection coefficient, and the phase measured at the port.

III. EXPERIMENTAL SETUP

In the experiments quantum graphs with symplectic sym-
metry were modeled with microwave networks [6,35,36] with
symplectic symmetry comprising two GUE microwave net-
works with identical geometry [5]. Their bonds are plotted in
black and turquoise in Fig. 1(b). Corresponding vertices are
numbered by j and j′. Two AEROTEK microwave circulators
[5] with low insertion loss are introduced with opposite orien-
tation at corresponding vertices. They operate in the frequency
range ν ∈ [3.5 − 7.5] GHz and cause phase shifts ±π

2 and,
thus, induce T -invariance violation [52,61]. Circulators are
nonreciprocal three-port passive devices, that allow waves
entering at port 1, 2 or 3, to exit through, respectively, 2, 3 or
1. The two parts of the microwave network are connected by
two coaxial cables of same length, but microwaves traveling
through them have a relative phase π which is realized by
the phase shifters marked by PS1 and PS2 in Fig. 1(b) to
enforce the appearance of Kramer’s doublets. Then, trans-
mission from port P1 to port P1′ or vice versa through the
connecting bonds is suppressed due to destructive interference
where the ports correspond to leads in the associated quantum
graph. Accordingly, these experiments effectively are single-
port measurements simulating single-channel scattering as
expected for the two-dimensional S matrix of a GSE graph
according to Eq. (11) leading to the K matrix Eq. (12). Note,
that in the experiments SP1P1 and SP1′P1′ slightly differ from
each other. The two-port S matrix of the microwave network
was measured using a vector network analyzer (VNA), Agi-

FIG. 2. (a) Nearest-neighbor spacing distribution P(s). The his-
togram exhibits the experimental distribution. A fraction ϕ = 0.94
of the eigenfrequencies could be identified. The results are com-
pared with the distributions obtained from missing-level statistics for
the GSE (red full line) and GUE (black dotted line), and to those
for the GSE (red dot-dashed lines) and GUE (black dashed lines).
(b) The number variance 
2(L). The experimental results are plotted
as black circles. Otherwise same as in (a). We also show the results
for the complete sequence of 1900 eigenvalues of the corresponding
quantum graph, which was computed numerically (blue-dot his-
togram and diamonds).

lent E8364B. The network was connected to the VNA through
HP 85133-616 and HP 85133-617 flexible microwave cables.
Ensembles of networks were realized by changing by the
same amount the lengths of two corresponding bonds of the
network using the phase shifters marked by PS3 and PS4 in
Fig. 1. To attain absorption 1 and 2 dB attenuators were intro-
duced into the microwave network. Note that, in particular, for
reflection measurements, which yield the diagonal elements
of the S matrix, direct processes need to be eliminated to
obtain the S-matrix elements for perfect coupling to the VNA.
This is carried out in microwave networks by employing the
impedance approach [5,45].

In order to confirm that the network exhibits the properties
of a graph with symplectic symmetry, we analyzed fluctuation
properties in the eigenfrequency spectra of the microwave
networks without attenuators. For this we rescaled the ordered
eigenfrequencies ν j to mean spacing unity by replacing them
by the smooth part of the integrated spectral density given by
Weyl’s formula, e j = 2Lν j/c [6,52,62] where the total optical
length L of the network was varied from 7.09 to 7.28 m
and c is the speed of light. Note, that in the experiments
only one of the Kramer doublet partners was identified and,
accordingly, half of the total length was used for the rescal-
ing. In Fig. 2(a) we show the experimental results for the
nearest-neighbor spacing distribution P(s) (black histogram)
and in (b) the number variance 
2(L) (red circles) [27]. Here,

2(L) = 〈[n(L) − 〈n(L)]2〉 with n(L) denoting the integrated
spectral density, that is, the number of unfolded eigenfrequen-
cies e j in an interval of length L. The averaging 〈·〉 comprises a
spectral average over 133 eigenfrequencies in each spectrum,
determined in a frequency range of [3.5, 7.5] GHz, where
absorption, which hampers the determination of the eigenfre-
quencies [36], is sufficiently small, and an ensemble average
over 21 quantum-graph realizations. Note, that for proper
unfolding 〈n(L)〉 = L. The curves clearly differ from those for
the GSE (red dashed-dot lines) and the GUE (black dashed
lines). The reason is, that according to Weyl’s formula 6% of
the eigenfrequencies are missing, yielding a fraction ϕ = 0.94
of identified ones. Therefore, we compare the experimental
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curves with those obtained from a RMT model for missing
levels (red full line) [36,38,63]. To illustrate that the spec-
tral properties unambiguously agree with those of the GSE
with 6% missing levels, we added corresponding curves for
random matrices from the GUE (black dotted lines) with the
same percentage of missing levels. Since the determination
of complete sequences of eigenfrequencies was impossible,
we computed 1900 eigenvalues for the corresponding GSE
quantum graph. The good agreement between the experimen-
tal and the theoretical results corroborates that the microwave
networks exhibit GSE symmetry. The nearest-neighbor spac-
ing distribution and number variance are shown as a blue-dot
histogram and blue diamonds, respectively. Small deviations
from the RMT prediction observed in P(s) and 
2(L) for
the experimental and numerical curves have been shown in
Refs. [31,35] to originate from the contribution of nonuniver-
sal orbits that are confined to a fraction of the quantum graph.

IV. RANDOM MATRIX THEORY RESULTS

In this paper analytical results for the distributions of the
imaginary part v = −Im K and the real part u = Re K of a
single-channel K matrix Eq. (12) are tested for intermediate
and large absorption, achieved by introducing 1 and 2 dB at-
tenuators into the microwave network (see Fig. 1). In Ref. [14]
an analytic expression is derived for quantum-chaotic scat-
tering systems with symplectic symmetry for the distribution
P0(x) of x = 1+R

1−R = u2+v2+1
2v

for the single-channel scattering
case Eq. (11) in presence of absorption,

P0(x) = 1

2
[Aγ (x + 1) + B]e−γ (x+1)

+C(x, γ )e−γ x
∫ γ

0
dt

sinh t

t
. (13)

Here, A = e2γ − 1, B = 1 + 2γ − e2γ , C(x, γ ) = γ 2(x+1)2

2 −
γ (γ + 1)(x + 1) + γ . The corresponding analytical results
for the reflection coefficient R, the amplitude r = √

R, and the
real and imaginary parts of K = u − iv are derived from that
one, yielding

P(R) = 2

(1 − R)2
P0

(
1 + R

1 − R

)
, (14)

P(v) =
√

2

πv3/2

∫ ∞

0
dq P0

[
q2 + 1

2

(
v + 1

v

)]
, (15)

P(u) = 1

2π
√

u2 + 1

∫ ∞

0
dq P0

[√
u2 + 1

2

(
q + 1

q

)]
, (16)

and P(r) = 2rP(R). For each realization of the microwave
networks the absorption parameter γ was determined by
fitting the theoretical mean reflection coefficient 〈R〉 =∫ 1

0 dR RP(R) to the experimental ones, and similarly the
analytical curve for P(r) to the experimental distributions.
Note, that in the experiments SP1P1 and SP1′P1′ slightly differ
from each other. Therefore, we used their averages, 〈R〉 =
1
2 {〈|SP1P1|2〉 + 〈|SP1′P1′ |2〉}. Here, 〈·〉 means spectral averag-
ing over different frequency intervals and ensemble averaging
over all graph realizations. The thereby determined values
are γ = 5.7 ± 0.1 for the network with 1 dB attenuators and

γ = 12.8 ± 0.2 for the one with 2 dB attenuators. We also
compare the experimental results to the analytical results for
the GUE, which are obtained from P0(x) defined in Eq. (13)
by setting C(x, γ ) = 0 and replacing γ by γ

2 ,

P0(x) = 1

2

[
(eγ − 1)γ

(x + 1)

2
+ (1 + γ − eγ )

]
e−(γ /2)(x+1).

(17)
Comparison with Eq. (13) shows that due to the differing
decay behavior of P0(x) for the GUE and GSE cases the corre-
sponding distributions obtained from Eqs. (14)–(16) should be
well distinguishable for moderate values of γ . Furthermore,
the average values 〈r〉 and 〈R〉 differ considerably for the GUE
and GSE for a given value of γ . Yet, after rescaling of the
reflection coefficients R and amplitudes r to average value
unity, R̃ = R

〈R〉 and r̃ = r
〈r〉 , their distributions will approach

an exponential and bivariate Gaussian, respectively,

P(R̃)
γ→∞−−−→ e−R̃, P(r̃)

γ→∞−−−→ π

2
r̃e−(π/4)r̃2

, (18)

in the Ericson regime [64,65], so that they become indistin-
guishable.

We performed Monte Carlo simulations using the S-matrix
formalism [60] which was developed by Mahaux and Wei-
denmüller in the context of compound nuclear reactions
and employed for the derivation of exact analytical results
for fluctuation properties of the S matrix associated with a
quantum-chaotic scattering system [11,42,50,51,59,66],

S(k)P j̃Pl̃ = δP j̃Pl̃ − i
2N∑

μ,ν=1

ŴμP j̃[(k1 − Ĥ eff )−1]μνŴνPl̃ , (19)

which is similar in form to the scattering matrix for open
quantum graphs Eq. (9). In the microwave network P j̃ and Pl̃
refer to antenna ports, and Ĥ eff = Ĥ − i

2ŴŴ T . Here, Ĥ de-
notes the k-independent random matrix from the appropriate
GE, and k1 − Ĥ mimicks the spectral fluctuation properties
of the k-dependent Hamiltonian ĥ(k) of the closed quantum
graph or microwave network with no coupling to the envi-
ronment. To model the properties of a graph belonging to
the symplectic universality class, it is replaced by a random
matrix from the GSE. We use the quaternion representations
Eqs. (5) and (10) for Ĥ and Ŝ. As outlined in Sec. II the entries
of the quaternion matrices correspond in the quantum-graph
Hamiltonian [6,52] to one vertex in one part of the GSE
graph, one in the other one, and their coupling. The matrix
elements of Ŵ are also given in the quaternion representation.
They describe the coupling of the modes in the microwave
networks to the environment via the antenna ports. Further-
more, absorption is modeled in the Monte Carlo simulations
[11,66] by 2� fictitious channels. To ensure that the [2(� +
1) × 2N]-dimensional coupling matrix Ŵ complies with the
symplectic properties of Ĥ , we diagonalized a random matrix
from the GSE and chose � + 1 < N of its eigenvectors, given
in the quaternion basis, to generate Ŵ . Then, the orthogonal-
ity property holds for Ŵ , that is, only the diagonal entries
w2

n, n = 1, . . . , � + 1 of Ŵ T Ŵ are nonvanishing. This is in
accordance with the property that the frequency-averaged S
matrix was diagonal in all microwave-network realizations
after extracting direct processes as described above. The quan-
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tities wn are the input parameters of the RMT model Eq. (19)
through the transmission coefficients,

Tn = 1 − |〈snn〉|2 = 4π2w2
n/d(

1 + π2w2
n/d

)2 , (20)

with d denoting the mean resonance spacing. They provide a
measure for the unitarity deficit of the average S matrix [11].

The transmission coefficients associated with an antenna
port P1 in one subgraph and the corresponding one P1′
in the other one are determined from the measured reflec-
tion spectra after extraction of direct processes yielding with
Eq. (20) TP1 ≡ TP1′  0.95 for all measurements as expected
for quantum graphs with symplectic symmetry. Those related
to the fictitious channels, accounted for through the parameter
τabs = 2�Tf [66], are determined by fitting the RMT re-
sults for the normalized two-point correlation function of the
S-matrix elements,

CPĩPĩ(ε) = 〈SPĩPĩ(e)S∗
PĩPĩ

(e + ε)〉 − |〈SPĩPĩ(e)〉|2
〈|SPĩPĩ(e)|2〉 − |〈SPĩPĩ(e)〉|2 , (21)

with ĩ = 1, 1′, to the measurement results at either of the two
antenna ports and, similarly, the distribution of the amplitudes
|SPĩPĩ| to the experimental ones. We thereby confirmed the
values obtained from the reflection coefficients as described
above, thus, corroborating that the complexity of the wave
dynamics in the two parts of the microwave networks and
their coupling through just two bonds suffices to generate
agreement of the fluctuation properties of the S matrix with
those of a quantum-chaotic scattering system.

V. EXPERIMENTAL RESULTS

The experimental effort to realize microwave networks that
are suitable for the study of the properties of the K and S
matrices and comparison with RMT prediction is facilitated
when adding a small absorption to each cable because it re-
duces the frequency dependence of the resonance parameters

FIG. 3. Distributions of (a) the imaginary part P(v) and (b) the
real part P(u) of K evaluated experimentally for the microwave net-
work with symplectic symmetry and 1 dB attenuators (blue circles),
respectively, 2 dB attenuators (red dots). The experimental results
are compared with the analytical results Eqs. (14)–(16) for γ = 5.7
(blue solid line) and γ = 12.8 (red solid line). The corresponding
RMT results are marked by blue open triangles and red full triangles
for γ = 5.7 and γ = 12.8, respectively. The analytical results for
the GUE are shown for the same values of γ as dashed lines with
corresponding color.

FIG. 4. Same as in Fig. 3 for the distributions of the rescaled re-
flection coefficients P(R̃). Furthermore, we added the limiting curve
for large absorption, i.e., for the Ericson regime as maroon dashed
lines.

which is presupposed in the RMT approach. All experimental
distributions are obtained by averaging over 41 and 81 real-
izations of the networks containing 1 and 2 dB attenuators,
yielding total optical lengths from 7.09 to 7.28 m and from
6.89 to 6.92 m, respectively. Furthermore, we averaged over
the results obtained from the measurements at each of the two
antenna ports. In Figs. 3(a) and 3(b) are shown the experi-
mental results for the distributions of the imaginary part P(v)
and the real part P(u) of K , in Figs. 4(a) and 4(b) those for
the distributions of the rescaled reflection coefficients P(R̃)
for the microwave networks with 1 dB (blue circles) and 2 dB
(red dots) attenuators, respectively. The analytical results for
γ = 5.7, 12.8 are exhibited as solid lines, the corresponding
RMT results as blue open and red full triangles. We also
include the analytical results for the GUE for the same values
of γ as dashed lines. They clearly differ from the experimental
and analytical results for the GSE. For P(R̃) the curve for
the case with 2 dB absorption is close to that for the Ericson
regime Eq. (18).

The distribution of the amplitudes r = |SPĩPĩ|, ĩ = 1, 1′
of the diagonal elements of the S matrix is another im-
portant characteristic of quantum-chaotic scattering systems
[11,50,51,66–68]. It has not been investigated experimen-
tally for quantum-chaotic systems belonging to the symplectic
universality class. In Figs. 5(a) and 5(b) we show the exper-

FIG. 5. Distribution of the rescaled amplitudes P(r̃) for the net-
work with (a) 1 dB and (b) 2 dB attenuators (blue circles and red
dots). They are compared to the analytical curves derived from Eq.
(14) (blue and red solid lines) and the GUE (blue and red dashed
lines) and the RMT simulations (blue open and red full triangles)
for γ = 5.7 and γ = 12.8, respectively. The maroon-dashed lines
exhibit the bivariate Gaussian expected in the Ericson regime.
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FIG. 6. Modulus of the two-point correlation function C11(ε)
evaluated experimentally for the network with 1 dB (red circles)
and 2 dB (red dots) attenuators is compared to the results obtained
from the RMT simulations for γ = 5.7 (blue circles) and γ = 12.8
(blue dots), respectively. They are compared to the analytical curves
for the GUE for the same values of γ , shown as dashed lines of
corresponding color.

imental distributions of the rescaled amplitudes, P(r̃), (blue
circles and red dots) for the networks with 1 and 2 dB at-
tenuators, respectively. They are compared with the analytical
results deduced from Eq. (3) (solid lines) and the RMT sim-
ulations (blue open and red full triangles) for γ = 5.7 and
γ = 12.8, respectively. In Fig. 6 we show the modulus of the
two-point correlation function Eq. (21) of the S matrix for the
network with 1 dB (red circles) and 2 dB (red dots) absorption
together with the RMT results for γ = 5.7 (blue circles) and
γ = 12.8 (blue dots). Furthermore, we show the correspond-
ing results for random matrices from the GUE as dashed lines
of corresponding color. Agreement of the experimental results
with the analytical curves and the RMT simulations for the
GSE is good, whereas, clear deviations from the GUE are
observed for the distributions of the K matrix, the reflection
coefficients and the correlations functions. The rescaled dis-
tributions of the amplitudes also are well distinguishable for
the case of 1 dB absorption, whereas, for large absorption the
GUE and GSE curves are close to each other. Note, that 〈r〉
and 〈R〉 and, thus, P(r) and P(R) clearly differ for the GUE
and GSE cases.

VI. CONCLUSIONS

To summarize, we performed experiments with open mi-
crowave networks with symplectic symmetry for intermediate
and large loss parameters γ = 5.7 and γ = 12.8. Up to now,
only the spectral properties of closed GSE networks have
been investigated [6,35,36,41] and shown to comply with

GSE statistics except for deviations caused by nonuniversal
contributions originating from short periodic orbits and, thus,
serve as a suitable model for experimental studies in the con-
text of quantum chaos in systems with symplectic symmetry.

As outlined in Sec. II, the S matrix of a scattering system
with symplectic symmetry is diagonal for two open channels.
This manifests itself in the feature that in two-port measure-
ments with microwave networks modeling quantum graphs
with symplectic symmetry, transmission from one port to the
other one is suppressed. Namely, the relative phase of π in
the two bonds that connect the subgraphs, which is required
to achieve the symplectic symmetry, leads to a destructive
interference of waves entering the network at one port and
traveling through them, implying their suppression at the other
port. Still, the microwaves sent into the network at one port
obviously visit both subgraphs as can be concluded from
the fact that its spectral properties agree well with those of
random matrices from the GSE and clearly deviate from those
of the GUE [6,35,36,41]. Our aim was to find out, whether
this still applies for the properties of the S and K matrices
of an open GSE graph. We analyzed the distributions of the
reflection coefficients and the real and imaginary parts of
Wigner’s reaction K matrix with, respectively one port at-
tached to corresponding vertices of the subgraphs. The results
agree well with analytical results obtained within the frame-
work of RMT for the S matrices of corresponding dimension
with symplectic symmetry and absorption and, thus, validate
them. Similarly, we found good agreement between the exper-
imental two-point S-matrix correlation function and the one
obtained from Monte Carlo simulations based on the GSE.
We come to the conclusion that the microwave networks, that
are considered in this paper, indeed may serve, due to their
simplicity also from the theoretical point of view as an ideal
test bed for open quantum-chaotic systems belonging to the
symplectic universality class. Note, that the presence of short
periodic orbits that are confined to a small fraction of the
quantum graph—a drawback for closed quantum graphs—,
do not have any visible effects on the fluctuation properties of
the scattering matrix associated with the corresponding open
quantum graph.
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[25] Z. Pluhař and H. A. Weidenmüller, Phys. Rev. Lett. 112, 144102

(2014).
[26] M. Ławniczak and L. Sirko, Sci. Rep. 9, 5630 (2019).
[27] M. L. Mehta, Random Matrices (Academic, London, 1990).
[28] M. Ławniczak, O. Hul, S. Bauch, P. Seba, and L. Sirko, Phys.

Rev. E 77, 056210 (2008).
[29] O. Hul, M. Ławniczak, S. Bauch, A. Sawicki, M. Kuś, and L.
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Europhys. Lett. 5, 383 (1988).
[34] B. Dietz and F. Haake, Z. Phys. B: Condens. Matter 80, 153

(1990).
[35] J. Lu, J. Che, X. Zhang, and B. Dietz, Phys. Rev. E 102, 022309

(2020).
[36] J. Che, J. Lu, X. Zhang, B. Dietz, and G. Chai, Phys. Rev. E

103, 042212 (2021).
[37] F. Castañeda-Ramírez, A. M. Martínez-Argüello, T. Hofmann,

A. Rehemanjiang, M. Martínez-Mares, J. A. Méndez-
Bermúdez, U. Kuhl, and H.-J. Stöckmann, Phys. Rev. E 105,
014202 (2022).

[38] M. Białous, V. Yunko, S. Bauch, M. Ławniczak, B. Dietz, and
L. Sirko, Phys. Rev. Lett. 117, 144101 (2016).

[39] M. Ławniczak, B. van Tiggelen, and L. Sirko, Phys. Rev. E 102,
052214 (2020).

[40] J. Che, X. Zhang, W. Zhang, B. Dietz, and G. Chai, Phys. Rev.
E 106, 014211 (2022).

[41] A. Rehemanjiang, M. Richter, U. Kuhl, and H.-J. Stöckmann,
Phys. Rev. E 97, 022204 (2018).

[42] Y. V. Fyodorov, D. V. Savin, and H.-J. Sommers, J. Phys. A 38,
10731 (2005).

[43] S. Hemmady, X. Zheng, J. Hart, T. M. Antonsen, E. Ott, and
S. M. Anlage, Phys. Rev. E 74, 036213 (2006).

[44] A. D. Mirlin, Phys. Rep. 326, 259 (2000).
[45] S. Hemmady, X. Zheng, E. Ott, T. M. Antonsen, and S. M.

Anlage, Phys. Rev. Lett. 94, 014102 (2005).
[46] R. A. Méndez-Sánchez, U. Kuhl, M. Barth, C. H. Lewenkopf,

and H.-J. Stöckmann, Phys. Rev. Lett. 91, 174102 (2003).
[47] O. Hul, O. Tymoshchuk, S. Bauch, P. M. Koch, and L. Sirko, J.

Phys. A: Math. Gen. 38, 10489 (2005).
[48] O. Hul, S. Bauch, M. Lawniczak, and L. Sirko, Acta Phys. Pol.

A 112, 655 (2007).
[49] M. Lawniczak, S. Bauch, O. Hul, and L. Sirko, Phys. Scr. T135,

014050 (2009).
[50] S. Kumar, A. Nock, H.-J. Sommers, T. Guhr, B. Dietz, M.

Miski-Oglu, A. Richter, and F. Schäfer, Phys. Rev. Lett. 111,
030403 (2013).

[51] S. Kumar, B. Dietz, T. Guhr, and A. Richter, Phys. Rev. Lett.
119, 244102 (2017).

[52] T. Kottos and U. Smilansky, Ann. Phys. (NY) 274, 76 (1999).
[53] V. Kostrykin and R. Schrader, J. Phys. A 32, 595 (1999).
[54] C. Texier and G. Montambaux, J. Phys. A 34, 10307 (2001).
[55] M. V. Berry, Proc. R. Soc. London A 423, 219 (1989).
[56] B. Dietz, T. Guhr, H. L. Harney, and A. Richter, Phys. Rev. Lett.

96, 254101 (2006).
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