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How close are integrable and nonintegrable models: A parametric case study
based on the Salerno model
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In the present work we revisit the Salerno model as a prototypical system that interpolates between a
well-known integrable system (the Ablowitz-Ladik lattice) and an experimentally tractable, nonintegrable one
(the discrete nonlinear Schrödinger model). The question we ask is, for “generic” initial data, how close are
the integrable to the nonintegrable models? Our more precise formulation of this question is, How well is the
constancy of formerly conserved quantities preserved in the nonintegrable case? Upon examining this, we find
that even slight deviations from integrability can be sensitively felt by measuring these formerly conserved
quantities in the case of the Salerno model. However, given that the knowledge of these quantities requires a deep
physical and mathematical analysis of the system, we seek a more “generic” diagnostic towards a manifestation
of integrability breaking. We argue, based on our Salerno model computations, that the full spectrum of Lyapunov
exponents could be a sensitive diagnostic to that effect.
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I. INTRODUCTION

The topic of nonlinear dynamical lattices and energy lo-
calization in them has been prevalent in a large array of
studies over the past few decades [1,2]. Indeed, since the
proposal of intrinsic localized modes in anharmonic crystals
[3,4], there has been an ever-expanding range of disciplines
where relevant states and their implications are being iden-
tified, explored, and dynamically exploited [5]. Among the
numerous associated examples, one can list arrays of waveg-
uides in nonlinear optics [6], Bose-Einstein condensates in
optical lattices [7], manipulation of localization in microme-
chanical oscillator arrays [8], granular crystals in materials
science [9,10], lattices of electrical circuits [11], and many
others, including layered antiferromagnetic crystals [12,13],
Josephson-junction ladders [14,15], or dynamical models of
the DNA double strand [16].

In many of these works, part of the emphasis has been
on localization and nonlinear wave structures [2,5,17,18]. Im-
portant associated questions involve the existence, dynamical
stability, and nonlinear dynamics of the relevant wave forms.
A parallel line of activity that has also been central from
early on has been that of potential long-time ergodicity of
the nonlinear lattice dynamical systems [1,19]. In the latter
there have been significant developments in recent times,
where computational resources have enabled far longer time
simulations of different classes of such systems [20–22] and
the development of novel systems that are more straightfor-
ward to simulate over long times [23]. Interestingly, the birth
of the scientific field examining nonlinear wave (solitonic)

structures has been strongly connected with such ergodicity-
related quests [24,25].

The concept of integrability [26,27] is one that is central
to both of the above directions of study. On the one hand,
the development of the inverse scattering transform and the
identification of solitonic structures for a number of these
equations has been a key development in nonlinear wave
dynamics [26,27], while on the other hand, the infinite con-
servation laws and associated constraints that such systems
impose on the dynamics have significant bearings on the
ability of the system to explore its phase space. Moreover,
often integrability has been a “helpful hand” towards trying
to understand the dynamics of weakly nonintegrable systems
through approaches involving perturbation theory [28]. Here,
often an effective adiabaticity assumption is implied, i.e., that
the structures of the integrable (or analytically tractable) limit
are preserved but their features (e.g., amplitude, width, speed,
etc.) are modified and dynamically driven by the noninte-
grable perturbations imposed. Indeed, this proximity has been
recently also of substantial mathematical interest through,
e.g., the works of [29,30].

In the present work, it is our intention to return to the
exploration of this topic of the effective proximity of inte-
grable and weakly nonintegrable systems. Indeed, we leverage
here a different perspective from those of works such as
[29,30] which focus on the (small) amplitude of the solution to
gauge the relevant proximity. Rather, we deploy a comparison
on the basis of conservation laws of the original integrable
system (see also the work of [31]). Our aim is to explore
more broadly the phase space of the lattice dynamical system
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and its constraints as we depart from the integrable limit.
As our platform of choice, we will utilize the well-known
so-called Salerno model [32], given its natural interpolation
between the well-established integrable variant of the nonlin-
ear Schrödinger equation (the so-called Ablowitz-Ladik, AL,
limit) [33,34] and the nonintegrable so-called DNLS (discrete
nonlinear Schrödinger) equation [18]. The advantage of this
system is the availability of a homotopic parameter interpo-
lating between these models and allowing us to explore the
departure from the integrable limit.

Our tool of choice will be the usage of conservation laws
of the AL limit initially. We will explore how “sensitive” these
are as probes of the breaking of integrability. We will find that
indeed “former conservation laws” will be very sensitive to
departures from the relevant limit. However, a disadvantage of
this approach is that it requires a deep mathematical or physi-
cal (or both) knowledge of the concrete features of the system
at hand. In that light, it is desirable to have a more general
toolbox that is somewhat “system independent” in order to
(sensitively) probe such departures from the integrable limit.
In that vein, we explore the maximal Lyapunov exponent and,
indeed, the full Lyapunov spectrum of the system of interest
that can be generally computed [35–37]. We find that this
represents a very efficient tool for detecting the number of
available conservation laws and hence integrability of the sys-
tem, indeed, one that we expect in the future to be amenable to
efficient computation, e.g., via machine-learning techniques.

Our presentation will be structured as follows. In Sec. II we
present the model of interest and its associated conservation
laws that we will probe both in the integrable limit and sys-
tematically as we depart from that limit. In Sec. III we present
our results for the corresponding conservation laws and their
long-time dynamics. In Sec. IV we discuss the computation of
the Lyapunov exponent spectrum, regarding both the maximal
Lyapunov exponent and the full spectrum, and present associ-
ated numerical results. In Sec. V we summarize our findings
and present our conclusions, as well as a number of directions
for future study.

II. MODEL DESCRIPTION

The equation that we will consider in the present study
involves the well-established Salerno model [32], which in-
terpolates between the AL and the DNLS limits. The relevant
dynamical equation reads

i
dψn

dt
= (1 + μ|ψn|2)(ψn+1 + ψn−1)+γ |ψn|2ψn. (1)

This system has been a natural playground for the usage of
perturbation theory methods off of the integrable limit [38],
for the examination of the delicate issue of mobility in lattice
dynamical systems [39], for the exploration of collisions [31],
and for the analysis of statistical mechanical properties of
nonlinear lattices [40], among many others.

The AL model is well known to be integrable via the
inverse scattering transform [34]. This implies the existence
of an infinite number of conserved quantities considered, e.g.,
in the work of [41], while the nonintegrable DNLS limit is
characterized solely by two integrals of motion, namely, the
energy and the (squared) l2 norm of the field. Indeed, the
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FIG. 1. The relative error of energy �H/H0, �H = H(t ) − H0,
for different μ vs time for an end time of 100 000. A numerical
Runge-Kutta (RK) procedure with adaptive step is applied. The
values of μ are shown in the figure, while N = 100. During the
calculations in order for the code to run in the area above μ = 0.9,
the initial time step dt was changed from 0.0001 to 0.000 001. Note
that this is only the initial parameter for the adaptive step numeri-
cal method. Some of the relevant computations have been stopped
at shorter times (for reasons that have to do with error tolerances
applied to these long runs).

Salerno model inherits these two conservation laws. More
specifically, regardless of the limits, Eq. (1) can be character-
ized by two conserved quantities: the (squared) norm A and
the Hamiltonian H, i.e., the energy of the model [38,42] in the
form

A =
N∑

n=1

An, An = 1

μ
ln |1 + μ|ψn|2|

H =
N∑

n=1

[
−γ

μ
An + ψnψ

∗
n+1 + ψ∗

n ψn+1 + γ

μ
|ψn|2

]
, (2)

where N is the total number of lattice nodes, and periodic
boundary conditions are used. Notice that the latter will be
an important point, especially when we consider finite, small-
size lattices, as integrability of the AL model is preserved in
the case of periodic boundary conditions, although other types
of integrable boundary conditions may also exist [43]. It is
also relevant to point out that in the DNLS limit of μ → 0,
application of l’Hospital (or a Taylor expansion in μ) leads to
the first conserved quantity turning into the (squared) l2 norm.

The dynamical equations of the Salerno model in the form
of Eq. (1) can be derived from the Hamiltonian H according
to

dψn

dt
= {H, ψn}, (3)

with respect to the canonically conjugated pairs of variables
ψn and ψ∗

n defining the deformed Poisson brackets [44]:

{ψn, ψ
∗
m} = i(1 + μ|ψn|2)δnm, {ψn, ψm} = {ψ∗

n , ψ∗
m} = 0.

(4)
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FIG. 2. The average over the successive �t = 100 a.u. (a.u. stands for arbitrary time units) real parts of the complex moments, C1 and C2

(i.e., the quantities that are conserved in the AL limit but not away from it) vs μ. The moments are numerically calculated at each selected time
step using the equation of motion (1). Initially, at t = 0, N = 100 lattice nodes at each μ are excited by the plane wave with parameters a ≡
A/N = 1.5 and h = H/N = 3, to which a complex random perturbation in space is added by means of a numerical uniform random number
generator. The set of random numbers from the interval between (−0.5, 0.5) is used, while the strength of the corresponding perturbation is
0.001. Bars denote the standard deviation around the mean value taken over a time interval of t = 100 along the whole propagation time. The
values of μ are specified in the plot.

Among the infinite conservation laws of the AL limit, the
two that we will focus on observing here are [41]

C1 = −μ
∑

n

ψ∗
n ψn−1

C2 = −μ
∑

n

ψ∗
n ψn−2

[
1 + μ|ψn−1|2 + 1

2
(ψ∗

n ψn−1)2

]
. (5)

These will be our monitored quantities (that, as we will see,
will be quite informative) and which, in the following, will be
denoted as moments. In general they are complex quantities.
Therefore we considered their real and the imaginary parts, as
well as the corresponding modulus.

It is relevant to point out that C1 is often thought of as a
discrete version of the momentum, yet C2 does not have an
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FIG. 3. Here we separately show the behavior of the same moments as in Fig. 2, namely, C1 (first three rows) and C2 (last three rows) for
μ very close to the integrability limit. The features and initialization of these runs are similar to those of the previous figure.

immediate interpretation at a physical level. As an additional
relevant remark, the moment C1 is not sufficient in order to
showcase the integrable limit here, as, for instance, it is still
conserved as a quantity in the linear limit of μ = γ = 0 (not
considered in detail herein). On the other hand, the quantity
C2 is strictly conserved in the AL integrable case only, and
hence the combination of these two moments should be able
to provide us a clearer signature associated with the integrable
limit in what follows.

III. COMPUTATION OF CONSERVATION LAWS

In presenting our results, we start with the aforementioned
conserved quantities of Eq. (1). Here we gradually deviate
from the AL limit of μ = 1 while numerically solving Eq. (1)
using an explicit Runge-Kutta algorithm of order 8 [46–48].
The initial conditions are plane waves (motivated by the ear-
lier thermodynamic study of the model in Ref. [40]) ψn =
(
√

a + V ξn) exp[i(φn + V ηn)] with random phases φn = n ·
arccos [1/(2 a) (h − γ /μ2 · ln (1 + μ a) + (γ /μ)a)], where
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FIG. 4. Here we present the same moment information as in the previous figure but for N = 5.

η and ξ are random numbers drawn from the uniform dis-
tribution of range (−0.5, 0.5), and V = 0.001 is a fixed
small perturbation parameter. Additionally, a = A/N and h =
H/N . In the process, we trace the evolution of the relative
norm and energy error, |A(t )−A(0)

A(0) | and |H(t )−H(0)
H(0) |, respec-

tively, and show a typical example thereof in Fig. 1. It can
be seen that the energy is extremely well conserved, with a
relative error below 10−10 for the simulation horizons reported
herein.

Figure 2 shows the time development of the quantities
C1 and C2 for different values of μ. The important feature

to observe in these evolution simulations is that the relevant
quantities present substantial time-dependent fluctuations. As
may be expected, the general trend of the curves suggests
that these fluctuations decrease as μ approaches 1, i.e., the
integrable limit. We have further ensured that the above trend
persists even for different sizes of the lattice. However, in
order to explore how sensitive the relevant diagnostics are
towards detecting the breaking of integrability, we have also
performed the computations of Fig. 3, which are all conducted
in the vicinity of the integrable limit. Indeed, the relevant
values of μ are within a range of less than 5% variations,
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FIG. 5. The mLCE defined by Eq. (7) for different values of μ for
fixed N = 100, a = 1.5, and h = 3. Notice the positive value thereof
except when we approach the integrable limit μ = 1, when it tends
to 0.

which is a typical limit where perturbative considerations
might be used [31,44]. Nevertheless, we can observe that in
our extended time-horizon evolution dynamics, the relevant
quantities present substantial fluctuations (notice the vertical
axis scale) even very near the integrable limit. Indeed, they can
be observed even for μ = 0.999 99 in the case of C2 (although,
notably, not in the case of C1). It is only at the integrable limit
that all relevant such fluctuations disappear and integrability
is retrieved.

An additional aspect that we probe, as the earlier results
were for N = 100, is how accurate and sensitive these di-
agnostics may be when N is small, and the limited volume
of the phase space may not allow the potential breaking of
integrability to be probed. We explore this in Fig. 4 for N = 5.
This figure, as well as additional tests (not shown), suggest
that it may be easier to “mistake” a nonintegrable situation
for an integrable one if one uses a very small N , and even
more so when one uses a lower moment such as C1. Already
at N = 5 deviations from integrability are substantially ob-
servable, even quite close to μ = 1, and C2 turns out to be a
more sensitive probe thereof than C1.

Our conclusion from the above extensive probing of the
parameter space is that these “former” conservation laws con-
stitute a very sensitive diagnostic feature of the integrability
breaking. In fact, such higher-order moments (like C2) are
even more sensitive than lower-order ones (such as C1). Nev-
ertheless, the examination of such quantities, if such physical
and/or mathematical knowledge is available, can provide a
clear measure of deviations from the “singular” (integrable)
limit. Nevertheless, typically such knowledge will, in fact,
be absent (at least until machine-learning techniques improve
enough to be able to provide such features; see, e.g., [49]
for a recent example). Thus we are faced with the task of
potentially exploring a more “generic” and more widely appli-
cable feature that could reveal the relevant conservation laws,
their count, and eventually the potential integrability of the
nonlinear dynamical system. It is with a view to the latter

direction that we now turn to the (full) Lyapunov spectrum
of the Salerno lattice.

IV. LYAPUNOV SPECTRUM AND MAXIMAL
LYAPUNOV CRITICAL EXPONENT

The existence of chaotic dynamics is one of the indi-
cations of nonintegrability [45]. One of the most common
tools towards the identification of such chaoticity consists of
the maximal (largest) Lyapunov critical exponent (mLCE for
short), represented by 	, of the dynamics associated with
the well-known deviation of nearby trajectories. We compute
the time evolution of initial perturbations represented by the
deviation vector or the tangent map eigenvector χ satisfying
[40,50]

i
dχn

dt
= (1 + μ|ψn|2)(χn+1 + χn−1) + μ(ψn+1 + ψn−1)

× (ψ∗
n χn + ψnχ

∗
n ) + γ (2|ψn|2χn + ψ2

n χ∗
n ). (6)

We then measure the prototypical diagnostic 	 as follows:

	 = lim
t→∞ L(t ), where L(t ) = 1

t

||χ (t )||
||χ (0)|| . (7)

To obtain a sense of how this diagnostic varies in the vicinity
of integrability, we compute it for a lattice of N = 100 par-
ticles in Fig. 5. Here we can see that the relevant exponent
is generically rather far from the value of 	 → 0 and solely
tends to it in the immediate vicinity of the integrable limit. In
that light, bearing in mind that Hamiltonian systems feature
Lyapunov exponents that are pairwise symmetric around 0,
if we are aware of such Hamiltonian properties of the system,
then the vanishing of this maximal Lyapunov exponent should
yield the vanishing of all of them and hence signal the pres-
ence of integrability.

Figure 6 shows the finite time mLCE L(t ) for different
values of N and μ. Here, it can be seen that even though
for N = 3, the system appears to identify L(t ) as tending
to 0 with increasing time; the same is clearly not the case
for N = 5 and beyond, illustrating the nonintegrability of
the latter setting. However, more generally, one may not be
aware of the Hamiltonian nature of the problem. It may also
be desirable to identify the number of conserved quantities of
the system. In that vein, we advocate that a relevant numerical
tool consists of the calculation of the full Lyapunov spectrum
λi of the system [45]. A systematic prescription to do so was
originally discussed in [35,36]. Recently, this was revisited
for many-body systems near integrability [23]. It is relevant
to remember in that context that the λi’s corresponding to the
conserved quantities are expected to lead to pairs of zeros.
Hence, we advocate here the usage of the full Lyapunov
spectrum as a generic (i.e., irrespective of the details of the
system) and straightforward probe of the number of the sys-
tem’s conservation laws and ultimately a sensitive probe of the
dynamical lattice’s potential integrability. Since it is known
that the ergodic behavior of the system drastically changes
as the number of degrees of freedom increases [51,52], we
further measure the Lyapunov spectrum as a function of N .

We show the results of the entire Lyapunov spectrum cal-
culation is Fig. 7, which is also a central result of our study.
As one expects, the λi’s are zero at μ = 1 irrespective of
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FIG. 6. L(t ) in log-log scale for different values of the lattice size N and of the nonlinearity parameter μ obtained from Eq. (7).

FIG. 7. The positive part of the Lyapunov spectrum, i.e., the
positive one-dimensional (1D) Lyapunov exponents λi for different
values of μ. Here, the number of spectrum components is associ-
ated to the x axis, and for each case itotal = N . The circles, star,
square, and diamond symbols represent N = 3, N = 4, N = 5, and
N = 10, respectively. The Lyapunov spectrum (LS) of the complex
wave function associated with the dynamical evolution of the Salerno
lattice with N sites, Eq. (1), consists of 2N 1D Lyapunov coefficients
λi, i = 1, ..., 2N . Here we consider the N dependence of the LS
near and at the integrability limit. We derived the Lyapunov spec-
trum adopting the procedure described in [45], which is based on
the approach of [35,36]. Here we present the positive N Lyapunov
coefficients, λi, (i =, 1, 2, ..., N ).

the number of degrees of freedom. Naturally, this reflects
the integrability of the model at this parameter value. Upon
deviation from μ = 1, 2 (pairs of), λi’s remain zero due to the
two conserved quantities that are preserved, namely, H and
A as discussed above, while the rest become nonzero. Recall
that the nonvanishing value of the mLCE actually reflects the
minimal time (inverse of mLCE) required for the system’s
chaoticity to manifest itself in connection to its dynamical
trajectories. It is important to also note here the role of N ,
the number of degrees of freedom. When this number is suf-
ficiently low, such as N = 3, the limited phase space of the
system, in conjunction with the persisting conservation laws,
render the recognition of the nonintegrability of the model
for μ �= 1 practically difficult. The same is true, more or
less, for N = 4, except for parameter values that deviate quite
substantially from μ = 1. On the other hand, the example with
N = 5 and even more demonstrably so the one with N = 10
make it clear that only two conserved quantities remain in the
evolving dynamics for μ �= 1, and hence that nonintegrability
is now prevalent, even though, of course, these constraints still
affect the evolution dynamics.

V. CONCLUSIONS AND FUTURE CHALLENGES

In the present work we have revisited the Salerno model
as a vehicle for exploring the deviations from integrability.
We have proposed as diagnostics for monitoring such devia-
tions the examination of quantities that are conserved in the
integrable limit but whose conservation laws are “broken” as
soon as we depart from that limit. Indeed, it was found that
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such quantities are sensitive detectors of the deviation from
integrability, incurring large variations even for truly minimal
departures from the Ablowitz-Ladik case, of the order of 10−4.
This illustrates that relevant “former conservation laws” can
be used for monitoring such integrability breaking. Never-
theless, we were subsequently faced with the concern that
such quantities may not be readily available, unless one has a
well-established knowledge of the integrable limit. Hence we
sought a set of quantities that could be classified as generic
and for which computation methods are well established that
could provide us with a count of the relevant conservation
laws on and off of the integrable limit. We argued, on the
basis of the Salerno example, that the full Lyapunov spectrum
is worth considering as a reliable and sufficiently sensitive
such set of quantities, certainly past the limit of very small
degree-of-freedom systems. Indeed, we recalled that Hamil-
tonian systems bear Lyapunov exponents in pairs, and each
conservation law leads to a pair of such exponents that are
vanishing; hence the relevant spectrum is an accurate and
(as illustrated in our case example) sensitive monitor of the
number of conservation laws in a discrete nonlinear dynamical
system such as the Salerno model. Both measurements of the
maximal Lyapunov critical exponent for different numbers of
degrees of freedom and levels of proximity to integrability and
also ones of the full spectrum were shown to be sensitive to
such deviations from the integrable limit.

Moving forward, a number of directions for future studies
are natural to consider. On the one hand, it seems especially

relevant to extend the present analysis to different systems
(discrete and continuum) to verify the broader relevance of
the conclusions drawn herein in a larger class of correspond-
ing examples. Another direction, however, that is equally or
even more promising is that of exploring tools from machine
learning to compute corresponding diagnostics in a fast and
efficient manner. Indeed, in recent years there has been a
substantial effort towards leveraging such tools to identify
underlying conservation laws [49] and associated symmetries
[53,54]. We believe that the diagnostics proposed herein (such
as the identification of the full Lyapunov spectrum) are a
natural complement to such efforts, and the utilization of such
tools may enable the fast and efficient computation of such
diagnostics even for large(r) numbers of degree-of-freedom
systems. Such studies are currently in preparation and will be
reported in future publications.
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