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An extensive numerical analysis of the scattering and transport properties of the power-law banded random
matrix model (PBRM) at criticality in the presence of orthogonal, unitary, and symplectic symmetries is
presented. Our results show a good agreement with existing analytical expressions in the metallic regime and
with heuristic relations widely used in studies of the PBRM model in the presence of orthogonal and unitary
symmetries. Moreover, our results confirm that the multifractal behavior of disordered systems at criticality
can be probed by measuring scattering and transport properties, which is of paramount importance from the
experimental point of view. Thus, a full picture of the scattering and transport properties of the PBRM model at
criticality corresponding to the three classical Wigner-Dyson ensembles is provided.
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I. INTRODUCTION

Scattering and transport properties of disordered meso-
scopic conductors have been of interest for a long time
(see Refs. [1–3] and the references therein). Among the
diverse phenomena observed in these systems, the disorder-
induced localization-delocalization transition of electronic
states, known as Anderson or metal-insulator transition
(MIT), has received special attention [1,4–8]. At the MIT, the
energy spectra show anomalous behavior while the electronic
states present multifractal characteristics and strong amplitude
fluctuations. The latter are usually described by an infinite set
of critical exponents and represent one of the most important
characteristics of the MIT [4,6,9–19]. At criticality, i.e., at the
MIT, both the dimensionality and the symmetries present in
the system play an important role.

The statistical properties of ordinary disordered samples
are well described by the random matrix theory (RMT) [20]
for which three universal symmetry classes are known: the
orthogonal [the symplectic] class describing systems in the
presence of time reversal and presence [absence] of spin-
rotation symmetry and the unitary class for systems with
broken time-reversal symmetry. In the Dyson scheme these
symmetries are labeled by the indices β = 1, 2, and 4, for
the orthogonal, the unitary, and the symplectic classes, respec-
tively [21–23].

Until now, many important features of disordered systems
at the MIT have been analyzed using numerical techniques.
This is due to the complexity in obtaining analytical ex-
pressions at criticality, some of which are available only
perturbatively. In particular, the so-called power-law banded
random matrix (PBRM) model has widely been used since it
captures all the key features of the Anderson critical point and
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is also convenient for its low computational cost [6,24–26].
For the closed system, on the one hand, since the appearance
of the PBRM model originally proposed by Mirlin et al. [24],
a plethora of studies regarding different aspects of the model
with β = 1 symmetry have been performed [6,11,24,26–35]
while less studies regarding β = 2 symmetry are reported
[11,32,33,36]. Moreover, the energy spectra and multifractal
behavior of the PBRM model in the presence of the sym-
plectic symmetry (β = 4) have recently been analyzed [37].
For the open system, on the other hand, several scattering
and transport properties of the model when the system is in
the presence of time-reversal invariance (β = 1) [32,38–42],
which are in agreement with the ones obtained by using the
three-dimensional Anderson model at MIT [28,41], have been
investigated. However, to our knowledge, the analysis of the
scattering and transport properties of the PBRM model for the
unitary case are scarce [43] while the symplectic case has been
left unexplored.

It is the purpose of the present paper to deepening the
understanding of the scattering and transport properties of
critical systems belonging to the symplectic class; that is, we
study the open symplectic PBRM ensemble at criticality. The
regime of a small number of single-mode leads attached to
the PBRM model is studied in detail. Nevertheless, the multi-
channel or multiple single-mode leads setup is also studied
for some scattering and transport quantities of interest. In
order to provide a full picture of the PBRM model for the
three classical Wigner-Dyson ensembles, the scattering and
transport properties of the PBRM model for the β = 1 and
β = 2 cases, previously considered in the literature, are also
reviewed and extended when appropriate. Our results are also
compared with RMT predictions in the appropriate limits.

The organization of the paper is as follows. In the next
section, the generalized PBRM model in the presence of the
three symmetry classes and the scattering setup are described.
The perfect coupling regime, the Wigner delay time, and the
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resonance widths when the PBRM supports one open channel
are analyzed in detail in Sec. III. This is of particular interest,
since it shows that the multifractal properties of the isolated
PBRM model can be probed by measuring transport proper-
ties. The analysis of the scattering and transport properties of
the PBRM model in the two and four open-channel setups
is the subject of Sec. IV. In the same section, the scattering
and transport properties in the multichannel setup are also
presented. Finally, the conclusions are given in Sec. V.

II. MODEL AND SCATTERING SETUP

The PBRM model describes one-dimensional (1D) tight-
binding wires of length N with random long-range hoppings
[6,24]. In the presence of the three symmetry classes, it
is represented by N × N real symmetric (β = 1), complex
Hermitian (β = 2), or 2N × 2N quaternion-real Hermitian
(β = 4) matrices whose elements are statistically independent
random variables drawn from a normal distribution with zero
mean and variance given by [37]

〈|Hii|2〉 = β−1 and

〈|Hi j |2〉 = 1

2(1 + δβ,4)

1

1 +
[
sin

(
π |i− j|

N

)/(
πb
N

)]2μ
. (1)

The matrix sizes are L = N for β = 1 and 2 and L = 2N
for β = 4. The PBRM model is a random matrix ensemble
with off-diagonal matrix elements decaying away from the
diagonal in a power-law fashion. Also, in (1) the PBRM model
is in its periodic version, i.e., the 1D wire is in a ring geometry,
where μ and b are the parameters of the model and δβ,4 is the
Kronecker delta. In particular, for the symplectic case (β = 4)
the PBRM model preserves the quaternion structure of the
Hamiltonian where each eigenvalue is twofold degenerate due
to Kramers degeneracy (for more details see Ref. [37]). The
power-law decay μ = 1 sets the PBRM model at the MIT
critical point [6,11,24,26,28–31,37]. Furthermore, regardless
of the value of μ, insulating- to metallic-like behavior may be
induced by varying the effective bandwidth b from small b to
large b values, respectively. Here the scattering and transport
properties of the PBRM model of Eq. (1) at criticality, μ = 1,
is the focus of this work.

The isolated wire is opened by attaching to it M semi-
infinite single-channel leads, each one described by a 1D
tight-binding Hamiltonian,

Hlead =
−∞∑
n=1

(|n〉〈n + 1| + |n + 1〉〈n|), (2)

thus M establishes the number of open channels or propagat-
ing modes. The M × M scattering matrix, S(E ), can be written
as [42,44–46]

S(E ) =
(

r t ′
t r′

)
= 1M − 2iπW T (E1L − Heff )

−1W, (3)

where r [r′] and t [t ′] are the reflection and transmission am-
plitudes when the incidence is from the left [right], 1n stands
for the unit matrix of dimension n, E is the energy, and the
superscript T indicates the matrix transposition operation. In
Eq. (3), Heff is the non-Hermitian effective Hamiltonian given

by

Heff = H − iπWW T , (4)

where H is the L × L Hamiltonian matrix of the PBRM model
that describes the isolated wire with L resonant states and W
is an L × M energy independent matrix that couples those
resonant states to the M propagating modes in the leads. The
elements of W are Wi j = w0δi j0 , where w0 is the coupling
strength between the wire and the leads and j0 = 1, . . . , M
are the sites at which the leads are attached. According to the
symmetry present in the Hamiltonian, the S matrix is unitary
symmetric, unitary, and unitary self-dual matrix for β = 1, 2,

and 4, respectively [2]. Additionally, due to the ring geometry
of the isolated wire under consideration, the scattering and
transport properties do not depend on which site the leads are
attached to. Then, for simplicity and without loss of general-
ity, in this work the leads are attached at consecutive sites of
the wire.

III. PBRM MODEL WITH ONE OPEN CHANNEL

In this section, the statistical properties of scattering
phases, Wigner delay time, and resonance widths, when the
scattering system supports one open channel and is in the
presence of the β = 1, 2, and 4 symmetries are analyzed. The
relation between Wigner delay times and the properties of the
spectra and eigenstates of the corresponding isolated wire are
also discussed.

A. Perfect coupling regime

In the one-channel setup, the scattering matrix of Eq. (3)
reduces to a phase given by S(E ) = ei�(E ). This case corre-
sponds to a single-channel lead attached to the wire (1). For
the PBRM model in the limit b � 1 (metallic-like regime),
that phase is distributed according to the following expression
[47]:

P (�) = 1

2π

1

γ +
√

γ 2 − 1 cos �
, (5)

where γ = (1 + |〈S〉|2)/(1 − |〈S〉|2). In the so-called perfect
coupling regime, the averaged scattering matrix 〈S〉, also
known as optical matrix, vanishes and the phase is uniformly
distributed over the unit circle.

Before proceeding with the analysis of the phase dis-
tribution (5), some general statements about the numerical
simulations are given. For the statistical analysis shown
throughout this work, most calculations are performed in
the perfect coupling regime since in this limit a number of
analytical predictions from RMT are known. Also, the calcu-
lations are performed around E ∼ 0 considering wire lengths
of N = 50, 100, 200, 400, and 800 with 106, 106, 105, 105,
and 105 random realizations, respectively. All fittings are
performed through the nonlinear least-squares Marquardt-
Levenberg algorithm as implemented by gnuplot. The error
bars are computed by the jackknife method, unless specified
otherwise. Histograms for the probability distributions and for
the cumulative probabilities do not contain error bars since the
statistics is done with a large amount of data such that the error
is not significant.
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FIG. 1. Absolute value of the optical S matrix for the PBRM
model at criticality as a function of the coupling strength, w0, for
values of b indicated in each panel and several wire lengths N as
indicated in panel (a). The symmetries are β = 1 (first column), 2
(second column), and 4 (third column). The insets show numerically
obtained histograms (red lines) compared with the phase distribu-
tion (5) (black continuous lines) for |〈S〉| = 0.5. The error bars are
smaller than the symbol size, so they are not displayed.

In Fig. 1, the modulus of the optical matrix as a function
of the coupling strength w0 for the PBRM model at criticality
with β = 1 (first column), β = 2 (second column), and β = 4
(third column) is shown. Different values of the bandwidth
b and wire lengths N are considered. It is observed that
the perfect coupling, |〈S〉| ≈ 0, does not depend on the wire
length but shows a strong dependence on b. The perfect cou-
pling is attained for values of w0 < 0.5, 0.45 < w0 < 1, and
w0 ≈ 1, when the system is in the insulator-like (top panels),
in between the insulator-like and the metallic-like (middle
panels), and close to the metallic-like regime (bottom panels),
that is for b = 0.1, 1, and 10, respectively. In the insets, the
phase distribution P (�) is shown for a coupling strength
|〈S(w0)〉| ≈ 0.5. The histograms in red lines correspond to
numerical results while the continuous black lines correspond
to the analytical distribution of Eq. (5). For b = 0.1 and 1,
the histograms show two peaks around � = π which vanish
for b = 10, i.e., when the system displays a metallic behavior.
In the latter, a good agreement with the RMT prediction is
observed.

The phase distribution in the perfect coupling regime for
the PBRM model at criticality with β = 1 (first column), 2
(second column), and 4 (third column) symmetries is shown
in Fig. 2. The wire lengths are indicated in Fig. 2(g) while the
values of parameter b are indicated in each panel. The symbols
are obtained by numerical simulations while the solid lines are

FIG. 2. Phase distribution in the perfect coupling regime,
|〈S〉| ∼ 0, for the PBRM model at criticality for several wire lengths
N as indicated in panel (g) and several values of b, as indicated
in each panel. The symmetries are β = 1 (first column), 2 (second
column), and 4 (third column). Symbols correspond to numerical
results while black lines correspond to the RMT prediction (5).

the RMT prediction of Eq. (5). Again, two big peaks around
� = π show up when the system is close to the insulator-
like regime b = 0.1 (top panels) which tend to disappear as
b increases (middle and bottom panels). When the system
attains a metallic behavior, b = 10 (bottom panels), the phase
is uniformly distributed around 1/2π , in accordance with the
RMT prediction (5). It is also clear that P (�) does not depend
on the wire length nor the symmetry (orthogonal, unitary, or
symplectic), as expected in the one open-channel setup [3].

B. Wigner delay time and resonance widths

The delay experienced by a quantum particle due to its
interactions with a scattering region is described by the so-
called Wigner delay time τW . Near the center of the spectrum
(E = 0), it is given by [42,48]

τW (E = 0) = d�(E )

dE

∣∣∣∣
E=0

= −2 Im Tr(E − Heff )
−1|E=0.

(6)
In the metallic regime and for the one open-channel setup,

the distribution of the Wigner delay time is known for all
symmetry classes β = 1, 2, and 4 [49–52], namely

P (τW ) = 2/β

(β/2)!

(
β

2τW

)2+β/2

e−β/2τW . (7)

On the other hand, the poles of the scattering matrix show
up as resonances which in turn are the complex eigenvalues
En = En − i�n/2 of the effective non-Hermitian Hamiltonian
Heff [see Eq. (3)], with En and �n respectively the position
and width of the nth resonance. Furthermore, the resonance
width �n is related to the lifetime of the nth resonance as
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FIG. 3. Distribution of the Wigner delay time for the PBRM
model at criticality for several wire lengths N , as indicated in panel
(a). The symmetries are β = 1, 2, and 4, in the first, second, and
third columns, respectively. The different values of b are indicated
in each panel. The histograms are obtained through Eq. (6), with the
normalization constant w2

0π/(2L), in the perfect coupling regime.
The dashed black lines (bottom panels) correspond to the RMT
prediction of Eq. (7).

τn = 1/�n, and hence a relationship between �n and the
Wigner delay time is expected. These quantities, delay times
and resonance widths, have been of pivotal importance in the
realm of complex scattering both theoretically and experi-
mentally [39,42,48–59], where recent progress has been made
to extend their study to wave-chaotic scattering systems in
the presence of absorption [60,61]. For the PBRM model at
the critical point, to our knowledge, exact theoretical results
for the resonance statistics are scarce; nonetheless, recent
progress has been reported for resonance statistics in standard
banded matrices in both weak and strong localization regimes
[62].

The distribution of the Wigner delay time for the PBRM
model at criticality is reported in Fig. 3 for the three symmetry
classes β = 1, 2, and 4, in the first, second, and third columns,
respectively. The values of the bandwidth b are shown in each
panel. For b = 0.1 (top panels), P (τW ) has its maximum at
τW ∼ 0; that is, the system is in the localized regime and con-
duction is suppressed. For b = 1 (middle panels), relatively
small time delays dominate, meaning that the system is neither
an insulator nor a conductor. For b = 10 (bottom panels), the
distribution of τW is well described by its RMT prediction (7)
which sets the system in a metallic-like regime.

The logarithm of the distribution of the resonance widths,
normalized to its typical value �typ ≡ exp〈ln �〉, for the
PBRM model at criticality with β = 1 (first column), 2 (sec-
ond column), and 4 (third column) are shown in Fig. 4. The
wire lengths under consideration are indicated in Fig. 4(g),

FIG. 4. Distribution of logarithm of resonance widths, normal-
ized to its typical value, for the PBRM model at criticality with
β = 1, 2, and 4, in the first, second, and third columns, respectively.
The system sizes N are indicated in panel (g). The values of the
bandwidth are indicated in each panel. The insets show the scaling
law �typ ∝ N−λ. The black dashed lines are the best fitting of the
scaling law to the numerical data. The error bars are smaller than the
symbols.

and the different values of b in each panel. For the histograms,
only 25% of the eigenvalues around the center of the spec-
trum, E = 0, are used. The typical value �typ follows a power
law with respect to the wire length N , �typ ∝ N−λ, as observed
in the insets of the same figure. There, the dashed lines are the
best fittings to the numerical data. The resulting exponents λ

for each case are reported in Table I.

C. Wigner delay time vs spectral and eigenstate properties
of the isolated PBRM model

It is well known that the spatial fluctuations of the eigen-
states of disordered systems at criticality show multifractal
behavior [4,6,9,63–65]. This behavior is characterized by a
set of generalized dimensions Dq or multifractal dimensions,
where q is a real number. Furthermore, the multifractal proper-
ties of the eigenstates can also be studied through the Wigner
delay time, as shown below.

For disordered systems at criticality, a relationship between
the inverse moments of the Wigner delay time and the mul-
tifractal dimensions of the eigenstates of the corresponding
isolated system Dq is given by [39,47,66],〈

τ
−q
W

〉 ∝ N−σq , where σq ≡ q Dq+1 (8)

and for the PBRM model at criticality the following functional
form for σq as a function of the bandwidth b has been proposed
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TABLE I. Values of the parameters obtained from the power-law fittings to the data of the insets in Figs. 4–6.

Fig. 4 Fig. 5 Fig. 6

�typ ∝ N−λ 〈τ−1
W 〉 ∝ N−σq τ typ ∝ Nστ

b Inset panel λ σq στ

β = 1 0.1 (a) 1.7647 ± 0.0072 0.1404 ± 0.0037 0.2507 ± 0.0048
1 (d) 1.2265 ± 0.0080 0.7133 ± 0.0068 0.8465 ± 0.0055
10 (g) 1.0276 ± 0.0213 0.9439 ± 0.0180 0.9586 ± 0.0163

β = 2 0.1 (b) 1.6424 ± 0.0036 0.2282 ± 0.0034 0.3744 ± 0.0035
1 (e) 1.1490 ± 0.0063 0.8469 ± 0.0023 0.9217 ± 0.0027
10 (h) 1.0187 ± 0.0244 0.9609 ± 0.0192 0.9685 ± 0.0204

β = 4 0.1 (c) 1.7223 ± 0.0245 0.1699 ± 0.0052 0.2990 ± 0.0023
1 (f) 1.1596 ± 0.0068 0.8499 ± 0.0060 0.9257 ± 0.0040
10 (i) 1.0218 ± 0.0456 0.9590 ± 0.0175 0.9680 ± 0.0196

[32]

σq ≈ q

1 + (αq+1b)−1
(9)

with αq being fitting constants. In addition, for PBRM mod-
els at criticality, the typical value of the Wigner delay time,
defined as τ

typ
W ≡ exp〈ln τW 〉, obeys the scaling law given by

[40]

τ
typ
W ∝ Nστ , where στ ≡ D1. (10)

For completeness, the level compressibility χ , a quan-
tity often used to characterize the fluctuations of spectra of
disordered systems at criticality, is also analyzed. In the metal-
lic [insulator] regime χ = 0 [χ = 1] while at intermediate
regimes (neither metallic nor insulator) 0 < χ < 1 [67,68].
For PBRM models in the presence of β = 1 and 2 symmetries,
the level compressibility as a function of b is given by [6,36]

χ =
⎧⎨
⎩

1 − 4b, β = 1, b � 1,

1 − π
√

2b + 4
3 (2 − √

3)π2b2, β = 2, b � 1,

1/2βπb, b � 1.

(11)
In addition a heuristic relation between χ and σq is also
known, namely [32]

χ ≈ q − σq

q(σq + 1)
. (12)

In Fig. 5, the distribution of the logarithm of the first in-
verse moment of the Wigner delay time for the PBRM model
at criticality is reported. The values of the bandwidth b and
wire lengths N are indicated in the panels. The insets show
ln〈τ−1

W 〉 vs ln N as dots while the dashed lines correspond
to fittings to the numerical data with Eq. (8). The resulting
exponents σq from the fittings are reported in Table I. A good
agreement between the numerical data and the scaling law of
Eq. (8) is observed.

The behavior of the logarithm of the distribution of
ln (τW /τ

typ
W ) for the PBRM model at criticality with the three

symmetry classes β = 1, 2, and 4, for different wire lengths N
[see Fig. 5(g)], and different bandwidths b, is plotted in Fig. 6.
The insets show the logarithm of τ

typ
W as a function of ln N .

The dots correspond to numerical results while the dashed
lines correspond to fittings with the scaling law of Eq. (10)
to the numerical data. The exponents στ resulting from the

fittings are reported in Table I. A good agreement between the
numerical data and the scaling law (10) is observed.

In Fig. 7, the multifractal dimension Dq as a function of the
bandwidth b for several values of q is plotted. Figures 7(a)–
7(c) correspond to the system in the presence of the β = 1, 2,

and 4 symmetry, respectively. The empty symbols are com-
puted by direct diagonalization of the isolated PBRM mode
at criticality (see also Ref. [37] for more details). The filled
symbols are obtained from the scaling law (8) and the dashed

FIG. 5. Distribution of the first inverse moment of the Wigner
delay time for the PBRM model at criticality in the presence of
the β = 1 (first column), 2 (second column), and 4 (third column)
symmetries. In top panels b = 0.1, in middle panels b = 1, and in
bottom panels b = 10. The wire lengths N are indicated in panel (g).
The insets show the best fitting (black dashed lines) using the scaling
law (8) to the numerical data (symbols). The error bars are smaller
than the symbols size.
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FIG. 6. Distribution of the Wigner delay time normalized to its
typical value for the PBRM model at criticality. The symmetry
classes are β = 1 (first column), 2 (second column), and 4 (third
column). The bandwidth b is indicated in the panels and the wire
lengths N are indicated in panel (g). The insets show fittings of the
scaling law (10) (dashed lines) to the numerical data (dots). The error
bars are smaller than the symbol size.

lines correspond to Eq. (9) with the αq+1 taken from Ref. [37].
These values of αq+1 are: 3.33 (5.70, 4.82), 2.55 (4.45, 3.82),
2.11 (3.73, 3.22), 1.52 (2.74, 2.41), and 1.21 (2.22, 1.98) for
β = 1 (2, 4) and q = 0.2, 0.6, 1, 2, and 3, respectively [37].
For the three symmetry classes β = 1 (a), 2 (b), and 4 (c)
a good correspondence between the direct calculation of Dq

(empty symbols) and the analytics (dashed lines) is found.
These results show that for the one channel setup, the mul-
tifractal properties of the isolated PBRM model at criticality

FIG. 7. Multifractal dimensions Dq for the PBRM model at crit-
icality as a function of the bandwidth b. The empty symbols are
obtained from direct diagonalization of the closed system (1). The
filled symbols correspond to results obtained from the scaling law
(8). The dashed lines correspond to the heuristic relation (9). The
error bars are the rms of the residuals. For the sake of clarity, the
symbols (lines) are displaced vertically upward.

FIG. 8. Level compressibility of the PBRM model at criticality
as a function of the bandwidth b. The symmetries are β = 1, 2, and
4, in panels (a)–(c), respectively. The symbols are obtained from
Eq. (12), the dashed red lines correspond to expression (11). Inset:
Recursive relation (13), the dashed red lines (∼b) are plotted to guide
the eye. The error bars are the rms of the residuals.

can be directly extracted from Wigner delay time, a transport
property. This is convenient from an experimental point of
view.

In Fig. 8 the spectral compressibility of the PBRM model at
criticality is reported. The symbols are obtained from Eq. (12)
with the σq extracted from the scaling law (8). The dashed
lines correspond to the theoretical prediction of Eq. (11). For
the PBRM model in the presence of the symmetry classes,
β = 1 and 2, Figs. 8(a) and 8(b), respectively, a good agree-
ment with the analytics is observed. For the β = 4 case, there
is no theoretical prediction available to compare with. How-
ever, the following recursive relation [32]:

σq(q − σq) ≈ αq+1b (13)

is known. Then, the PBRM model in the β = 4 case can
also be contrasted with this last relation. For this purpose, in
the insets of Fig. 8, the recursive relation (13) (symbols) is
shown. The dashed lines are ∼b. A good agreement with the
numerical data (symbols) is observed.

To this point, the analysis of the PBRM model at critical-
ity with one open channel has been performed. In the next
sections, the setup in which the scattering system supports M
open channels is studied and contrasted with available RMT
predictions.

IV. PBRM MODEL WITH M OPEN CHANNELS

In this section, the analysis of the scattering and transport
properties of the PBRM model at criticality with M open
channels is presented. As in the previous section, this is per-
formed following the scattering matrix approach of Eq. (3). As
shown in Sec. III for the one open-channel setup, the scatter-
ing and transport properties of the PBRM model at criticality
do not change significantly with the wire length N . A similar
behavior has also been found for the M open-channel setup in
the β = 1 case [39–41]. Here this has also been verified for the
β = 2 and 4 cases (not shown). Therefore, in what follows the
wire length is set to N = 50. For the statistical analysis, 106

realizations of the scattering matrix S in the perfect coupling
regime are considered. In the same line as in Sec. III, known
analytical RMT predictions are presented first and later they
are compared with numerical simulations in the appropriate
limits.
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A. Scattering properties

Within the RMT approach of quantum transport, the aver-
age of the magnitude of the elements of the scattering matrix
S has been obtained [2]. That is,

〈|Snm|2〉RMT = 1 − (1 − 2/β )δn,m

M − 1 + 2/β
, (14)

where β is the symmetry class present in the system, M is
the number of open channels, and δnm is the usual Kronecker
delta.

From Eq. (14) and based on numerical simulations for
the M = 2 open-channel case, it has been conjectured that
the average of the S-matrix elements, 〈|S12|2〉 and 〈|S11|2〉, can
be expressed as a function of the bandwidth b [41,43]. These
are given by

〈|S12|2〉(b) = 〈|S12|2〉RMT

1 + (εb)−2
and (15)

〈|S11|2〉(b) = 1 − 〈|S12|2〉, (16)

where ε is a free parameter to be determined by the best fitting
to the numerical data. Furthermore, by using a phenomenolog-
ical expression that relates the bandwith b with the correlation
dimension D2, which is a broadly accepted measure of the
spatial extension of the eigenfunctions of disordered systems
at the critical point, Eqs. (15) and (16) can also be written in
terms of D2 [41,43]. For the β = 1 case one gets

〈|S12|2〉(D2) = 〈|S12|2〉RMT

1 + (κ/ε)2
(
D−1

2 − 1
)2 and (17)

〈|S11|2〉(D2) = 1 − 〈|S12|2〉(D2), (18)

where κ is a fitting parameter and ε is obtained from Eq. (15).
Meanwhile, for the β = 2 and 4 cases one gets

〈|S12|2〉(D2) =
⎧⎨
⎩

〈|S12|2〉RMT

1+(κD2/π )−2 , b � 1,

〈|S12|2〉RMT

1+[2π (1−D2 )/ρ]2 , b � 1,
(19)

〈|S11|2〉(D2) = 1 − 〈|S12|2〉(D2), (20)

where κ and ρ are fitting parameters, different for each sym-
metry class β. Notice that the expressions (15), (17), and
(19) were obtained heuristically and its analytical derivation
remains to be proven, while the relations (16), (18), and (20)
are a consequence of the flux conservation condition of the
S matrix. However, as shown below, these equations describe
well the numerical data.

In Fig. 9 the average of the S-matrix elements, when the
PBRM model at criticality supports M = 2 open channels,
is shown for the β = 1, 2, and 4 symmetries, in the first,
second, and third columns, respectively. The symbols corre-
spond to numerical simulations and the dashed blue lines are
the RMT prediction (14) for which 〈|S12|2〉RMT = 1/3, 1/2,
and 2/3 for β = 1, 2, and 4, respectively. In the same figure,
〈|S11|2〉RMT = 1 − 〈|S12|2〉RMT is also shown. The dashed red
curves in Figs. 9(a)–9(c) correspond to the generalizations of
Eqs. (15) and (16) for the β = 1, 2, and 4 symmetry, respec-
tively. Figures 9(d)–9(f) show 〈|S12|2〉(D2) with the values of
D2 extracted from Fig. 7. The dashed red lines are Eqs. (17)–
(20). The obtained fitting parameters ε, κ , and ρ, for each

FIG. 9. Average of the S-matrix elements for the PBRM model
at criticality with M = 2 open channels. The symmetries are β = 1
(first column), 2 (second column), and 4 (third column). The symbols
correspond to numerical simulations, the dashed blue lines are the
corresponding RMT prediction (14). Top panels: Average of the S-
matrix elements as a function of the bandwidth b. The dashed red
lines are Eqs. (15) and (16). Bottom panels: Same as top panels but as
a function of the correlation dimension D2 compared with Eqs. (17)–
(20). Error bars are smaller than the symbol size.

symmetry class are reported in Table II. In all the cases, it is
observed that for large b and D2 the model is well described by
the RMT predictions while the corresponding generalizations
work well for any b and D2.

B. Transmission and shot noise power

In this section, known analytical results from RMT for the
scattering and transport properties of complex media are first
revised. Those results are expected to describe the PBRM
model at criticality in the case of b � 1, i.e., in the metallic-
like regime.

It is well established that given a scattering problem, the
transmission coefficient can be obtained from the elements of
the scattering matrix as

T = Tr(t t†), (21)

where Tr is the trace operation, t is the transmission amplitude
[see Eq. (3)], and the symbol † represents the adjoint of t .

For the M = 2 open-channel setup, or two single-channel
leads attached to a complex scattering media, the transmission
distribution is given by [2]

P (T ) = 1
2βT −1+β/2, 0 < T < 1, (22)

for the symmetry class labeled by β.
Also, for the M = 4 open-channel setup, or four single-

channel leads attached to a complex scattering media, the

TABLE II. Values of the parameters obtained by fittings to the
data of Fig. 9.

β ε κ ρ

1 2.5129 ± 0.0017 2.1043 ± 0.0242
2 3.0618 ± 0.0022 4.7867 ± 0.0017 2.7857 ± 0.0065
4 1.9359 ± 0.0030 3.9909 ± 0.0078 1.8036 ± 0.0038
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distribution of T for the β = 1 case is [3]

P (T ) =
{

3
2 T, 0 < T < 1,

3
2 (T − 2

√
T − 1), 1 < T < 2,

(23)

while for the β = 2 case it is [3]

P (T ) =
{

2T 3, 0 < T < 1,

2(2 − T )3, 1 < T < 2.
(24)

Now, for the β = 4 symmetry, following Ref. [3] it is straight-
forward to arrive at

P (T ) =
{

12
7 T 7, 0 < T < 1,

12
7 (2 − T )5(T 2 + 10T − 10), 1 < T < 2.

(25)
In general, the tail of the transmission distribution for all β

and any number of open channels M decays as [3]

P (T ) ∝ T −1+βM2/2. (26)

Furthermore, for a complex scattering media attached to two leads supporting respectively N1 and N2 open channels, the
average transmission and its variance are given by [2,69]

〈T 〉 = N1N2

N1 + N2 − 1 + 2/β
(27)

and

var(T ) =
2N1N2

(
N1 − 1 + 2

β

)(
N2 − 1 + 2

β

)
β
(
N1 + N2 − 2 + 2

β

)(
N1 + N2 − 1 + 4

β

)(
N1 + N2 − 1 + 2

β

)2 , (28)

for all symmetry classes labeled by β.

Another transport quantity of interest is the so-called shot
noise power P, defined as P = 〈tr(tt† − tt† tt†)〉, whose prob-
ability distribution is given by [70]

P =
N1

(
N1 − 1 + 2

β

)
N2

(
N2 − 1 + 2

β

)
(

K − 2 + 2
β

)(
K − 1 + 2

β

)(
K − 1 + 4

β

) , (29)

where K = N1 + N2 is the total number of open channels.
Note that although the distribution (29) was derived for the
β = 1 and 2 symmetries, it also encompasses the symplectic
case, β = 4, as will be verified below for the PBRM model
with b → ∞.

In Eqs. (27)–(29) the number of open channels, N1 and
N2, may be different. However, in order to compare these
quantities with numerical simulations of the PBRM model,
we set N1 = N2 with M = N1 + N2 the total number of open
channels.

For the PBRM model at criticality with two single-channel
leads attached to it (M = 2 open channels), the transmission
distribution for several values of b and β = 1, 2, and 4 (first,
second, and third columns, respectively), is shown in Fig. 10.
The red lines correspond to histograms obtained from nu-
merical simulations while the dashed blue lines are Eq. (22)
for the respective β. For the three symmetry classes under
consideration, a smooth transition from a localized-like to a
metallic-like regime is observed as the bandwidth b increases.
The metallic-like regime is reached when b = 4 for which a
good agreement with the RMT prediction (22) is obtained [see
Figs. 10(j)–10(l)].

It is instructive to look at the behavior of the transmission
distribution P (T ) in the insulator-like regime b � 1 where
RMT predictions are not available. In this regime where
P (T ) ≈ 0 it is more convenient to analyze the distribution
of ln T . For the PBRM model at criticality with M = 2, the
distribution of the logarithm of T for β = 1 (first column),
2 (second column), and 4 (third column) and several values

of the b < 1, as indicated in Fig. 10(g), is shown in Fig. 11.
In Figs. 11(a)–11(c), it is observed that the shape and width
of lnP (ln T ) do not change despite the fact that b varies.
This means that lnP (ln T ) should be scale invariant, a prop-
erty that was confirmed before for β = 1 with the typical
transmission T typ = exp〈ln T 〉 as scaling parameter. Also note
in Figs. 11(d)–11(f) that 〈ln T 〉 ∼ ln b for b < 1. Indeed, all
distributions lnP (ln T ) fall on top of each other when plotted
as a function of ln(T/T typ), as shown in Figs. 11(g)–11(i).
We stress that this behavior has previously been reported for
the PBRM model in the presence of the β = 1 symmetry but
neither for the β = 2 (periodic) nor for the β = 4 symmetries.

Since the tails of the distribution P (T ) from the PBRM
model in the metallic-like regime (b → ∞) are expected to
correspond to Eq. (26), then it is reasonable to assume that
those tails may be described by

P (T ) ∝ T ν (30)

for all b, with ν a fitting parameter. Furthermore, for the
PBRM model with β = 1 symmetry, in Ref. [38] the follow-
ing relationship between the exponent ν and the correlation
dimension D2:

ν(D2) ∝ (1 − D2)2, b � 1, (31)

has been proposed.
The asymptotic behavior of the transmission distribution

for the PBRM model at criticality as a function of the band-
width b and of the correlation dimension D2 is analyzed in
Fig. 12 for the β = 1, 2, and 4 symmetries in the first, sec-
ond, and third columns, respectively. In Figs. 12(a)–12(c), for
each value of b the corresponding exponent ν (red inverted
triangles) is obtained from the best fitting of Eq. (30) to the
numerical data for T > 0.5. The exponent ν as a function of
D2 is shown in Figs. 12(d)–12(f). The relationship between D2

and the bandwidth b � 1 is given by D2(b) = 1 − (2πb)−1

[6,38]. In all panels the dashed blue lines are the RMT
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FIG. 10. Transmission distribution of the PBRM model at crit-
icality with M = 2 open channels and several values of b. The
symmetries are β = 1, 2, and 4, in the first, second, and third
columns, respectively. The red lines correspond to histograms ob-
tained from numerical simulations while the dashed blue lines are
the RMT prediction (22) for the respective β. A smooth transition
from localized-like to metallic-like regime is observed for the three
symmetry classes.

prediction (26) according to the symmetry class. The dashed
black lines are the best fittings to the numerical data, which
are proportional to b−2 (top panels) and to (1 − D2)2 (bottom
panels). The latter shows that the relationship (31) is valid for
D2 > 0.75.

The transmission distribution for the PBRM model at crit-
icality with four single-channel leads attached it (M = 4) is
reviewed in Fig. 13. The symmetries are β = 1, 2, and 4,
in the left, middle, and right panels, respectively, and the
considered values of b are indicated in the panels. The red
lines are histograms obtained from numerical simulations,
and the dashed blue lines are the RMT predictions (23)–(25)
according to the symmetry class. For each case, a smooth
transition from an insulator-like to a metallic-like regime is
observed. In Figs. 13(j) and 13(k), the metallic-like regimen
is reached for values of b = 4 when the system is in the
presence of the orthogonal and the unitary symmetry, respec-
tively. However, when the system is in the presence of the
symplectic symmetry, a larger value of b (= 10) is required
to reach the metallic-like phase, as shown in Fig. 13(l). Close
to the insulator-like regime (b < 0.5), the transmission dis-
tribution shows a pretty similar behavior to that obtained for

FIG. 11. Distribution of the logarithm of transmission for the
PBRM model at criticality with M = 2 and several values of the
bandwidth b, as indicated in panel (g). The symmetries are β = 1
(first column), 2 (second column), and 4 (third column). The error
bars in panels (d)–(f) are smaller than the symbol size. See text for
the discussion.

FIG. 12. Exponents ν extracted from the best fitting of Eq. (30)
to the numerical transmission distribution of the PBRM model at
criticality for M = 2. The symmetries are β = 1, 2, and 4, in the first,
second, and third columns, respectively. Top panels: ν as a function
of the bandwidth b. The red inverted triangles correspond to numeri-
cal results for T > 0.5, the dashed blue lines are the RMT prediction
(26) for the corresponding symmetry classes and the dashed black
lines are the best fitting of b2 to the data. Bottom panels: Same as top
panels but as a function of the correlation dimension D2 whose re-
lationship with b � 1 is given through D2(b) = 1 − (2πb)−1 [6,38].
The fittings are performed by using (1 − D2)2. The error bars are the
rms of the residual and are smaller than the symbol size.
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FIG. 13. Transmission distribution of the PBRM model at crit-
icality for M = 4 and several values of the effective bandwidth b,
as indicated in the panels. The symmetries are β = 1, 2, and 4 in
the left, middle, and right columns, respectively. The red lines are
histograms obtained by numerical simulations and the dashed blue
lines are the corresponding RMT predictions (23)–(25).

the M = 2 case, as observed in Fig. 14 (see also Fig. 11).
There, lnP (ln T ) also shows a scaling property, i.e., all the
curves fall on top of each other when normalized to its typical
value T typ = exp〈ln T 〉 ∼ b2, as observed in Figs. 13(g)–
13(i). Also, 〈ln T 〉 is a linear function of ln b for b < 1, see
Figs. 13(d)–13(f).

For the PBRM model at criticality with β = 1 symme-
try, it has been conjectured that the averages 〈T 〉, Var(〈T 〉),
and P, as a function of the bandwidth b, obey the following
expression:

X (b) = XRMT

[
1

1 + (δ b)−2

]
, (32)

where X may be 〈T 〉, Var(〈T 〉), or P; XRMT is the corre-
sponding RMT prediction and δ is a fitting parameter. In what
follows, this conjecture is verified for the PBRM model at
criticality for the β = 2 and 4 symmetries. For completeness,
the β = 1 case is also reviewed. For the numerical analysis,
the wire length is set to N = 200 and 105 realizations of the S
matrix of Eq. (3) are generated.

FIG. 14. Distribution of the logarithm of transmission of the
PBRM model at criticality with M = 4 and several values of the
bandwidth b, as indicated in panel (g). The symmetries are β = 1
(first column), 2 (middle column), and 4 (third column). The error
bars in panels (d)–(f) are smaller than the symbol size.

In Figs. 15(a)–15(c), for the PBRM model at criticality 〈T 〉
as a function of the open channels M is shown for β = 1, 2,

and 4, in the first, second, and third columns, respectively, and
for several values of b. The symbols correspond to numerical
results while the dashed blue lines are the RMT predictions
(27) according to the symmetry class. The red horizontal
line at 〈T 〉 = 0 is shown to guide the eye. In those panels,
it is observed that for the three symmetry clases at small
b < 0.2, 〈T 〉 ≈ 0 since the system is in the insulator-like
regime. As b increases (0.2 � b < 4) the average transmission
also increases until it reaches the RMT prediction (b = 10)
where the system is in the metallic-like regime. For the three
symmetry classes labeled by β, Eq. (27) gives an accurate
description even though deviations appear for the β = 4 case
when M � 4. In the bottom panels the conjecture (32) for 〈T 〉,
normalized to its RMT prediction (27), as a function of δb
for β = 1 [Fig. 15(d)], 2 [Fig. 15(e)], and 4 [Fig. 15(f)], is
shown. The symbols are obtained from numerical simulations
while the dashed blue and dashed red lines, at 〈T 〉 = 1 and
0 respectively, are shown to guide the eye. In this case, the
conjecture correctly describes the numerical data as can be
seen by the shape described by the symbols and more clearly
in the small error bars shown in the insets, which are not even
visible since they are smaller than the symbols.

In Fig. 16, the results for the variance of T as a function of
M for the PBRM model at criticality are reported for several
values of b and for the symmetries β = 1, 2, and 4, in the first,
second, and third columns, respectively. In the top panels,
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FIG. 15. Average transmission for the PBRM model at critical-
ity with symmetry β = 1, 2, and 4, in the first, second, and third
columns, respectively. Top panels: 〈T 〉 as a function of M for several
values of the bandwidth b. The symbols correspond to numerical
simulations, the dashed blue lines are the RMT predictions (27),
and the red line at 〈T 〉 = 0 is plotted to guide the eye. Bottom
panels: Conjecture (32) for 〈T 〉, the symbols correspond to numerical
simulations. Insets: Fitting parameter from (32) for each M, the error
bars are the rms of the residuals and are smaller than the symbol size.

the symbols are the numerical data, the dashed blue lines are
the corresponding RMT prediction (28), and the red line at
var(T ) = 0 is shown to guide the eye. It can be observed that
for M � 2 and certain interval of b, the fluctuations are greater
than the RMT predictions. That behavior is more notorious for
the β = 2 and 4 cases in the interval 0.4 � b � 4. However,

FIG. 16. Variance of transmission for the PBRM model at crit-
icality in the presence of the symmetry β = 1 (first column), 2
(second column), and 4 (third column). Top panels: var(T ) as a
function of M for several values of the bandwidth b, the symbols
are the numerical results, dashed blue lines are the RMT predictions
(28), and the red line at var(T ) = 0 is shown to guide the eye. Bottom
panels: Conjecture (32) for var(T ), normalized to its corresponding
RMT prediction. The symbols correspond to numerical simulations
while the dashed blue line is the expression (32). Insets: Fitting
parameter from (32) for each M. The error bars are the rms of the
residuals.

FIG. 17. Shot noise power P for the PBRM model at criticality
with symmetry β = 1 (first column), 2 (second column), and 4 (third
column). Top panels: P as a function of M for several values of
the bandwidth b, the symbols correspond to numerical results, the
dashed blue lines are the RMT predictions (29), and the red line at
P = 0 is shown to guide the eye. Bottom panels: Conjecture (32) for
P, the symbols are obtained by numerical simulation. Insets: Fitting
parameter from (32) for each M, the error bars are the rms of the
residuals.

in the metallic regime (b = 10), a good agreement with the
RMT predictions is obtained.

The var(T ) normalized to its corresponding RMT predic-
tion as a function of δb is plotted in Figs. 16(d)–16(f), for
β = 1, 2, and 4, respectively. For 2 < δb < 40 and M � 2
large deviations between the conjecture (32) (dashed blue
line) and the numerical data (symbols) are observed, even
though these deviations are smaller for the β = 1 case. This
can also be appreciated in the insets where the error bars are
relatively large.

Finally, the shot noise power P as a function of M and for
several values of b is reported in the top panels of Fig. 17. A
transition from an insulator-like (b = 0.01) where P = 0 (red
horizontal line) to a metallic-like (b = 10) regime (symbols)
is clearly observed. In the metallic-like regime, the numerical
results (symbols) are in agreement with the RMT predictions
(29) (dashed blue lines). In the bottom panels of the same
figure, the conjecture (32) for P as a function of δb and
several values of M is shown. A good agreement between the
numerical data and expression (32) is obtained for the three
symmetry classes β, as revealed by the shape described by the
symbols and the small error bars obtained (see insets).

V. CONCLUSIONS

In this paper, an extensive numerical study of the scattering
and transport properties of the PBRM model at criticality
in the presence of the three symmetry classes, orthogonal,
unitary, and symplectic, has been presented. For the sake of
completeness, some known results for the orthogonal case
previously studied in the literature have also been reviewed,
while new ones for the unitary (in the periodic model) and
the symplectic cases, which had remained unexplored in the
context of the PBRM models, are reported. Surprisingly, the
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results presented confirm that the scattering and transport
properties of the symplectic PBRM model can be well de-
scribed by existing analytical and heuristic relations widely
used in studies of the PBRM model in the presence of the
β = 1 and 2 symmetries. Importantly, for the three symmetry
classes the multifractal properties of the isolated model were
obtained from scattering and transport properties, which is
very convenient from the experimental point of view since
direct access to the eigenfunctions is not required.

Additionally, an analytical result for the transmission dis-
tribution in the presence of the symplectic symmetry with
M = 4 open channels (25), which applies to the symplec-
tic PBRM model at criticality in the metallic regime, was
provided. Also, in this study, the results for β = 1 are in
accordance with those reported in, for example, Ref. [41].
Moreover, to our knowledge, our results for β = 2 have not
been reported before; only the nonperiodic version of the
PBRM model with broken time-reversal symmetry (β = 2)
has been studied in Ref. [43]. And the symplectic case, β = 4,
has not been reported in neither the periodic nor in the non-

periodic version of the PBRM model so far. Thus, with the
present study a more clear panorama about the scattering and
transport properties of the PBRM model at criticality in the
presence of the three classical Wigner-Dyson symmetries is
given.

ACKNOWLEDGMENTS

We thank I. Varga for his useful comments. A.M.M.-A.
acknowledges financial support from CONACyT. M.C.-N.
acknowledges financial support from CONACyT (Grant
“Ciencia de Frontera 2019,” No. 10872) and the facilities
provided by the “Centro de Análisis de Datos y Supercómputo
(CADS)” from the University of Guadalajara through of the
Leo-Atrox Supercomputer. J.A.M.-B. acknowledges support
from CONACyT (Grant No. 286633), CONACyT-Fronteras
(Grant No. 425854), VIEP-BUAP (Grant No. 100405811-
VIEP2022), and Laboratorio Nacional de Supercómputo del
Sureste de México (Grant No. 202201007C), Mexico.

[1] P. A. Lee and T. V. Ramakrishnan, Disordered electronic sys-
tems, Rev. Mod. Phys. 57, 287 (1985).

[2] C. W. J. Beenakker, Random-matrix theory of quantum trans-
port, Rev. Mod. Phys. 69, 731 (1997).

[3] P. A. Mello and N. Kumar, Quantum Transport in Mesoscopic
Systems: Complexity and Statistical Fluctuations (Oxford Uni-
verstity Press, New York, 2005).

[4] M. Janssen, Multifractal analysis of broadly-distributed observ-
ables at criticality, Int. J. Mod. Phys. B 08, 943 (1994).

[5] M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transi-
tions, Rev. Mod. Phys. 70, 1039 (1998).

[6] F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod.
Phys. 80, 1355 (2008).

[7] A. Rodriguez, L. J. Vasquez, K. Slevin, and R. A. Römer,
Critical Parameters from a Generalized Multifractal Analysis at
the Anderson Transition, Phys. Rev. Lett. 105, 046403 (2010).

[8] P. P. Edwards and C. N. R. Rao, The Metal-Nonmetal Transition
Revisited, 2nd ed. (CRC Press, London, 2017).

[9] M. Janssen, Statistics and scaling in disordered mesoscopic
electron systems, Phys. Rep. 295, 1 (1998).

[10] B. Huckestein, Scaling theory of the integer quantum hall effect,
Rev. Mod. Phys. 67, 357 (1995).

[11] A. D. Mirlin, Statistics of energy levels and eigenfunctions in
disordered systems, Phys. Rep. 326, 259 (2000).

[12] Y. V. Fyodorov and A. D. Mirlin, Statistical properties of eigen-
functions of random quasi 1d one-particle hamiltonians, Int. J.
Mod. Phys. B 08, 3795 (1994).

[13] Y. V. Fyodorov and A. D. Mirlin, Mesoscopic fluctuations
of eigenfunctions and level-velocity distribution in disordered
metals, Phys. Rev. B 51, 13403 (1995).

[14] V. I. Fal’ko and K. B. Efetov, Statistics of prelocalized states in
disordered conductors, Phys. Rev. B 52, 17413 (1995).

[15] F. Wegner, Inverse participation ratio in 2 + ε dimensions,
Z. Phys. B 36, 209 (1980).

[16] M. Schreiber and H. Grussbach, Multifractal Wave Functions at
the Anderson Transition, Phys. Rev. Lett. 67, 607 (1991).

[17] A. Mildenberger, F. Evers, and A. D. Mirlin, Dimensionality
dependence of the wave-function statistics at the Anderson tran-
sition, Phys. Rev. B 66, 033109 (2002).

[18] A. Bäcker, M. Haque, and I. M. Khaymovich, Multifractal
dimensions for random matrices, chaotic quantum maps, and
many-body systems, Phys. Rev. E 100, 032117 (2019).

[19] E. G. Carnio, N. D. M. Hine, and R. A. Römer, Multifractality
of ab initio wave functions in doped semiconductors, Phys. E
111, 141 (2019).

[20] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller,
Random-matrix theories in quantum physics: Common con-
cepts, Phys. Rep. 299, 189 (1998).

[21] M. L. Mehta, Random Matrices and the Statistical Theory of
Energy Levels (Academic Press, New York, 2004).

[22] F. J. Dyson, Statistical theory of the energy levels of complex
systems. I, J. Math. Phys. 3, 140 (1962).

[23] F. J. Dyson, Statistical theory of the energy levels of complex
systems. II, J. Math. Phys. 3, 157 (1962).

[24] A. D. Mirlin, Y. V. Fyodorov, F. M. Dittes, J. Quezada, and T. H.
Seligman, Transition from localized to extended eigenstates in
the ensemble of power-law random banded matrices, Phys. Rev.
E 54, 3221 (1996).

[25] V. E. Kravtsov, Critical spectral statistics as the luttinger liquid
of energy levels at a finite temperature, Ann. Phys. 8, 621
(1999).

[26] I. Varga and D. Braun, Critical statistics in a power-law random-
banded matrix ensemble, Phys. Rev. B 61, R11859 (2000).

[27] J. A. Méndez-Bermúdez, A. Alcazar-López, and I. Varga,
Multifractal dimensions for critical random matrix ensembles,
Europhys. Lett. 98, 37006 (2012).

[28] E. Cuevas, M. Ortuño, V. Gasparian, and A. Pérez-Garrido,
Fluctuations of the Correlation Dimension at Metal-Insulator
Transitions, Phys. Rev. Lett. 88, 016401 (2001).

[29] V. E. Kravtsov and K. A. Muttalib, New Class of Random
Matrix Ensembles with Multifractal Eigenvectors, Phys. Rev.
Lett. 79, 1913 (1997).

024139-12

https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1142/S021797929400049X
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/PhysRevLett.105.046403
https://doi.org/10.1016/S0370-1573(97)00050-1
https://doi.org/10.1103/RevModPhys.67.357
https://doi.org/10.1016/S0370-1573(99)00091-5
https://doi.org/10.1142/S0217979294001640
https://doi.org/10.1103/PhysRevB.51.13403
https://doi.org/10.1103/PhysRevB.52.17413
https://doi.org/10.1007/BF01325284
https://doi.org/10.1103/PhysRevLett.67.607
https://doi.org/10.1103/PhysRevB.66.033109
https://doi.org/10.1103/PhysRevE.100.032117
https://doi.org/10.1016/j.physe.2019.02.020
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1063/1.1703773
https://doi.org/10.1063/1.1703774
https://doi.org/10.1103/PhysRevE.54.3221
https://doi.org/10.1002/(SICI)1521-3889(199911)8:7/9<621::AID-ANDP621>3.0.CO;2-A
https://doi.org/10.1103/PhysRevB.61.R11859
https://doi.org/10.1209/0295-5075/98/37006
https://doi.org/10.1103/PhysRevLett.88.016401
https://doi.org/10.1103/PhysRevLett.79.1913


SCATTERING AND TRANSPORT PROPERTIES OF THE … PHYSICAL REVIEW E 107, 024139 (2023)

[30] V. E. Kravtsov and A. M. Tsvelik, Energy level dynamics in
systems with weakly multifractal eigenstates: Equivalence to
one-dimensional correlated fermions at low temperatures, Phys.
Rev. B 62, 9888 (2000).

[31] I. Varga, Fluctuation of correlation dimension and inverse par-
ticipation number at the Anderson transition, Phys. Rev. B 66,
094201 (2002).

[32] J. A. Méndez-Bermúdez, A. Alcazar-López, and I. Varga, On
the generalized dimensions of multifractal eigenstates, J. Stat.
Mech. (2014) P11012.

[33] A. D. Mirlin and F. Evers, Multifractality and critical fluc-
tuations at the Anderson transition, Phys. Rev. B 62, 7920
(2000).

[34] F. Evers and A. D. Mirlin, Fluctuations of the Inverse Participa-
tion Ratio at the Anderson Transition, Phys. Rev. Lett. 84, 3690
(2000).

[35] W.-J. Rao, Power-law random banded matrix ensemble as the
effective model for many-body localization transition, Eur.
Phys. J. Plus 137, 398 (2022).

[36] V. E. Kravtsov, O. M. Yevtushenko, and E. Cuevas, Level com-
pressibility in a critical random matrix ensemble: The second
virial coefficient (corrigendum), J. Phys. A: Math. Theor. 44,
189501 (2011).

[37] M. Carrera-Núñez, A. M. Martínez-Argüello, and J. A.
Méndez-Bermúdez, Multifractal dimensions and statistical
properties of critical ensembles characterized by the three clas-
sical Wigner–Dyson symmetry classes, Physica A 573, 125965
(2021).

[38] J. A. Méndez-Bermúdez, V. A. Gopar, and I. Varga, Con-
ductance distribution at criticality: One-dimensional Anderson
model with random long-range hopping, Ann. Phys. (Berlin)
521, 887 (2009).

[39] J. A. Méndez-Bermúdez and T. Kottos, Probing the eigen-
function fractality using Wigner delay times, Phys. Rev. B 72,
064108 (2005).

[40] J. A. Méndez-Bermúdez and I. Varga, Scattering at the Ander-
son transition: Power-law banded random matrix model, Phys.
Rev. B 74, 125114 (2006).

[41] J. A. Méndez-Bermúdez, V. A. Gopar, and I. Varga, Scattering
and transport statistics at the metal-insulator transition: A nu-
merical study of the power-law banded random-matrix model,
Phys. Rev. B 82, 125106 (2010).

[42] T. Kottos and M. Weiss, Statistics of Resonances and Delay
Times: A Criterion for Metal-Insulator Transitions, Phys. Rev.
Lett. 89, 056401 (2002).

[43] A. Alcazar-López, J. A. Méndez-Bermúdez, and I. Varga,
Broken time-reversal symmetry scattering at the Anderson tran-
sition, Ann. Phys. (Berlin) 521, 896 (2009).

[44] C. Mahaux and H. A Weidenmüller, Shell Model Approach in
Nuclear Reactions (North-Holland, Amsterdam, 1969).

[45] J. J. M. Verbaarschot, H. A. Weidenmüller, and M. R.
Zirnbauer, Grassmann integration in stochastic quantum
physics: The case of compound-nucleus scattering, Phys. Rep.
129, 367 (1985).

[46] I. Rotter, A continuum shell model for the open quan-
tum mechanical nuclear system, Rep. Prog. Phys. 54, 635
(1991).

[47] A. Ossipov and Y. V. Fyodorov, Statistics of delay times in
mesoscopic systems as a manifestation of the eigenfunctions
fluctuations, Phys. Rev. B 71, 125133 (2005).

[48] F. Steinbach, A. Ossipov, T. Kottos, and T. Geisel, Statistics of
Resonances and of Delay Times in Quasiperiodic Schrödinger
Equations, Phys. Rev. Lett. 85, 4426 (2000).

[49] V. A. Gopar, P. A. Mello, and M. Büttiker, Mesoscopic Ca-
pacitors: A Statistical Analysis, Phys. Rev. Lett. 77, 3005
(1996).

[50] Y. V. Fyodorov and H.-J. Sommers, Statistics of resonance
poles, phase shifts and time delays in quantum chaotic scat-
tering: Random matrix approach for systems with broken
time-reversal invariance, J. Math. Phys. 38, 1918 (1997).

[51] Y. V. Fyodorov, D. V. Savin, and H.-J. Sommers, Paramet-
ric correlations of phase shifts and statistics of time delays
in quantum chaotic scattering: Crossover between unitary and
orthogonal symmetries, Phys. Rev. E 55, R4857(R) (1997).

[52] A. M. Martínez-Argüello, A. A. Fernández-Marín, and M.
Martínez-Mares, Delay times in chaotic quantum systems, Eur.
Phys. J. Spec. Top. 226, 519 (2017).

[53] I. Kukulin, M. Krasnopolsky, and J. Horacek, Theory of Reso-
nances: Principles and Applications (Kluwer, Dordrecht, 1989).

[54] E. Doron, U. Smilansky, and A. Frenkel, Experimental Demon-
stration of Chaotic Scattering of Microwaves, Phys. Rev. Lett.
65, 3072 (1990).

[55] T. Kottos, Statistics of resonances and delay times in random
media: Beyond random matrix theory, J. Phys. A: Math. Gen.
38, 10761 (2005).

[56] Y. V. Fyodorov and D. V. Savin, Statistics of Resonance Width
Shifts as a Signature of Eigenfunction Nonorthogonality, Phys.
Rev. Lett. 108, 184101 (2012).

[57] U. Kuhl, R. Höhmann, J. Main, and H.-J. Stöckmann, Res-
onance Widths in Open Microwave Cavities Studied by
Harmonic Inversion, Phys. Rev. Lett. 100, 254101 (2008).

[58] Y. V. Fyodorov and D. V. Savin, Resonance width distribu-
tion in RMT: Weak-coupling regime beyond Porter-Thomas,
Europhys. Lett. 110, 40006 (2015).

[59] M. Novaes, Time delay statistics for finite number of channels
in all symmetry classes, Europhys. Lett. 139, 21001 (2022).

[60] L. Chen, S. M. Anlage, and Y. V. Fyodorov, Generalization of
Wigner time delay to subunitary scattering systems, Phys. Rev.
E 103, L050203 (2021).

[61] L. Chen, S. M. Anlage, and Y. V. Fyodorov, Statistics of Com-
plex Wigner Time Delays as a Counter of S-Matrix Poles:
Theory and Experiment, Phys. Rev. Lett. 127, 204101 (2021).

[62] Y. V. Fyodorov, M. A. Skvortsov, and K. S. Tikhonov, Res-
onances in a single-leadreflection from a disordered medium:
σ -model approach, arXiv:2211.03376 (2022).

[63] K. Hashimoto, C. Sohrmann, J. Wiebe, T. Inaoka, F. Meier,
Y. Hirayama, R. A. Römer, R. Wiesendanger, and M.
Morgenstern, Quantum Hall Transition in Real Space: From
Localized to Extended States, Phys. Rev. Lett. 101, 256802
(2008).

[64] S. Faez, A. Strybulevych, J. H. Page, A. Lagendijk, and B. A. v.
Tiggelen, Observation of Multifractality in Anderson Localiza-
tion of Ultrasound, Phys. Rev. Lett. 103, 155703 (2009).

[65] A. Richardella, P. Roushan, S. Mack, B. Zhou, D. A. Huse,
D. D. Awschalom, and A. Yazdani, Visualizing critical cor-
relations near the metal-insulator transition in Ga1−xMnxAs,
Science 327, 665 (2010).

[66] A. D. Mirlin, Y. V. Fyodorov, A. Mildenberger, and F. Evers,
Exact Relations between Multifractal Exponents at the Ander-
son Transition, Phys. Rev. Lett. 97, 046803 (2006).

024139-13

https://doi.org/10.1103/PhysRevB.62.9888
https://doi.org/10.1103/PhysRevB.66.094201
https://doi.org/10.1088/1742-5468/2014/11/P11012
https://doi.org/10.1103/PhysRevB.62.7920
https://doi.org/10.1103/PhysRevLett.84.3690
https://doi.org/10.1140/epjp/s13360-022-02621-x
https://doi.org/10.1088/1751-8113/44/18/189501
https://doi.org/10.1016/j.physa.2021.125965
https://doi.org/10.1002/andp.20095211215
https://doi.org/10.1103/PhysRevB.72.064108
https://doi.org/10.1103/PhysRevB.74.125114
https://doi.org/10.1103/PhysRevB.82.125106
https://doi.org/10.1103/PhysRevLett.89.056401
https://doi.org/10.1002/andp.20095211217
https://doi.org/10.1016/0370-1573(85)90070-5
https://doi.org/10.1088/0034-4885/54/4/003
https://doi.org/10.1103/PhysRevB.71.125133
https://doi.org/10.1103/PhysRevLett.85.4426
https://doi.org/10.1103/PhysRevLett.77.3005
https://doi.org/10.1063/1.531919
https://doi.org/10.1103/PhysRevE.55.R4857
https://doi.org/10.1140/epjst/e2016-60130-5
https://doi.org/10.1103/PhysRevLett.65.3072
https://doi.org/10.1088/0305-4470/38/49/018
https://doi.org/10.1103/PhysRevLett.108.184101
https://doi.org/10.1103/PhysRevLett.100.254101
https://doi.org/10.1209/0295-5075/110/40006
https://doi.org/10.1209/0295-5075/ac806f
https://doi.org/10.1103/PhysRevE.103.L050203
https://doi.org/10.1103/PhysRevLett.127.204101
http://arxiv.org/abs/arXiv:2211.03376
https://doi.org/10.1103/PhysRevLett.101.256802
https://doi.org/10.1103/PhysRevLett.103.155703
https://doi.org/10.1126/science.1183640
https://doi.org/10.1103/PhysRevLett.97.046803


A. M. MARTÍNEZ-ARGÜELLO et al. PHYSICAL REVIEW E 107, 024139 (2023)

[67] J. T. Chalker, V. E. Kravtsov, and I. V. Lerner, Spectral rigidity
and eigenfunction correlations at the Anderson transition, JETP
Lett. 64, 386 (1996).

[68] R. Klesse and M. Metzler, Spectral Compressibility at the
Metal-Insulator Transition of the Quantum Hall Effect, Phys.
Rev. Lett. 79, 721 (1997).

[69] H. U. Baranger and P. A. Mello, Mesoscopic Transport through
Chaotic Cavities: A Random S-Matrix Theory Approach, Phys.
Rev. Lett. 73, 142 (1994).

[70] D. V. Savin and H.-J. Sommers, Shot noise in chaotic cavities
with an arbitrary number of open channels, Phys. Rev. B 73,
081307(R) (2006).

024139-14

https://doi.org/10.1134/1.567208
https://doi.org/10.1103/PhysRevLett.79.721
https://doi.org/10.1103/PhysRevLett.73.142
https://doi.org/10.1103/PhysRevB.73.081307

