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A common problem that affects simulations of complex systems within the computational physics and
chemistry communities is the so-called sampling problem or rare event problem where proper sampling of
energy landscapes is impeded by the presences of high kinetic barriers that hinder transitions between metastable
states on typical simulation time scales. Many enhanced sampling methods have been developed to address
this sampling problem and more efficiently sample rare event systems. An interesting idea, coming from the
field of statistics, was introduced in a recent work [Lu, Lu, and Nolen, Accelerating Langevin sampling with
birth-death, arXiv:1905.09863] in the form of a novel sampling algorithm that augments overdamped Langevin
dynamics with a birth-death process. In this work, we expand on this idea and show that this birth-death sampling
scheme can efficiently sample prototypical rare event energy landscapes, and that the speed of equilibration
is independent of the barrier height. We amend a crucial shortcoming of the original algorithm that leads to
incorrect sampling of barrier regions by introducing an alternative approximation of the birth-death term. We
establish important theoretical properties of the modified algorithm and prove mathematically that the relevant
convergence results still hold. We investigate via numerical simulations the effect of various parameters, and
we investigate ways to reduce the computational effort of the sampling scheme. We show that the birth-death
mechanism can be used to accelerate sampling in the more general case of underdamped Langevin dynamics
that is more commonly used in simulating physical systems. Our results show that this birth-death scheme is a

promising method for sampling rare event energy landscapes.
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I. INTRODUCTION

A common task in statistics, Bayesian inference, and ma-
chine learning is to sample a probability distribution 7 using
sampling algorithms such as Monte Carlo [1,2], or Langevin
dynamics (LD) [3,4]. However, it can be challenging to effi-
ciently sample the probability distribution if it is multimodal
and exhibits metastability. Then, the transition time to go
between different high-probability modes is long compared
to the simulation times that one can employ. In other words, a
transition between modes is a rare event. This sampling prob-
lem has led to the development of a wide range of advanced
sampling algorithms to more efficiently sample probability
distributions [5-8].

A similar sampling or rare event problem is well known in
the computational physics and chemistry communities [9—11].
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There, one is interested in using atomistic molecular dynam-
ics [12] simulations to understand the behavior of physical
systems. For example, this could be the formation and growth
of a crystal [13], the folding of a protein [14], unbinding
of a ligand from a protein complex [15], and so forth. The
rare event problem is viewed in terms of an energy land-
scape, given by the negative logarithm of the corresponding
probability distribution, which is characterized by metastable
states separated by high kinetic barriers that hinder transitions
between states on typical simulation time scales. This energy
landscape is called a free energy landscape if one considers the
low-dimensional description of the system and its dynamics
in the terms of so-called collective variables that capture the
slow modes of the physical process. This rare event sampling
problem has lead to the development of a wide range of
so-called enhanced sampling methods within the molecular
simulation field [9-11,16-27].

A common sampling strategy is to consider multiple in-
dependent simulations that are started from different initial
conditions. Each simulation then explores a different area
of the energy landscape and by pooling the simulations to-
gether, one can obtain improved sampling statistics and results
[28,29]. However, for rare event systems, each independent
simulation will still suffer from the same sampling issues due
to a lack of transitions between metastable states, which will
skew the sampling statistics and lead to incorrect results when
the simulations are pooled together.

Published by the American Physical Society
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We can consider each independent simulation as a walker
or a particle exploring an energy landscape. Thus, we can
then view multiple independent simulations as an ensemble
of independent particles that explore an energy landscape. To
overcome the sampling problem, we can introduce some kind
of interaction between the particles, for example by consider-
ing population dynamics for the particles, as has been done in
various ways in different fields [5-8,30—40]. Multiple walkers
are also routinely combined with other enhanced sampling
methods to accelerate convergence [39-42].

In Ref. [7], the authors introduce an interesting algorithm
for sampling multimodal probability distributions that aug-
ments overdamped Langevin dynamics with a birth-death
process. Theoretically, this sampling scheme is formulated
in terms of a Fokker-Planck birth-death equation that adds
a birth-death term to the conventional Fokker-Planck equa-
tion. In practice, the scheme is formulated in terms of a set
of particles, each diffusing on an energy landscape accord-
ing to overdamped Langevin dynamics, but also interacting
with each other via nonlocal moves that are determined by
an approximation of the birth-death term. It is shown that
this scheme greatly improves the sampling and leads to con-
siderably faster convergence to the equilibrium probability
distribution in comparison to overdamped Langevin dynamics
without a birth-death process.

In this work, we explore the potential of this birth-death
sampling scheme and show that it can efficiently sample
prototypical rare event energy landscapes. We show that the
original algorithm in Ref. [7] suffers from a deficiency that
leads to incorrect sampling of barrier regions, and we amend
this shortcoming by introducing an alternative approximation
of the birth-death term. We establish important theoretical
properties of the associated interacting particle systems and
prove mathematically that the relevant convergence results
still hold with our approximate birth-death term. Furthermore,
we show that the birth-death mechanism can be used to accel-
erate sampling in the general case of underdamped Langevin
dynamics that is more commonly used in simulating physical
systems.

In Sec. II, we introduce the fundamental idea behind the
method. Section III provides the theory behind the birth-death
scheme and our alternative approximation of the birth-death
term along with mathematical proofs. In Sec. IV, we present
the algorithm and details on the implementation. In Sec. V,
we show applications to prototypical rare event energy land-
scapes and investigate the effect of various parameters of the
algorithm. Finally, in Sec. VI, we end with a few concluding
remarks.

II. OVERVIEW OF THE METHOD

Before giving a formal theoretical description of the birth-
death sampling scheme in the following section, we will
provide here a simplified discussion of the basic mechanism
of the method.

A. Motivation and context

The general starting point is a high-dimensional dynam-
ical system whose dynamics we can describe precisely by

propagating the system in time using molecular dynamics or
Langevin dynamics simulations (or even Monte Carlo sim-
ulations). In order to better understand its metastable states
and the transitions between them, it can, however, be much
more insightful to study them in terms of only a few degrees
of freedom of the system that capture the essential features
one is interested in (so-called collective variables, see, e.g.,
Refs. [10,11,43-45]). In an atomistic simulation, for exam-
ple, this might be the distances between selected atoms, or
some dihedral angles, but also possibly more sophisticated
quantities. Unfortunately, one typically cannot calculate the
low-dimensional dynamics analytically from the full high-
dimensional dynamics. However, it is possible to simulate the
full system, track the low-dimensional degrees of freedom
that are of interest, and then estimate features of the low-
dimensional dynamics on this basis.

In this work, we will assume that the low-dimensional
dynamics can be described by (overdamped) Langevin dy-
namics with respect to an energy landscape U. This is justified
in practice if there is timescale separation between the slow
degrees of freedom that define the energy landscape and the
system’s other degrees of freedom, in other words, they are
adiabatically separated [46].

We will also make the (artificial) assumption that U is
known a priori and therefore perform all simulations directly
with respect to the low-dimensional space. This is typically
not the case in practice (as there is no need to estimate U
when it is known), and our work should be viewed as a first
step in which we check how accurately and how fast our pro-
posed sampling algorithm can estimate prototypical reference
energy landscapes. Adjusting our algorithm in such a way that
it can handle real applications will be the content of future
work.

B. Description of the method

We address the sampling problem in a setup where we have
multiple independent simulations, each of which we interpret
as the trajectory of a particle. We consider an ensemble of N
particles where each of them diffuses independently on the
energy landscape U. Corresponding to U is an equilibrium
distribution 7 that denotes the particle density in equilibrium.
The energy landscape and the equilibrium distribution are re-
lated via the Boltzmann factor [see Eq. (2) below], so knowing
(or estimating) U is equivalent to knowing (or sampling) .
In order to sample m (and, equivalently, estimate U) from
the simulated data, we can consider two different averages as
well as their combination: the time average and the particle
average.

For time averaging, we consider an accumulated his-
togram, i.e., for a given particle we count how often it is
observed at each position. In the limit of infinitely long sim-
ulation times this converges to the equilibrium distribution 7.
However, in rare event systems where energy barriers between
metastable states are so high that transitions between them
rarely occur on simulation time scales, a single particle will
likely only explore one of the metastable states (depending
on its initial position). Alternatively, we can for a given point
in time average over the particles, i.e., we look at the current
particle distribution in order to approximate 7. By considering
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FIG. 1. Sketch of the method: (a) positions of particles (height irrelevant) and a smooth approximation of their ensemble particle
distribution p(x) (blue line) together with the desired equilibrium distribution 7 (x) (orange line). At the position of the green particle the
current ensemble particle distribution is significantly lower than the desired equilibrium distribution, while it is higher at the position of the red
particle. (b) New ensemble particle distribution after the red particle of (a) has been killed and the green particle been duplicated. Effectively,
this means that the red particle has performed a nonlocal move to the position of the green particle.

the whole ensemble of independent simulations, and
combining the two averages into the ensemble average (i.e.,
averaging over the particles and time), we would hope to
obtain better sampling statistics and results, but a lack of
transitions between metastable states will typically still result
in poor estimates of the barrier regions and the energy differ-
ences between different metastable states.

The birth-death sampling scheme that we present in this
work aims to improve this situation by introducing non local
particle moves. The basic idea is that if there is a significant
difference between the particle distribution and the equilib-
rium one at some given time particles are killed and duplicated
in such a way that this spatial redistribution reduces the devi-
ation instantaneously.

To understand this idea a little better, let us consider the
one-dimensional example shown in Fig. 1. Here, the energy
landscape U is a double-well potential, so the equilibrium
distribution 7 (orange line) features two local maxima with
a local minimum in between. To be able to compare the dis-
crete distribution of the particles to the continuous equilibrium
density 7 more easily, we first smoothen it by placing centered
Gaussian kernels at the particles’ positions (similar to a kernel
density estimation [47]) to arrive at the smoothened ensemble
particle density p (blue line). In Fig. 1(a), we can see a signif-
icant difference between the equilibrium distribution that we
want to sample and the current ensemble particle distribution:
the region to the left is undersampled (i.e., p < ) and the
region to the right is oversampled (i.e., p > ).

To bring the two distributions in better agreement, we now
propose to kill and duplicate particles. While in the actual
algorithm this decision would be made in a stochastic manner,
we here consider an exemplary move based on intuition. We
want to move some mass of the particle density from the
oversampled area on the right to the undersampled region on
the left. To achieve this, we decide to kill the red particle and
duplicate the green particle. By doing this, the red particle has
basically performed a nonlocal move from its original posi-
tion to the position of the green particle. Figure 1(b) shows
the resulting ensemble particle distribution where we can see
that the two distributions now are in much better agreement.
We have therefore managed to obtain a momentary particle

distribution that is closer to the one in equilibrium. Thus,
by performing such nonlocal birth-death moves from time to
time while in between the particles diffuse independently, we
should quickly obtain an ensemble particle distribution that is
in good agreement with the equilibrium distribution.

The crucial problem is now to perform these birth-death
moves in such a way that we preserve global sampling statis-
tics. Clearly, our manual killing and duplication of particles
does not achieve this. We will therefore use a stochastic
approach, where birth-death events occur at random times
that depend on a slightly more involved comparison of the
equilibrium distribution and the current local particle density
[compare Eq. (10) below]. Analytically, this combination of
Langevin dynamics and birth-death events can be expressed
by a Fokker-Planck equation with an additional birth-death
term, as will be introduced in the following section.

Recall that in practice 7 is typically not known a priori,
making it more difficult to determine birth-death events based
on how much the current particle distribution differs from it.
Adjusting the birth-death mechanism in such a way that it
still works with an on-the-fly estimation of 7 via enhanced
sampling methods will be the content of future research.

III. THEORY

A. Overdamped Langevin dynamics with a birth-death process

The inertia-free motion of a particle with initial position
x(0) € R in the smooth potential (i.e., energy landscape) U :
R? — R is described by the overdamped Langevin equation

dx(t) = —DBVU[x(t)]dt + /2D dW (1) (1)

where D > 0 is the diffusion coefficient, 8 = 1/kgT > O is
the inverse thermal energy at temperature 7 with the Boltz-
mann constant kg, and W is a standard Brownian motion on
R?. Tts solution X = [x(#)];>0 is a Markov process that has a
unique stationary distribution, the density of which is given
by

r(x)=2Z"". e PVW, (2)
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where Z is a normalizing constant (generally called the par-
tition function in statistical physics). A constant shift of the
potential does not change the dynamics described by Eq. (1).
Furthermore, exact knowledge of the normalizing constant
is not required for practical applications of the methodology
described in this paper. Therefore, we may assume without
loss of generality that Z = 1. Then

Ux)=—B " logm (x) 3)

and we will write everything in terms of 7 (x) in the sequel,
omitting the dependence on B. For functions of the space
variable x € R4, we will usually omit the argument unless it
is specifically needed. We would like to stress that by Egs. (2)
and (3), knowing the energy landscape and knowing the equi-
librium distribution is the same thing.

Let f:R?Y — R be a smooth function. The differential
operator L that is the generator of X is given by

Lf =DAf+DVlogn - Vf. €]

We denote its formal adjoint by L, and it is given by
L'f =DAf —DV - (fVlogr) =DV - (fVlog i) (5)
i

The transition densities p, : RY — [0, 00) of the process X
satisfy the corresponding (linear) Fokker-Planck equation

0o = LT,Oz, (6)
to which 7 is a stationary solution, i.e.,
L'r =0. @)

If f : RY — R is a probability density function and g : RY —
R is a formal probability density function (i.e., a convex
combination of a probability density function in the classical
sense and § distributions), we define the unitless function
o (f, 8 : R = R with

ar (f, 9x) = log% - /10g (%)g(y)dy' ¥

We then define the (nonlinear and nonlocal) Fokker-Planck
birth-death equation as

d o =L oy — 100 (01 9)

where

an(pt) = Oy (pt’ pi) (10)

is called the birth-death term and 7, > O is a rate factor that
has units of 1/time. Note that the rate factor was not included
in the Fokker-Planck birth-death equation in Ref. [7], in other
words, the authors assumed that 7, = 1. We have that

() =0 Y

and hence 7 is also a stationary solution to the Fokker-Planck
birth-death equation [Eq. (9)]. In other words, adding the
birth-death term to the Fokker-Planck equation in this way
does not change the equilibrium.

Note that the normalization constant of 7 (x) cancels out in
Eq. (8), so one can apply the birth-death term without knowing
the normalization of the stationary distribution.

B. An interacting particle approach

The overdamped Langevin equation [Eq. (1)] can be
thought of as the probabilistic counterpart of the Fokker-
Planck equation [Eq. (6)]: the latter is solved by the transition
densities p; of the stochastic process X that solves the former.
In a similar sense, we want to establish a probabilistic coun-
terpart of the Fokker-Planck birth-death equation [Eq. (9)]. To
achieve this, we introduce the following interacting particle
system that is also described in Ref. [7].

We assume that there are N particles with positions
x1(t), ..., xy() € R? at time t > 0. By

N
1
W=ﬁ;%@ (12)

we denote the empirical measure of this N particle system,
i.e., u puts a mass of 1/N at each of the N particles’ current
positions. Since this is a singular measure and since we would
like to be able to plug it into the birth-death term, we need to
replace o (-) with a smoothened approximation A(-), giving
rise to an approximated Fokker-Planck birth-death equation

00 = LTpr — T A (o) ;- (13)

Now, we assume that each particle diffuses independently
according to the overdamped Langevin dynamics defined in
Eq. (1). On top of these independent dynamics, the par-
ticles interact via the following mechanism. Each particle
has an independent exponential clock that strikes with the
configuration-dependent birth-death rate

To | A (1) B (14)

If the exponential clock for the ith particle strikes at time ¢,
then one of two things happens:

(1) If A(u)[x;(2)] > O, then the ith particle is killed and
a particle chosen uniformly at random from the others is
duplicated.

2) If A(uf’ )x; ()] < O, then the ith particle is duplicated
and a particle chosen uniformly at random from the others is
killed.

Thus, the total number of particles is preserved. Alterna-
tively, we can interpret this mechanism in the following way:
in the first of the two cases above, the ith particle jumps to the
current position of a random other particle, and in the second
case a random other particle jumps to the current position of
the ith particle.

Since A is a smoothened version of «,, the term
A(uM)[x;(¢)] approximately takes the logarithmic differ-
ence between the current particle density at x;(f) and the
equilibrium density m[x;(z)], and then subtracts the aver-
age of the same quantity over all current particle positions
x1(t), ..., xy(t). Therefore, the birth-death mechanism has a
tendency to kill particles in space regions that are currently
very crowded relative to the energy, and to duplicate particles
in the opposite situation. Hence, we can expect this birth-death
mechanism to help distribute the particles according to & and
thus speed up the convergence of 1V to 7 in comparison to a
system without birth-death events.
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We will now discuss three different choices of the approx-
imation A, all of which feature a centered Gaussian kernel

x Xy

1
Ko = e ‘”‘P(—T

), xeRY, (15)

where ¥ € R?*? is a positive definite invertible covariance
matrix and |X| denotes its determinant. Since X is usually
fixed, we will often just write K = Ky. For our simulations,
we are mostly interested in a diagonal covariance matrix,
X =96 jal-z with o; > 0, where 8:1» is the Kronecker delta.
In this case, 0 = (07, ..., 04) € R? will be referred to as the
(vector of) bandwidths of the smoothing kernel. We denote
the convolution of K with a (generalized) function f by K * f,
and it is given by

K# fx) = / K(r = »)f () dy. (16)

In particular, for the empirical distribution 1 from Eq. (12),
K % N can be thought of as a kernel density estimation [47].
In Ref. [7], the authors use the approximation

A'(f)=ar (K x £, f)

Kxf() _ /log (K*_f(y))f(y)dy. (17)
7(x) 7 (y)
This choice has one crucial shortcoming, as A°() # 0 and
hence 7 is not a stationary solution to the corresponding
approximation in Eq. (13) of the Fokker-Planck birth-death
equation. In other words, this approximation changes the
equilibrium and hence using it as the basis for a sampling al-
gorithm leads to sampling the wrong probability distribution.
One way to solve this problem is offered by the alternate
approximation

= log

AN = A°(f) = M%) (18)

that adds a correction term to A°. Clearly, A% (;r) = 0. Unfor-
tunately, however, this additive correction is not particularly
convenient for the mathematical analysis (see, e.g., the com-
ments after Theorem 1). Hence, we consider the alternative
multiplicative correction

Amu(f) = g (K *fv f)

K f®) K % f(7)

where the equilibrium distribution 7 is also convoluted with a
Gaussian kernel. Here, again, A™ (r) = 0. Unless explicitly
stated otherwise, we will usually work with A = A™".

Note that if we formally set ¥ = 0 and interpret K as the
dirac delta &y, then all of the approximations AO, AMu pAad
coincide with the original birth-death term «,. We establish
two important theoretical properties of these interacting par-
ticle systems that explain and complement our findings in the
subsequent sections on practical applications. First, we show
that for fixed times ¢ > 0, the empirical measure uf’ con-
verges weakly to the solution p, of the approximation of the
Fokker-Planck birth-death equation [Eq. (13)] if the number
N of particles tends to infinity (Theorem 1). In particular, this
gives proper meaning to the idea that this interacting particle
system is the probabilistic counterpart of the Fokker-Planck

birth-death equation. Second, we present reasonable assump-
tions under which p; converges (exponentially fast) to =, as
time ¢ goes to infinity (Theorem 2). This rough summary is
enough to understand the applications below, so the following
section may be skipped on first reading.

Remark. In a recent talk [48], one of the authors of Ref. [7]
presented the approximation

A% (f) =logK * gm — f log (K * g(y)>f(y)dy, (20)

which solves the main issue of A°, as A% () = 0. Further-
more, it still satisfies Eq. (30), so Theorem 1 also holds with
A = A%

C. Theoretical results

Theorem 1. Let p, be the solution to Eq. (13) with A €
{A%, A™} and assume that ) converges weakly to the proba-
bility measure with density py for N — oo. Then for all# > O,
the empirical measure p of the interacting particle system
converges weakly to the probability measure with density po;
for N — oo.

Nonrigorous proof. For the sake of notational simplicity
and without loss of generality, we assume that D = 7, = 1.
Let (x,),en C R?. Forany N € N, write

1N
w =5 1)
k=1

and let u, denote the formal limit of /LJ’:’ for the number N of
particles going to infinity. The main idea of this proof is to
show that for any smooth functional ¥ mapping a probability
measure on R? to an element of R?, we have convergence
of (EN\II)(/LQ’) to (LW)(uy), where Ly is the generator of
the measure valued Markov process given by the empirical
measure p, of the interacting particle system [see Eq. (12)],
and L corresponds to how the right-hand side of Eq. (13) acts
on the functional W.

If 1 is the current configuration of the system and the
clock strikes for the ith particle, an index j € {1, ..., N} \ {i}
is chosen uniformly at random, and the configuration changes
to

1
Y (i = xj) =y + ﬁsgn(A(Mij)(xi))(ij —38y). (22)

This happens at rate A(/L)[CV )(x;), and in between these birth-
death events, each particle diffuses independently according
to Eq. (1). Therefore, the infinitesimal generator Ly is given
by

Ly (1Y)
1 N
=3 2 (AW, () + VW () - VIog ()
1 N
+ 5 2 1A e (W[ (i = xp) = w(is))
i,j=l1

(23)
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for any smooth functional W, where W’ denotes its functional
derivative, i.e.,

/w;o(x)u(dx) = lim Yo Fev) =¥w) oy

&

for any probability measure vy and any measure v with
fxv(dx) = 0 (i.e., v is centered). With the help of Eq. (21),
we can rewrite Eq. (23) as

(Lyw)(ul)

= f [AW () + VW u () - Viogw()]uy (dy)

+ N// A )W [pl 6 — 2] — ¥ ()}

x i (dy)p (dz). (25)

The formal limit of the first summand is
[ 12,00+ V¥, 0 Viegr oy @6)

For the second summand, we note that by Eq. (24) with ¢ = 1lv
and v = sgn[A ()18, — 8;), we have

Y[l (v = 2] = w(ud)

1
~ 5 | Yy sen[A ()] G: = 8(dw) - 27)

for N — oco. Therefore, the second summand formally con-
verges to

/// AW, )(8; — 8y)(du)px(dy)pn(dz)

= /(/A(ux)(z)ux(dz)—A(ux)(y))‘ll,;x(y)ux(dy),
(28)

and hence Ly \Il(uf ) converges to

(L) (ptx)

=/[A‘If;x(y)JerI/,’u(y)-Vlogﬂ(y)]ux(dy)

+ / ( / A(Mx)(z)ux(dz)—l\(ux)(y))

X W (). (29)

Since for A € {A?, A™} we have

fA(Mx)(Z)ux(dZ) =0, (30)

the formal limit generator (LW)(u,) from Eq. (29) cor-
responds to Eq. (13) with the respective choice of A €
{A?, A™Y), |

Our proof uses the same arguments as the proof of Propo-
sition 5.1 in Ref. [7] where the case A = A° was already
treated. Note that up until Eq. (29), the proof works for any
choice of A. However, if we use A = A%, we have to be a
little more careful, since then f A (1)) (dy) does not
vanish in general. The limit generator (LW)(u, ) from Eq. (29)

then corresponds to Eq. (13) with

A(f) = AY(f) - / AMN()f dx. (31)

Unfortunately, it is currently unclear to us how one could say
anything about the corresponding stationary solution.

In order to quantify the distance between p, and 7, we will
use the Kullback-Leibler divergence

D (i) = / log (%)p dx, 32)

even though it is not a metric in the mathematical sense (as
it is not symmetric and also violates the triangle inequality).
However, it can be related to an actual metric, as Pinsker’s
inequality shows that the property Dxy (o;|m) — 0 is stronger
than convergence of p, to 7 with respect to the total variation
distance. We will also use the relative Fisher information

or |2
T(piln) = / [iog 2] p . (33)

The following Theorem contains Theorem 3.2 of Ref. [7]
as a special case, as for K = §y (i.e., A =« ), the second
assumption trivially holds with A’ = 0.

Theorem 2. Let p, the solution to Eq. (13) with A = A™
and assume that the following conditions hold.

(1) There is a A > 0 such that the log-Sobolev inequality

1
DxL(flm) < Z(f1m) (34)

holds for all probability densities f on R<.
(2) Thereisa )’ > —DA/1, such that

K
* p’) > AD(plt)  (35)
g

Cov,, <log &, log
b4
for all + > 0, where

Cov,(f,8) = /fgpdx—/fpdx/gpdx- (36)

Then

Dyw(pi|7) < Do (polm)e ™" Pr+a) 25, (37)

Proof. Since p; is a smooth probability density, we have

/(&m)dx =9 / prdx =0 (38)

and hence

0, D (o) = / J, (IOg (%) p,> dx
- f(a,m(log% + 1) dx

= / (8po)log = dx. (39)
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Plugging in Eq. (13) and using integration by parts yields
9 DxL (o |7)

= / (DV - (p,V log &) - taA““’(pz)pt) log 2 ax
T T

K
—DZ(p,|7) — 14Cov,, (log %, log K* pt). (40)

Kxm

Equation (40) together with our assumptions Eq. (34) and
Eq. (35) implies

& Dkr(p|m) < —(DA + 1A )Dxr(p:| 7). (41)

The claim now follows from Gronwall’s Lemma. ]

Note that the parameter A > 0 in the log-Sobolev in-
equality Eq. (34) is present explicitly in the convergence
rate in Eq. (37) and, of course, depends crucially on the
potential U. This dependence can be described via the Eyring-
Kramers formula for log-Sobolev inequalities (Corollary 2.17
in Ref. [49]). For a double-well potential, A decreases ex-
ponentially with respect to the height of the energy barrier
(compare Corollary 2.18 in Ref. [49]).

The covariance condition in Eq. (35) may be difficult to
establish in practice, but let us present a rough idea why it is
plausible. If p, and & are sufficiently smooth, the amount to
which they change after applying the smoothing kernel K is
bounded uniformly in time and space by some constant times
| X|. If we pretend that 7 and p, simply vanish entirely in very
high-energy regions, we can then argue that

K
/<log&><log >I<'Ot),o,dx
/4 Kxm
K
= /(log&)(log * o —log&>p,dx
b4 Kxm b4

~ &(X) - Dxo(pi|m), (42)

where |(X)| is small for ¥ — 0. If our initial condition pq is
not too far off, it is also reasonable to expect that p, < Crm for
some C € (1, 0o). If this holds, we can also estimate

K
/log %Pt dx/k)g = pr dx < (log C)Dxr(pr 7).

Kxm
(43)
If ¥ and C can be chosen suitably, combining Eq. (42)
and Eq. (43) yields a version of the covariance condition in
Eq. (35).

In Sec. S-1 of the Supplemental Material (SM) [50], we
show empirically that the covariance condition in Eq. (35)
is satisfied for an exemplary simulation. There we find A" to
have a non-negative lower bound, so we can plausibly assume
Eq. (35) to hold with A’ =0, as is also the case when no
smoothing kernel is applied at all.

The following Lemma gives meaning to the notion that
increasing the bandwidth of the smoothing kernel corresponds
to turning off the birth-death mechanism.

Lemma 1.1f f is a probability density function on R, then

Kz*f |X]—>o00 1

44
Ky (44)

pointwise on R?. In particular, if
cC'm<f<cn (45)

for some C > 1, then

A™r) E2% (46)
pointwise on R,
Proof. First, Eq. (44) can be shown by a straightforward
calculation and using dominated convergence. Then,

K; K; K; N
xf _Kexf Ky moe 1, @7
Ky xm Ks Ksx*m
so that Eq. (46) follows from Eq. (45) and another application
of dominated convergence. |
Note that

28 =og 2 [ (10 =
5 kT T

Ky xm
+ / (log )n dx, (48)
T

where Eq. (47) implies that the first term goes to zero for
|X| — oo, while the remaining terms do not depend on the
position. Hence, even though the birth-death mechanism may
not be turned off entirely in the limit, it no longer distinguishes
between the different particles.

D. Underdamped Langevin dynamics case

Examining the behavior of the birth-death term for over-
damped Langevin dynamics makes it feasible to mathemati-
cally prove convergence to the right distribution. However, for
physical and chemical systems we often employ more general
dynamics that take inertia into account and thus have to track
not only the particle’s position x(¢), but also its momentum
p(t). This is described by the underdamped Langevin equa-
tions

dx(t) = @ dt, 49)
m

2my
dp(t)=—-VU(x(@))dt — yp(t)dt + /7 dw (), (50)

where m denotes the particle mass, y is a friction constant, and
B! = kgT is the thermal energy as before. Note that setting
dp(t) = 0 in Eq. (50), plugging in Eq. (49), and rearranging
the terms yields Eq. (1) with D = (my 8)~".

The solution (X, P) = [x(¢), p(t)];>0 of Egs. (49) and (50)
is a 2d-dimensional Markov process. It possesses a unique
invariant distribution whose marginal with respect to the po-
sition x coincides with m, since in equilibrium, position and
momentum become independent. In order to introduce a birth-
death mechanism to an ensemble of N particles diffusing
according to Egs. (49) and (50), we follow the same ap-
proach as in Sec. III B and still use the same birth-death term
A(uﬁv )[x;(¢)] that depends only on the positions and ignores
the momenta. When the ith particle is killed (or duplicated),
the entire tuple (x;, p;) is killed (or duplicated).

While we do not present any theory for the resulting
interacting particle system, we investigate it empirically in
simulations in Sec. VC and verify that our algorithm can
also successfully be used to sample 7 in the underdamped
Langevin case. Additionally we provide an analysis of the
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momentum distribution and correlation for an exemplary sim-
ulation in Sec. S-II of the SM. We conclude that the chosen
approach does not result in deviation of the momentum distri-
bution from the desired Maxwell-Boltzmann distribution [51]
or deviation of the equilibration and is therefore justified for
the presented system.

IV. IMPLEMENTATION

In the particle-based view, we can explicitly give the for-
mula for the birth-death term. We can rewrite Eq. (19) as

A™(F)(x) = log K * f(x) — log K * 7 (x)

- f (logK * f(y) —log K * 7 (y)) f(y)dy
(51)

for all x € R?. Since
K % 8y(x) = /K(x —2)0,(x)dz =K(x —y) (52)

for any x,y € R? and since convolution is a linear operation,
we can easily plug the empirical measure

N
1
n = N D dwo (53)
k=1
into Eq. (51). Dropping the time dependence of the particle
positions xi(¢), . .., xx(¢) for notational convenience, we find
that

Am”(uﬁv)(xi) = log —logK * 7 (x;)

1 N

]VZK(xi —)Cj)

1 N

N ZK(xk —Xj)
j=1

—log K * m(xg) |- 54

In the sequel, we will simply write
Aj = Am”(uﬁv)(x,-). (55)

We will always present results with A = A™ in the follow-
ing, although we show in the Supplemental Material [50] that
similar results are obtained with A = A2,

In our simulations we choose the covariance matrices of the
Gaussian kernel as diagonal, &;; = §;;0/ with the bandwidths

o = (oy,...,04) where o; > 0. Then Eq. (15) turns into
d )
1 x®
K() = Ky() = ——————— exp| - (_> ,
’ (22 H?=1 i P( ; V2o,

(56)

where the sum goes over the d spatial dimensions of the state
x= @D, ... x9D) e R? of an individual particle.

Our algorithm mostly follows Algorithm 1 of Ref. [7] but
with modifications to reduce the computational effort and
the previously mentioned changes to the calculation of the

approximate birth-death term A. First, while the original al-
gorithm proposed to attempt birth-death events after every
Langevin step, we do so only every M steps. This results in
calculating the A values, which require the computationally
involving density estimate o, less often. This has to be taken
into account for the exponential clock: if ¢; denotes the prob-
ability that the clock of the ith particle strikes after M steps,
then these birth-death probabilities become

gi = 1 —exp (— 14| A;|M0), (57)

where 6 denotes the Langevin time step. We will test if this
results in deviation in the sampling. As in Ref. [7], we will
use 7, = 1 for the following applications but present a short
discussion about the parameter in Sec. S-III in the SM [50].

Second, the original algorithm of Ref. [7] iterates over
the particles, where it individually calculates the birth-death
probability and executes accepted events immediately. There-
fore, the values A; have to be calculated for each particle
individually, or at least recalculated from the new positions
after each accepted birth-death event. For efficiency, we in-
stead choose to calculate all birth-death rates 7, A; from the
positions only once before the birth-death step. Only the order
in which the birth-death events are applied is randomized. No
disadvantages could be found from this approach as long as
the probabilities of birth-death events remain low, as will be
investigated further in the following.

The algorithm was implemented in a custom PYTHON code
together with Langevin solvers (i.e., integrators), and has
been made available to the community [52]. Version v0.3.1
was used for all calculations in the following. We employ
the Euler-Maruyama scheme [53] for overdamped Langevin
dynamics and the Bussi-Parinello scheme [54] for the under-
damped Langevin dynamics case. The input files and data
supporting the results of this paper are openly available at
Zenodo [55].

V. APPLICATIONS

As test cases, we choose to simulate the movement of
sets of particles in artificial potentials that emulate prototyp-
ical energy landscapes. The focus is on rare event systems,
where the energy landscapes are characterized by metastable
states separated by high kinetic barriers (i.e., much higher
than the thermal energy kg7') that hinder transitions between
metastable states. Such rare event energy landscapes are com-
mon in the physical sciences so we foresee many applications
that can benefit from this birth-death method.

A. Comparison of approximations A

To be able to show the effects of the different approxima-
tions A and other parameters, we start with a system with a
moderate barrier height such that transitions are also observed
within moderate simulation time by pure Langevin dynamics.
We choose a one-dimensional double-well energy landscape
that is described by the mathematical expression

Ux) =x*—4x* +0.2x + C, (58)

where C is a constant so that min U (x) = 0O to align it for eas-
ier comparison. A plot of this potential can be seen as a black
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Algorithm 1. Birth-death augmented Langevin dynamics

Input:
e Potential U (and temperature T') corresponding
to the equilibrium distribution 7

e Langevin solver L(X, P,U,0) with corresponding
parameters

e Calculation rule for smoothed birth-death term
A using Gaussian kernel K with bandwidths o

e Rate factor 7,
e Langevin time step 0
e Number of Langevin steps J

e Number of Langevin steps between birth-death
attempts M

e N particles with initial positions X = {z; },

and momenta P = {pi}zNzl
Output:

e Set of particles whose empirical measure
approximates

for t < 1 to J do
update X and P by Langevin solver L(X, P,U,0)
if (¢ mod M) =0 then
Calculate A for all particles
Draw N independent random numbers {r; }/v
uniformly from [0, 1)
Make list ¢ of indices ¢ for which
i <q=1-— GXP(—T(¥|A,‘,‘]\/19)
Shuffle ¢ randomly
foreach i € ¢ * do
Select particle j uniformly from all other
particles
if A; > 0 then
Ti £ Xj; Pi < Pj
else if A; < 0 then
| Tj < Ti; Pj < Pi
end if
end foreach
end if

end for

1

@ In the foreach loop, we skip over all particles
that were already killed randomly by a previous
duplication event during the same birth-death
step. This avoids duplicating the new position of
a killed particle that was not actually considered
for the event probability.

line in Fig. 2(a). It features two metastable states that have
local minima at x;, ~ —1.4 and xg ~ 1.4, and are separated by
a barrier of 4.285 kg T that is centered at the local maximum at
xp ~ 0. The metastable state at x; on the left is lower in energy
and thus has higher probability. In equilibrium, the probability
of a particle being in the basin of attraction B, = (—00, xq)
for the left metastable state is 7 (B.) = ff‘;o 7 (x)dx ~ 0.63.
Similarly, the probability for the higher-energy metastable
state at xg on the right is w (Br) = 7 [(xg, 00)] =~ 0.37.

First, we test the influence of the present proposed birth-
death term A™" on the sampling compared to the previously
proposed birth-death term A° from Ref. [7]. We use N = 100

particles and choose an initial distribution far from equilib-
rium: only ten particles are placed in the more likely left state
at x;, while the remaining 90 particles start in the less likely
right state at xg. We use the overdamped Langevin solver
with a time step of & = 0.001 and set D = 1 (see Sec. S-IX
of the SM [50] for a short discussion on the choice of the
Langevin time step). We run the simulations for 2x 10° steps
at T = 1 so that the thermal energy is kg7 = B~ = 1 (we use
natural units such that kg = 1). The number of steps between
birth-death attempts is fixed to M = 100, while we investigate
both A® and A™ with different kernel bandwidths o.

We assess the correctness of the sampling by obtaining
estimates of the energy landscape from the simulations via
histogramming. We bin all particle positions into a suitable
histogram H and at the end of the simulations we calculate
the estimated energy landscape U (x) via

Ux)=—p 'logHx)+C, (59)

where we choose the constant C such that min U (x) = 0.
When constructing the histograms, we always omit the first
10° steps. We show results for the different kernel bandwidths
o in Figs. 2(a) and 2(b). We can observe that all simulations
sample the basins and the lower regions of the energy land-
scapes correctly as indicated by the good agreement with the
reference. However, we observe deviation from the reference
energy landscape in the barrier region for some simulations,
as can be seen in the insets in Figs. 2(a) and 2(b). In partic-
ular, the deviation is larger for the birth-death term A9 from
Ref. [7]. To quantify the deviation, we calculate from the esti-
mated energy landscapes the height of the barrier going from
the left minimum to the right minimum. The estimated barrier
heights for both birth-death terms are shown in Fig. 2(c) as
a function of the kernel width o together with the reference
value. We observe that for the original birth-death term A°,
the barrier height is always overestimated as compared to the
reference value. In other words, the original birth-death term
A leads to an undersampling of the barrier region. On the
other hand, the results for our birth-death term A™ are much
better and we only observe an undersampling if the kernel
bandwidth is very small. The reason for this effect is likely the
kernel density estimate in Eq. (54), as a too small bandwidth
results in a very spiky density estimate. The lowest value of o
that results in correct sampling, o, depends on the system
and the number of particles. This is investigated further in
Sec. S-1IV in the SM [50].

We further examine the performance of the different
approximations by evaluating how quickly the birth-death
algorithm manages to distribute the particles between the two
states in the correct ratio according to the equilibrium distri-
bution. In Fig. 2(d), we show the fraction of particles in left
state, Njer/N, where Mg is the number of particles in the
left state as defined by the basin of attraction By, = (—00, xq).
Note that we only show the initial 8000 steps of the simula-
tions (i.e., the first 0.4% of the total simulation). Additionally,
we show results obtained without birth-death events, that is,
a pure overdamped Langevin dynamics simulation with the
same parameters and number of particles but with the par-
ticles moving totally independent, so that the same amount
of statistics are used to estimate the energy landscapes. The
reference equilibrium value is 7 (By) =~ 0.63, in other words,
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FIG. 2. Estimates of the energy landscape for the potential given in Eq. (58) obtained from sampling using histogramming for the different
approximations to the birth-death term: (a) The original proposal A°. (b) The present proposal A™. Both show results for different values of
the kernel width o (colored) as well as the reference (black). The small inset shows a magnification of the barrier region. (c) The height of the
barrier going from the left minimum to the right minimum estimated from the energy landscape as a function of the kernel width. The reference
value is given as a black horizontal line. (d) Fraction of particles in the left state as a function of simulation time. The black horizontal line
is the expected equilibrium value. Shown are results from two exemplary simulations with different kernel widths for both approximations
(0 = 0.2 as solid line, o = 0.5 as lines with dashes and dots), as well as from a simulation without birth-death events (dashed line). Only the

first 8000 steps of the simulations are displayed.

there should be around 63 particles in the left state in the
current case of N = 100. As mentioned above, we start with
a particle distribution far from equilibrium as initially there
are only ten particles in the left state. Without the birth-death
process, the simulation only slowly tends towards the equilib-
rium value and has not reached it within the time frame shown
in Fig. 2(d). However, at longer times, the pure Langevin
dynamics simulation reaches the correct equilibrium distribu-
tion. This is due to the fact that the moderate barrier height of
the system allows for transitions from the Langevin dynamics
alone within the simulation time, although the respective time
scale of transition is long. In contrast, all simulations that
employ the birth-death scheme quickly approach the correct
equilibrium particle distribution and reach the reference equi-
librium value 7 (B.) =~ 0.63 with a few thousand Langevin
steps.

We can see in Fig. 2(d) that similar results are obtain with
our birth-death term A™ and the original birth-death term A°.
Therefore, the incorrectness of the original birth-death term
A" is mainly exhibited in the sampling of the barrier region
while equilibrium properties seem to be less affected. Further-
more, we can see in Fig. S5 in the SM [50], that if we view
the results in terms of the probability distribution, the issue
with the undersampling of the barrier region with the original

birth-death term A° is barely noticeable. This can explain why
this issue was not noticed in Ref. [7], as there the authors
only viewed the results in terms of probability distributions.
In this context it should be mentioned that obtaining accurate
estimates of barriers is an important problem in computational
physics and chemistry [56], so it is important that the birth-
death scheme correctly samples the barrier region. As can be
seen in Fig. S6 in the SM [50], we obtain overall similarly
good results with the additive birth-death term A in Eq. (18)
as with the present multiplicative birth-death term A™".

As noted in Lemma 1, increasing the kernel bandwidth
will gradually decreases the effect of the birth-death process.
However, for the current case, we only observed a significant
slowdown of the equilibration for very large kernel widths
such as ¢ = 35, as shown in Sec. S-VI in the SM [50]. In prac-
tice, we should therefore focus on choosing o large enough
to get a smooth density estimate and correct sampling while
keeping in mind that too large bandwidth values reduce the
effectiveness of the method.

B. Influence of birth-death stride M

We next examine the effect of the birth-death stride M that
determines how many Langevin dynamics steps are performed
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FIG. 3. (a) Estimates of the energy landscape for the potential given in Eq. (58) obtained from sampling using histogramming for different

values M of Langevin dynamics steps between attempted birth-death events. All but the data for M =

10000 cannot be distinguished from the

reference. (b) Percentage of accepted birth-death events of the total number of birth-death attempts. (c) Average fraction of particles in the left
state. The error bars denote the standard deviation and the black horizontal line is the expected equilibrium value. The first 50000 steps were
omitted when calculating the values. (d) Fraction of particles in the left state as a function of simulation time. The colored lines are from the
same simulations as in (a), the black horizontal line is the expected equilibrium value. The inset shows a magnification of the first 12000 steps.

between birth-death attempts. To this end, we perform a set of
simulations with the same double-well energy landscape as
before and vary M while keeping the number of particles and
the kernel width fixed at N = 100 and o = 0.4 respectively.
All other parameters are the same as in the previous section.
As before, we start with an particle distribution far from equi-
librium with 10% of the particles in the more probable left
state and the rest in the right state. We use the same protocol
as before and obtain estimates of the energy landscape using
histogramming.

The results of the simulations are shown in Fig. 3. In
Fig. 3(a), we present the estimated energy landscapes. In
Fig. 3(b), we show the percentage of accepted birth-death
events p,.. given by the number of executed birth-death moves
divided by the total number of attempted ones. This can be
understood as an estimate of the average birth-death prob-
ability of Eq. (57) during the simulations. In Fig. 3(d), we
show the time evolution of the particle distribution for the two
states obtained in the same way as in the previous section by
considering the fraction of particles in the left state, Nes/N.
Additionally, in Fig. 3(c), we show the mean and standard
deviation of the fraction of particles in the left state, calculated
by omitting the first 50000 steps of the equilibration phase.

We can see in Fig. 3(a) that all simulations yield a good
estimate of the energy landscape, although the one with M =
10000 shows a slight deviation at the minimum of the right

state as can be seen in the inset. Looking at the time evolution
of the particle distribution in Fig. 3(d), we see that for all sim-
ulations with M < 10000 the correct equilibrium distribution
is reached within the first 4000 steps and there are only small
fluctuations around the reference value afterwards. Smaller M
values result in slightly faster equilibration, although we find
this effect to be rather small.

For the simulation with M = 10000, the birth-death events
result in overshooting, such that the number of particles in
the left state becomes either too small or too large directly af-
terward. Between the birth-death events, a slow equilibration
process due to the Langevin dynamics can be observed, as the
moderate barrier height makes transitions only rare but not
completely unlikely. The overshooting happens because we
calculate the birth-death probabilities for all particles at once
and then perform the respective events simultaneously. The
time between birth-death calculations enters exponentially in
the event probabilities in Eq. (57). For large values of M, the
event probabilities thus become very large, and around 70%
of the particles are killed or duplicated each time. While a
per-particle approach with recalculation of the probabilities
after each accepted event would solve the problem, this would
also result in a lot more computational effort. An equivalent
simulation with the recalculation of the birth-death probabili-
ties after each birth-death event is shown in Sec. S-VII in the
SM [50], where we can see that this solves the problem.
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TABLE I. Coefficients for potentials according to Eq. (60) with
increasing barrier height while keeping the equilibrium distribution
of particles between the two states fixed so that 7 (B.) ~ 0.63.

alksT] b kgT] barrier height [kgT']
1 0.2 4.285
2 0.1918 8.272
4 0.1889 16.267
8 0.1877 32.262

The reason for not calculating the probabilities at every
Langevin step is to lower the computational effort. Therefore,
we conclude that, as long as the birth-death events remain
relatively rare, performing multiple Langevin steps between
birth-death attempts helps to speed up simulations without
negative side effects. To quantify this for the given sys-
tem, we observe significant changes in the behavior only for
M > 1000 in Fig. 3(c), which corresponds to p,.. > 5%.

C. Underdamped Langevin dynamics and the effect of barrier
height on the speed of equilibration

After investigating the influence of the parameters of the
birth-death algorithm, we evaluate the behavior for the under-
damped Langevin case that was introduced in Sec. III D. To
simultaneously assess the speed of convergence for different
barrier heights, we generalize the double-well energy land-
scape given in Eq. (58) with two parameters a and b:

U(x) = ax* — 4ax> + bx + C, (60)

where, as before, C is a constant such that min U (x) = 0. In
Table I, we give sets of coefficients where we have system-
atically increased a and then set b such that the equilibrium
distribution of the particles in the two states remains fixed at
about 7w (B) ~ 0.63 to w (Bg) ~ 0.37 as it was in the previous
sections, while the barrier height is increased.

For each set of coefficients, we perform simulations with
the Langevin solver from Ref. [54]. We set B =1, m =1
and y = 10 and simulate N = 100 particles for 2x 10° steps
with a time step of 6 = 0.005, where we again start with

20
I

15 Pure Langevin - -
10 Potential — |

5
20
15
10

Energy landscape U(x) [units of kgT]

only ten particles in the left state and 90 in the right state.
We perform birth-death events performed every M = 100
Langevin steps. We use the birth-death term A™" and kernel
width o = 0.5. For comparison, we additionally perform pure
Langevin dynamics simulations without birth-death events but
otherwise the same parameters and numbers of particles. We
perform analog analysis of the simulations as in the previous
sections by estimating the energy landscapes using histogram-
ming.

We show the results of the simulations in Fig. 4. For the
simulations with birth-death events, we can see that the esti-
mated energy landscape agrees well with the reference one in
all cases. Note that for the higher barrier heights, the barrier
region is not sampled due to low probability and insufficient
simulation time, as can be expected.

On the contrary, we observe that the pure Langevin dynam-
ics simulations without birth-death events are only sampling
the system correctly if the barrier heights are low. Already for
the system with a barrier height of 8 kg7, there is a visible
difference for the right state that is estimated to be lower in
energy than the reference. For higher barriers, the estimates
are completely off. They give the right state as lower in energy
than the left one by several kg T in comparison to the reference
energy landscape.

We can see the reason for these results for the pure
Langevin dynamics by looking at the distribution of the par-
ticles in the two states shown in Fig. 4(b). With increased
barrier height, crossings between the states by pure Langevin
dynamics become rarer. While the probability of crossing the
barrier is not zero for the higher barrier heights, transitions
are too rare to equilibrate the particles across the two states
within the simulation time. In fact, we could not observe a
single transition in the pure Langevin dynamics simulation
for the system with a barrier height of 32 kgT'. Therefore, a
pure Langevin dynamics simulation is unable to sample the
energy landscape correctly, but this can be expected due to
high barrier heights.

On the other hand, the simulations with birth-death events
reach the equilibrium distribution of the particles very quickly,
that is, within the first 1000 steps of the simulation. It is clearly

0 1000

2000 3000
Time [units of 8]

4000 5000

FIG. 4. (a) Estimates of the energy landscape obtained from sampling using histogramming for the potential given in Eq. (60) with different
coefficients given in Table I. The solid lines are from simulations with birth-death events, the dashed lines from Langevin dynamics simulations
without birth-death events (i.e., independent particles), and the thin black lines are the reference from the potential. (b) Number of particles
in the left state as a function of simulation time for the different potentials. Shown are only the first 5000 steps. The solid black line is the
equilibrium value calculated from the potentials (same for all potentials).
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FIG. 5. (a) The reference energy landscape of the Wolfe-Quapp potential [Eq. (61)]. (b) The energy landscapes estimated from sampling
using histogramming projected on the y-direction. Colored solid lines are from simulations with birth-death events using different kernel
widths o. We note that the lines for o = 0.55 and o = 0.75 are hardly distinguishable because they basically are on top of each other. The
dashed line is from a Langevin simulation without birth-death events but the same number of particles. For clarity, the dashed line is omitted in
the inset. The black line is the reference energy landscape calculated from the potential. (c) Kullback-Leibler divergences from the estimated
probability distribution to the equilibrium distribution for simulations with different kernel widths o. For comparison, the dashed horizontal
line is from a Langevin simulation without the birth-death algorithm. (d) Fraction of particles in the state with y > 0 as a function of simulation
time. The black horizontal line is the reference equilibrium value. The different lines represent the same simulations as in (b).

visible that the barrier height has only a negligible influence
on the speed of equilibration, which is in accordance with
a similar theoretic result for an overdamped system with no
smoothing kernel (see Theorem 3.3 of Ref. [7]). Here, this
theoretical derivation is found to be also true when using an
approximation (in this case A™") to the birth-death term.

D. Higher dimensions: Two-dimensional Wolfe-Quapp potential

All of the previously presented simulations were per-
formed for a system with only one spatial dimension. As the
theory from Sec. III holds for higher dimensions, we also
test the performance on the two-dimensional Wolfe-Quapp
potential [57,58] given by

Ux,y)=x*+y* —2x? —4y> + xy + 03x + 0.1y 4+ C,
(61)

where, as before, C is a constant such that min U (x, y) = 0.
This energy landscape can be seen in Fig. 5(a). Transitions
between the states in y direction are rare events while the
mobility in x direction is high, though the two coordinates are
highly coupled.

We run simulations using N = 1000 particles for 200000
steps with the underdamped Langevin solver, but otherwise

use the same parameters as for the one-dimensional systems
in Sec. V C. The initial distribution is again chosen to be far
from equilibrium: we place 100 particles in the metastable
state in the top left corner with a minimum at (—1.17, 1.48)
and 900 particles in the state in the bottom right corner
with a minimum at (1.12, —1.49). The bandwidths of the
Gaussian kernel are chosen to be the same in each direction,
0 = 0, = 0y, because the low-energy region of the poten-
tial has roughly the same size in both dimensions. We note
that this is not a requirement and asymmetric kernels can be
employed just as well. The kernel bandwidths are varied in
the range o € [0.05, 0.75] in steps of 0.05. Additionally, for
comparison, we perform a pure Langevin dynamics simula-
tion without the birth-death events but otherwise the same
simulation protocol.

As before, we estimate the energy landscape by his-
togramming the simulations where we omit the first 10000
steps. Additionally, we assess the correctness of the sam-
pling by using the Kullback-Leibler divergence [as defined in
Eq. (32)] between the equilibrium probability distribution
and the estimated distributions n obtained from normalizing
the histograms H of the simulations. A lower value of the
Kullback-Leibler divergence indicates a better agreement of
the estimated energy landscapes with the reference ones.
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In Fig. 5, we show results of the simulations. As a vi-
sual inspection of two-dimensional (2D) energy landscapes
is difficult, we choose to consider the projection onto the y
direction that is shown in Fig. 5(b). We can observe similar
results as for the 1D potential: above a certain kernel width
O.rit, the estimate energy landscapes are very close to the refer-
ence. This can also be seen in Kullback-Leibler divergence in
Fig. 5(c). However, for too narrow kernels, the barrier regions
are overestimated and we obtain a higher Kullback-Leibler
divergence value. In Fig. 5(d), we can observe, that as before,
the birth-death algorithm leads to a very swift equilibration of
the particles between the two metastable states.

We can see that the pure Langevin simulation without
birth-death event does not correctly sample the system and
significantly deviates not only in the barrier region but also in
the relative height of the two basins. This corresponds to the
Kullback-Leibler divergence value that is more than one order
of magnitude higher than results obtained with the birth-death
simulations.

We also performed simulations with a lower number of
particles, N = 100, compared to N = 1000 in Fig. 5, see
results in Sec. S-VIIL.1 in the SM [50]. We obtain similarly
good results as for the case with more particles presented here,
though the results are slightly more noisy.

Furthermore, we performed simulations with a scaled ver-
sion of the Wolfe-Quapp potential, such that the barrier
heights are increased, see results in Sec. S-VIIL.2 in the SM
[50]. Again, we observe there that the birth-death algorithm
is able to obtain a correct sampling of the energy landscape,
while pure Langevin sampling is unable to obtain good re-
sults. We can also see that the speed of equilibration to
the correct particle distribution is independent of the barrier
height, as observed in the previous section.

VI. SUMMARY AND OUTLOOK

In this paper, we have explored the usage of the birth-death
scheme from Ref. [7] to sample rare event energy landscapes.
We amend a deficiency of the original algorithm by intro-
ducing an approximate birth-death term that has the right
mathematical limits and empirically leads to correct sam-
pling of barrier regions between metastable states. We show
empirically that the birth-death scheme can very efficiently
sample prototypical rare event energy landscapes, both for
overdamped and underdamped Langevin dynamics, and that
the speed of equilibration is independent of the barrier height.
We also show that the computational effort can be reduced by
applying birth-death steps less frequently without negatively

affecting the quality of the sampling. This is an important
point for future applications where we would like to reduce
the communication between the different simulations.
Overall, our results show that this birth-death scheme is
a promising sampling method that could extend not only
Langevin dynamics but also other sampling schemes. We pro-
vide empirical evidence that the algorithm can also be used
with more general sampling schemes, which motivates testing
its applicability further, for example, to molecular dynamics
or Monte Carlo simulations. However, to be able to apply it
to simulations of high-dimensional systems, such as physical
and chemical systems, will require considerable future work.
To obtain smooth estimates of the particle distribution with-
out increasing the kernel width (and therefore making the
algorithm less efficient), the number of particles has to be
increased with the number of dimensions, which makes the al-
gorithm only applicable to a few degrees of freedom. A future
extension could therefore modify the algorithm to perform the
birth-death moves only in some relevant subspace, that is, in a
low-dimensional space of a few collective variables. In other
words, the birth-death algorithm would treat the particles that
represent the simulations as if they were moving on the free
energy landscape corresponding to these collective variables
instead of the high-dimensional space. In this case, the free
energy landscape, and thus the corresponding probability dis-
tribution that enters the birth-death term, is unknown a priori.
One would need to estimate the probability distribution on the
fly during the simulation, which could be done, for example,
by combining the method with collective variable-based en-
hanced sampling methods. This is a subject for future work.
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