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Sensitivity of nonequilibrium relaxation to interaction potentials:
Timescales of response from Boltzmann’s H function
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We investigate, by simulations and analytic theory, the sensitivity of nonequilibrium relaxation to interaction
potential and dimensionality by using Boltzmann’s H function H (t ). We evaluate H (t ) for three different
intermolecular potentials in all three dimensions and find that the well-known H theorem is valid and that the H
function exhibits rather strong sensitivity to all these factors. The relaxation of H (t ) is long in one dimension,
but short in three dimensions, longer for the Lennard-Jones potential than for the hard spheres. The origin of the
ultraslow approach to the equilibrium of H (t ) in one-dimensional systems is discussed. Importantly, we obtain
a closed-form analytic expression for H (t ) using the solution of the Fokker-Planck equation for velocity space
probability distribution and compare its predictions with the simulation results. Interestingly, H (t ) is found to
exhibit a linear response when vastly different initial nonequilibrium conditions are employed. The microscopic
origin of this linear response is discussed. The oft-quoted relation of H function with Clausius’s entropy theorem
is discussed.
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I. INTRODUCTION

One hundred fifty years ago, in 1872, Boltzmann intro-
duced his H function and H theorem, which heralded the
birth of statistical mechanics [1–3]. It attempted to address
many questions and was successful in some of them. Since
Newton’s equations are time reversible, the evolution of an
initial nonequilibrium state irreversibly to a unique equilib-
rium state has always been a subject of intense discussions
that involve, among other theories, Poincaré’s recurrence and
Boltzmann’s H theorem. The former is resolved by noting the
extraordinarily long time for the recurrence in a macroscopic
system; the latter continues to be the subject of interest and
lively speculation. Boltzmann’s H theorem has retained the
status of one of the best well-known theorems of statistical
mechanics, even though it is fairly restrictive and, in principle,
strictly applicable only to a dilute gas [1–3]. However, the H
function is general, although it has not been evaluated in many
applications.

In its original form, Boltzmann’s theorem considers the
nonequilibrium function H (t ) defined by the following inte-
gration [1–5],

H (t ) = −
∫

dp f (p, t ) ln f (p, t ), (1)

where p is a D-dimensional momentum vector and f (p, t ) is
the time-dependent momentum (p) distribution function.

Note the simplicity of Eq. (1): it does not contain inte-
gration over position coordinates. Thus, it is not an average
over the full phase space. If we need to make any connection
with thermodynamics like entropy, then this point becomes
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useful, as we discuss later. Thus, the nonequilibrium state is
nonequilibrium with respect to momentum only. In essence,
the H function assumes either the system is homogeneous,
or the position relaxation is much slower than momentum
relaxation.

Boltzmann’s H theorem states that if the distribution
f (p, t ) satisfies Boltzmann’s transport equation, then [1–8]

dH

dt
� 0. (2)

The equality sign is satisfied only at equilibrium when the
distribution attains the Maxwell form. That is, when f (p, t )
is not an equilibrium distribution, the function H will contin-
uously increase until the equilibrium distribution is reached.
Thus, the time dependence of H (t ) can be a quantitative
measure of the rate of approach of f (p,t) to equilibrium.

Differentiation of the H function is given by

dH (t )

dt
= −

∫
dp

∂ f (p, t )

∂t
[1 + ln f (p, t )]. (3)

Since, at equilibrium, ∂ f (p)/∂t = 0 for all p this implies
that dH

dt = 0.
In the following, we briefly outline a proof of the H

theorem. We start with the Boltzmann kinetic (or transport)
equation that, in its final form, is written as

[
∂

∂t
+ p

m
· ∇r + F · ∇p

]
f (1)(r, p, t ) =

(
∂ f (1)

∂t

)
coll

, (4)

where F is the external force acting on a particle. It depends
on position only. p is the momentum of particle with mass
m; f (1) ≡ f (1)(r, p, t ) is the one-particle distribution function;
∇r and ∇p are the gradient operators with respect to r and p,
respectively.
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The collisional term is written as(
∂ f (1)

∂t

)
coll

=
∫∫∫

dp2dp′
1dp′

2δ(P f − Pi )δ(E f − Ei )

× |Tf i|2
(

f (2)
1′2′ − f (2)

12

)
. (5)

Here, Pi and Ei denote the total momentum and energy
before a collision, respectively; P f and E f represent the total
momentum and energy after the collision. One can easily
identify the energy and momentum constraints. The T matrix
gives the transition probability. f (2) ≡ f (2)(r, p1, p2, t ) is the
two-body distribution function. At this stage, we employ the
assumption of molecular chaos to express the two-particle
distribution function f (2) in terms of the product of two
one-particle distribution functions, i.e., f (2)(r, p1, p2, t ) ≈
f (1)(r, p1, t ) f (1)(r, p2, t ). Here, p1 and p2 are the momenta
of any two particles before a collision, whereas p′

1 and p′
2 are

the momenta after the collision.
In the absence of any external force, it is consistent to as-

sume that the one-particle distribution function is independent
of r and thus can be denoted by f (p, t ). After certain algebraic
manipulations, we are led to the following condition for the
time derivative of the H function [4]:

dH

dt
= − 1

4

∫
dp2dp′

1dp′
2δ(P f − Pi )δ(E f − Ei )|Tf i|2

× (
f (1)
2′ f (1)

1′ − f (1)
2 f (1)

1

)[
ln

(
f (1)
2 f (1)

1

) − ln
(

f (1)
2′ f (1)

1′
)]

.

(6)

The integrand in Eq. (6) is never positive, so the H theorem
is satisfied. Thus, in the above derivation, the H theorem is
tied to the validity of the Boltzmann kinetic equation.

Despite the formidable character of Eq. (6), a calculation of
the H function itself is easy to implement, and its quantitative
evaluation can be carried out without any approximation. We
first need to obtain or define a nonequilibrium time-dependent
momentum distribution function. The simplicity lies in the
singlet character of the distribution. Note that the criticism
of molecular chaos assumption that is explicit in Eq. (6) is
not at all required in the definition of the H function given
in Eq. (1). Thus, while it is very difficult to evaluate Eq. (6),
Eq. (1) can be evaluated by computer simulations by creating
various nonequilibrium momentum distribution functions. As
the time-dependent nonequilibrium distribution approaches
the Maxwell-Boltzmann velocity distribution, the H function
also evolves simultaneously and provides a measure of the na-
ture and timescale of the relaxation. To date, we are aware of
only a few explicit evaluations of this function [4,9–12]. This
is because initial studies attempted to obtain H (t ) through
the solution of the Boltzmann kinetic equation, which is hard
[4]. There have also been several studies using a generalized
Boltzmann (GB) H function defined differently where the
following expression has been used [5,13,14]:

HGB(t ) = −
∫

dxP(x, t ) ln

[
P(x, t )

Peq(x)

]
. (7)

This generalized form of Boltzmann’s H function serves a
similar purpose as the original Boltzmann’s H function. Here,
Peq(x) is the equilibrium distribution of a given variable x. The
variable “x” has often been assumed to be a position variable

or a combination thereof. This is the form advocated in the
well-known monograph of Kubo et al. [5].

In this work, we shall be concerned with quantitative as-
pects of nonequilibrium velocity relaxation using the original
H function. We ask the following questions: (i) What are
the timescales of the growth of this function? We imagine
that this would be related to the friction or diffusion con-
stant of the gas, but the quantitative dependence is not clear.
(ii) One, fortunately, knows the exact solution of the
momentum-space Fokker-Planck equation which, even in
such a simple case, gives a nontrivial time dependence of
the single-particle momentum-space distribution function,
f (p, t ). We would like to check the reliability of this de-
scription. (iii) What is the range of validity of Boltzmann’s H
theorem for interacting systems? We ask this question because
Boltzmann’s entire treatment was for dilute gas, and the H
function does not contain any spatial variables. Furthermore,
Boltzmann’s proof used his kinetic equation, which we know
has limited validity. (iv) Does H (t ) satisfy linear response? (v)
How can we relate this to entropy in a rigorous way, given that
the original H function contains only velocity?

In order to understand, examine, and employ the H
theorem, it is essential to create a proper nonequilibrium
momentum distribution function in an isolated system. We
studied several such distribution functions and evaluated H (t )
for different three-, two-, and one-dimensional (3D, 2D, and
1D) systems, namely, (i) Lennard-Jones, (ii) soft sphere,
and (iii) hard sphere corresponding to initial nonequilibrium
velocity distributions. The simulation details have been de-
scribed in the next section.

II. SIMULATION DETAILS

We have carried out a series of nonequilibrium molecular
dynamic simulations of dilute gases in one, two, and three
dimensions in order to study the evolution of the H function.
Our model system consists of 10 000 particles in each case.
We have carried out these simulations in the microcanonical
ensemble (constants N , V , and E ) by applying the usual peri-
odic boundary conditions. We choose three different radially
symmetric potentials: (a) Lennard-Jones (LJ), (b) soft sphere
(SS), and (c) hard sphere (HS) to define the interaction be-
tween any two particles. The potential forms are given below:

for Lennard-Jones,

ULJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
, (8)

for soft-sphere,

USS(r) = ε

(
σ

r

)12

, (9)

and, for hard-sphere,

UHS(r) = ∞ if r < σ

= 0 if r > σ. (10)

We have taken the diameter and mass of the particles equal
to unity, i.e., σ = 1.0 and m = 1.0. For Lennard-Jones and
soft-sphere potentials, we keep the interaction strength ε=1.0.
The reduced density (ρ∗ = Nm

LD
σ D

m ) is taken as 0.10 for all the
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FIG. 1. Time evolution of H (t ) obtained via computer simulations for (a) 3D, (b) 2D, and (c) 1D systems of dilute gases (at reduced density
ρ∗ = 0.10, and average reduced temperature, T ∗ = 2.0) interacting with Lennard-Jones [the blue (upper) line], soft-sphere [the red (middle)
line], and hard-sphere [the green (lower) line] potentials. In all the cases, the H function increases monotonically and then attains equilibrium
at a longer time, which is the equilibrium value at the final temperature, shown by black dashed lines in the figures. Panels (d)–(f) depict
time evolution of the normalized H (t ) [for the results shown in (a)–(c), respectively] interacting with Lennard-Jones [the blue (lower) line],
soft-sphere [the red (middle) line], and hard-sphere [the green (upper) line] potentials. The corresponding dotted lines show the exponential
fitting of the normalized H (t ). Note the different timescales in each case.

systems, where N is the total number of particles, L is the
length of the simulation box, and superscript “D” represents
the dimensionality of the system.

The initial configurations (position) for Lennard-Jones and
soft-sphere systems were taken from equilibrium simulations
in the canonical (NVT) ensemble corresponding to T ∗ = 2.0,
whereas for the hard sphere system, initial configurations
(position) were taken from equilibrium simulation in the mi-
crocanonical (NVE) ensemble. Followed by that, the initial
nonequilibrium state is created by taking the amplitude of the
velocities of all the particles exactly the same; the magnitude
is in accordance with the equipartition theorem correspond-
ing to the reduced temperature T ∗ = kBT /ε = 2.0. For 3D
and 2D systems, it has been illustrated in the Supplemental
Material (Fig. S1) [15] while for the 1D system, it has been
shown in Fig. 2(a). This approach allows us to carry out the
simulation in the microcanonical (NVE) ensemble.

For Lennard-Jones and soft sphere systems, the equations
of motion were integrated using the velocity-Verlet algorithm
[16] with a time step �t∗ = 0.001τ . The scaled time has been
denoted as τ = σ

√
m/ε. For the hard-sphere system, we have

performed event-driven molecular dynamics (EDMD) simu-
lation, which is the standard way of performing hard-particle
simulation and extensively documented [17,18]. In this ap-
proach, only binary collisions (which is a valid assumption
for dilute gases) were employed. Postcollisional velocities
were calculated according to mass, diameter, and precolli-
sional velocity information of the colliding pair by satisfying
conservation equations of energy and momentum. However,

in order to calculate H (t ), we have obtained the distribution
of f (p,t) at a regular time interval, �t∗ = 0.0005τ .

Boltzmann’s H function, defined as H (t ) =
− ∫

dp f (p, t ) ln f (p, t ), is a relatively simple function;
however, its evolution for 3D systems is quite complicated as
it involves a three-dimensional integral.

In this work, the timescales have been converted from
reduced time (t∗) to real time (t) using the relation t∗ =
t
√

ε
mσ 2 , where the values of ε, m, and σ have been taken

corresponding to that of an argon atom, i.e., ε/kB = 119.8 K,
m = 0.039 94 kg/mol, and σ = 3.405×10−10 m.

III. RESULTS AND DISCUSSION

In Figs. 1(a)–1(c), we show the evolution of H (t ) for dif-
ferent systems of dilute gases (at reduced density, ρ∗ = 0.10
and average reduced temperature, T ∗ = 2.0, which is obtained
by a procedure mentioned above) where not only the inter-
action potential is varied from system to system but also the
dimensionality of the systems is changed. We see that in all
the cases, the H function sharply increases in a short time
and subsequently monotonically approaches the equilibrium
value (shown by a black dotted line) at a longer time, which is
the equilibrium value at the chosen temperature. Note that the
timescales have been converted from reduced unit to real unit
(in ps) using the argon parameters. In order to get the relax-
ation times corresponding to different system, H (t ) is fitted
with the function H (t ) = Heq + {[H (0) − Heq] exp(−t/τH )}.
In Figs. 1(d)–1(f), we show normalized H (t ), defined as

024138-3



KUMAR, ACHARYA, AND BAGCHI PHYSICAL REVIEW E 107, 024138 (2023)

FIG. 2. Evolution of the momentum distribution at different times when initially all particles have (a) the same amplitude of velocity, and
(b) random uniform distribution of velocity. (c) Time evolution of the H function for 1D Lennard-Jones systems with two different initial
distributions. For case I, it is shown by the blue (lower) line, whereas for case II, it is shown by the purple (upper) line. (d) Time evolution
of the normalized H function, showing the validity of linear-response theory. The corresponding dotted lines show the exponential fitting of
normalized H (t ). The final distribution in each case is Maxwellian and identical.

[H (t ) − Heq]/[H (0) − Heq] and its exponential fit. The relax-
ation times (τH ) for 3D systems are given in Table I while
those of 2D and 1D systems are provided in the Supplemental
Material [15].

It is evident from Fig. 1 that the nonequilibrium relaxation
function H (t ) is sensitive to both potential and dimensionality.
For 3D systems, the approach of H (t ) to the equilibrium value
is the fastest, while for 1D systems, it is the slowest. We
also find that in all cases, the relaxation times of the systems
interacting via Lennard-Jones potential are faster than those
interacting via hard-sphere potential.

The faster relaxation of H (t ) for the Lennard-Jones system
can be attributed to the longer-range nature of the intermolec-
ular potential between particles as compared to the other two
potentials employed in the present study. This allows inter-
action with a larger number of particles, giving rise to larger
fluctuations of the force on the tagged particles. This larger
fluctuation of the force gives rise to larger friction than that
for the hard-sphere and soft-sphere fluids.

TABLE I. The relaxation times obtained by fitting of the cal-
culated H (t ) for three-dimensional systems, with three different
interaction potentials.

Systems τH (ps)

Lennard-Jones 1.463 ± 0.052
Soft sphere 1.952 ± 0.034
Hard sphere 2.182 ± 0.043

On the other hand, the behavior of the soft sphere
remains similar to hard spheres (with small differences
discussed below). This can be partly understood using Barker-
Henderson-Weeks-Chandler-Andersen (BHWCA) theories of
liquids that allow us to map a soft sphere to a hard sphere
system [19–23]. At high temperatures (T ∗ = 2), the effective
radius predicted by BHWCA theories of the soft sphere is
quite similar to that of the hard sphere. However, this mapping
is not perfect when translated to dynamics because friction
can still be larger for the soft sphere than the hard sphere,
which we indeed find by inverting Einstein’s relation. Another
notable difference lies in the ultrashort time where friction
experienced in the soft-sphere fluid is less than that for the
hard-sphere fluid. This slow relaxation of H (t ) for hard-sphere
systems deserves further study.

While the validity of Boltzmann’s theorem as the arrow of
time was never in doubt at very-low-density gas, quantitative
estimates of timescales were not known. This in itself is an
interesting issue because as density decreases, collisions be-
come rare, and the rate of approach to equilibrium becomes
slow. But the nature and timescales at higher densities remain
unexamined. Further, the effect of different initial momentum
distributions on the evolution of H (t ) remains unaddressed. In
order to examine such issues, we have performed simulations
with two different initial nonequilibrium momentum distribu-
tions [as shown in Figs. 2(a) and 2(b)]. In Fig. 2(c), we show
the temporal evolution of H (t ) for 1D Lennard-Jones systems
with two different initial nonequilibrium conditions. While
it seems H (t ) shows distinct features in the two cases, the
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normalized H (t ) exhibits similar behavior [as shown in
Fig. 2(d)] with almost the same relaxation times (the relax-
ation times are given in the Supplemental Material [15]).
Besides that, we have checked the validity of the linear re-
sponse of H (t ) in 2D and 3D systems. Thus, it is fair to say
that H (t ) exhibits a linear response.

We regard the results presented in Fig. 2 as quite striking.
The initial nonequilibrium distributions are quite different.
The difference persists at intermediate times. Yet, the normal-
ized H (t ) behaves in a nearly identical fashion in the two
cases. We do not have a full answer for this behavior, but it
certainly arises from the form of H (t ). We can understand
partially from the fact that p ln p is a relatively weak function
of p. This result needs further analysis.

We now turn to an important point. The H function and
entropy have been associated with each other from the be-
ginning because both define a direction of time. Clausius’s
statement asserts that the entropy of an isolated system
can only increase with time. In fact, for a one-component
ideal gas, one can derive a simple relation between the two
[4,24–26]. For a 3D ideal gas at equilibrium, the velocity
distribution is Maxwellian, and one can easily evaluate the H
function at equilibrium to obtain

Heq = − ln

(
1

2πmkBT

)3/2

+ 3

2
. (11)

We can obtain the entropy per particle of an ideal gas from
the Sackur-Tetrode equation,

Sid = kB ln (2πmkBT )3/2 + kB ln V + 5
2 . (12)

Thus, we obtain the following relation,

Sid = kBHeq + constant, (13)

at constant volume V . There is an “ln V ” term absorbed in the
“constant” factor of Eq. (13).

As both the functions increase as an initial nonequilibrium
state evolves to essentially the same values in the equilibrium
state, it is natural to look for a relationship between H and
S, even as a function of time. However, there has been no
convincing proof that such a relation should indeed exist. The
only exact statement we can make is that both can serve as the
arrow of time. A strictly valid definition for time-dependent
entropy is not available. One can attempt to define evolving
entropy of a subsystem that is in contact with a bath that is
governed by faster dynamics. For example, we can change
the temperature of the system in a controlled manner, slowly,
such that one can define entropy in the intermediate states.
However, that remains problematic because H (t ), on the other
hand, is defined for an isolated system.

We first consider the case when the value of H (t ) is only
slightly different than the equilibrium value, i.e., when f (p,t)
is close to Maxwell distribution. Let us define δ f (p, t ) =
f (p, t ) − fM (p). The above analysis suggests that we can
attempt a stochastic approach. We now use the Fokker-Planck
equation in the momentum space for f (p,t), given by [5,27]

∂δ f (p, t )

∂t
= ζ

(
∂

∂p

[
p
m

+ 〈E〉 ∂

∂p

])
δ f (p, t ), (14)

where 〈E〉 is the average energy and ∂/∂p is the D-
dimensional gradient in momentum space.

In three dimensions, the above equation has the solution

f (p, t ) = 1

{2πmkBT [1 − �2(t )]}3/2 exp (−[p − p0�(t )]2/

{2mkBT [1 − �2(t )]}), (15)

where �(t ) = e−ζ t . Fortunately, we can obtain a closed-form
analytic expression for H (t ) (in three dimensions) using the
Fokker-Planck equation for the momentum-space probability
distribution as follows (a detailed description is given in the
Supplemental Material [15]):

H (t ) = −3

2
ln

(
1

2πmkBT [1 − exp(−2ζ t )]

)
+ 3

2
. (16)

The above expression can be generalized to the D-
dimensional case (as discussed in the Supplemental Material
[15]). We can see that this form already predicts the rapid rise
of the H function followed by the attainment of the equilib-
rium. Thus, the Fokker-Planck equation can capture the time
dependence of H (t ) through the distribution function f(p,t).
The solution needs the input of the friction, which we obtained
via the integration of the velocity autocorrelation function
(VACF) [at equilibrium]. The normalized velocity autocorre-
lation functions for 3D and 2D Lennard-Jones systems are
shown in the Supplemental Material [15]. We calculated the
value of friction (ζ ) from the self-diffusion coefficient (Ds)
using Einstein’s relation Ds = kBT /ζ and put it into Eq. (16)
to obtain H (t ).

In Fig. 3, we compare the results obtained via simula-
tion and Eq. (16) for 3D and 2D systems. In the case of
3D systems, we find that the Fokker-Planck equation pro-
vides a reasonable description (except at very short time)
for Lennard-Jones and soft-sphere systems but fails for hard-
sphere systems. The Fokker-Planck equation, unfortunately,
is Markovian, so it fails to reproduce the correct short-time
description, and as t → 0, H (t ) predicted by Eq. (16) di-
verges. We further observe that the Fokker-Planck equation
based description of H (t ) fails for 2D systems and also for 1D
systems. This failure needs further study.

Earlier studies in 1D have pointed out the anomalous na-
ture of particle displacements in one dimension [28–32]. In
Fig. 4(a), we plot the trajectories of six adjacent particles for
the 1D Lennard-Jones system at T ∗ = 2.0 and ρ∗ = 0.10. We
find that the adjacent particles in 1D show highly correlated
motion. This highly correlated motion of adjacent particles in
one dimension has already been observed experimentally by
Leiderer and co-workers [33]. The correlated motion of the
adjacent particles gives rise to transient longitudinal flow. In
Fig. 4(b), we plot the normalized velocity normalized veloc-
ity autocorrelation function (VACF) of a 1D Lennard-Jones
system at T ∗ = 2.0 and ρ∗ = 0.10, 0.20, 0.40, 0.60, 0.80, and
0.95, respectively. This shows the effect of density on the ve-
locity autocorrelation function in 1D. For low to intermediate
densities, a slow long-time decay of velocity autocorrelation
function has been observed. At high densities, a negative
region in velocity autocorrelation arises due to backscattering.

The breakdown of the Fokker-Planck equation in one- and
two-dimensional systems can be quite instructive. We attribute
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FIG. 3. The comparison of H (t ) obtained via computer simulation with the analytical solution from the Fokker-Planck equation for 3D
and 2D systems. We employ Eq. (16) to obtain the predicted variation of H (t ), with ζ obtained from simulation.

this failure to the existence of correlated motions leading to
pronounced memory effects even at low densities, particularly
in one-dimensional systems. Thus, the Markovian Fokker-
Planck equation needs to be replaced by the non-Markovian
equation [34,35]. The Markovian description used here gives
rise to a too large value of friction at short times.

Let us again turn to the relationship of H (t ) with entropy.
By Boltzmann’s formula, entropy is given by the logarithm
of the total number of states. We can evaluate the entropy if
we assume that the distribution changes infinitesimally slowly,
say, at ζ ∼ 0. In that limit, we can calculate the total number
of states and hence the entropy. That is, we need to calculate
the number of configurations � corresponding to a given
slowly evolving momentum-space distribution function.

It is interesting to inquire about the range of validity of
the H theorem. From its original proof by Boltzmann using
his transport equation, it is not clear that the theorem remains
valid at higher densities. We verified the validity of the H the-
orem at ρ∗ = 0.20 and 0.30 (in Sec. S3 of the Supplemental
Material [15]). However, note that the relation between the H
function and entropy may not hold at high densities because
the total entropy is increasingly dominated by intermolecular
correlations as the density is increased progressively.

The sensitivity of H (t ) to the interaction potential, of
course, reflects the sensitivity of the relaxation of f(p,t). The
difference between Lennard-Jones and hard-sphere systems
has been examined earlier with the Enskog approximation
[36]. This is an interesting aspect we believe deserves further

FIG. 4. (a) Trajectories of six adjacent particles obtained from molecular dynamics simulation of 1D Lennard-Jones system at T ∗ = 2.0
and ρ∗ = 0.10. It is to be noted that the adjacent particles show highly correlated motion. (b) The normalized velocity autocorrelation function
(VACF) of a 1D Lennard-Jones system at T ∗ = 2.0. The lines from top to bottom represent the system with ρ∗ = 0.10, 0.20, 0.40, 0.60, 0.80,
and 0.95, respectively. Note the slow decay of the VACF at low densities.
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examination. It represents at least partly the dependence on
the range of potential. This agrees with the much slower relax-
ation in one dimension where the number of nearest neighbors
is limited.

IV. CONCLUDING REMARKS

As remarked earlier, there appears to be surprisingly less
study of H (t ). The present study provides a detailed un-
derstanding of Boltzmann’s H theorem, which is one of
the most celebrated theorems of science and paved the
way for developing nonequilibrium statistical mechanics.
We find in every case Boltzmann’s H theorem is verified.
We also find dimension- and interaction-potentialdependent
timescales which for a density of ρ∗ = 0.10 ranges from a
few picoseconds in three dimensions to several hundred pi-
coseconds in one dimension. We find that the evolution of
the H function in the case of Lennard-Jones potential is quite
different from that of hard-sphere potential. We also remark
here that the approach of equilibrium in 1D is substantially
slower than that in 2D and 3D. The sensitivity of H (t ) on
the potential and dimensionality of the system should help to
understand many basic aspects of nonequilibrium phenomena.
It would be fascinating to employ it in many areas, such as

plasma physics and active matter [12,37,38]. Finally, the fail-
ure of the Fokker-Plack description points to the importance
of non-Markovian or memory effects due to correlations. It is
thus no surprise that the time dependence of H (t ) is influenced
by the interaction potential.

The function H (t ) continues to evoke interest endlessly.
We have already mentioned Kubo’s generalization. Perhaps
the most important aspect is that it can provide crucial infor-
mation about the relaxation of a nonequilibrium system.

We have verified numerically that the basic nature of
Boltzmann’s H function H (t ) remains unaltered at higher
densities, as discussed in the Supplemental Material [15]. At
such high density, Kubo’s form of the H function seems more
appropriate and provides a better description of relaxation [5],
although its relationship with entropy remains unclear.
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