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How does the percolation transition behave in the absence of quenched randomness? To address this question,
we study two nonrandom self-dual quasiperiodic models of square-lattice bond percolation. In both models, the
critical point has emergent discrete scale invariance, but none of the additional emergent conformal symmetry of
critical random percolation. From the discrete sequences of critical clusters, we find fractal dimensions of Df =
1.911943(1) and Df = 1.707234(40) for the two models, significantly different from Df = 91/48 = 1.89583...

of random percolation. The critical exponents ν, determined through a numerical study of cluster sizes and
wrapping probabilities on a torus, are also well below the ν = 4/3 of random percolation. While these new
models do not appear to belong to a universality class, they demonstrate how the removal of randomness can
fundamentally change the critical behavior.
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I. INTRODUCTION

Random percolation is a foundational topic in statistical
physics with many practical applications across engineering
and science, as well as the subject of a series of exact results.
These include the mapping between percolation and the Q-
state Potts model with Q → 1 [1,2], conformal invariance at
the critical point [3–6], and a proven percolation threshold
of p = 1/2 for square lattice bond percolation [7]. Random
percolation models are constructed by occupying bonds or
sites of a lattice according to a probability distribution. One
then asks if an infinite connected cluster is present in the limit
of an infinite lattice.

In this paper, we study models in which the pattern of
which bonds are occupied is deterministic and quasiperiodic
rather than random, finding critical behavior quite differ-
ent from random percolation. One application of these new
classes of quasiperiodic models, and indeed our motivation
for studying this question in the first place, is to measurement-
induced phase transitions in quantum circuits [8–12]. In the
minimal cut picture, a random circuit maps onto a percolation
instance, with vertices corresponding to unitary gates and
edges corresponding to qubits with some probability p of
being measured. This mapping describes the transition in the
zeroth Renyi entropy for Haar-random circuits [9], whereas
higher order Renyi entropies exhibit a transition at a much
lower measurement rate that only belongs to the percolation
universality class in the limit of infinite onsite Hilbert-space
dimension [13,14]. These circuits can be designed without
any randomness in the space-time pattern of gates and mea-
surements. While the Born probabilities of the measurement
outcomes will in general produce randomness, in Clifford
circuits these random outcomes only induce signs on the sta-
bilizer operators which do not affect the local order parameter
that probes the transition [10,15]. The measurement-induced

phase transition in a particular nonrandom circuit model—
a Floquet Clifford circuit with quasiperiodic measurement
locations—is studied in Ref. [10], but the quasiperiodic con-
struction differs substantially from the models introduced in
this paper. Our models are also quite different from the only
other quasiperiodic percolation models in the literature that
we are aware of, namely the continuum percolation models
studied in Ref. [16].

We define two classes of self-dual square lattice quasiperi-
odic bond percolation models. In the “checkerboard model,”
the quasiperiodic pattern of occupied bonds in square lattice
L is specified by another square lattice L′ that is rotated with
respect to the L and divided into sublattices in a checkerboard
fashion. In the “counterrotated model,” the quasiperiodic
pattern is specified by a pair of lattices L′

A,L′
B, that are

counterrotated with respect to L, thus giving the model reflec-
tion symmetries that the checkerboard model does not have.
These models both produce a deterministic and quasiperiodic
ranking of all the bonds in the lattice L. The fraction n of
bonds occupied is tuned by occupying all bonds below a given
level in the ranked list of all bonds.

The models are self-dual by design, so the percolation
transition is at nc = 1/2, where n is the fraction of occu-
pied bonds. For both models, the critical point has a discrete
self-similarity, which allows us to obtain very accurate esti-
mates of the fractal dimension D f and hull exponent Dh of
the infinite critical percolating cluster, both of which differ
from the exponents D f = 91/48 = 1.89583..., Dh = 7/4 of
two-dimensional critical random percolation. No continuous
scale invariance or full rotational symmetry emerges at the
critical point, so it does not have conformal invariance.

Our estimates of the correlation length exponent ν are
much less precise, but well below the ν = 4/3 of random
percolation. Also in contrast to random percolation, twofold
anisotropy in the checkerboard model is relevant: When we
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let the occupations of the bonds in the two orientations differ,
this opens up an apparently rich phase diagram that includes
intermediate phases that percolate only along one of the two
directions.

Thus, our models clearly lie outside the universality class
for two-dimensional random percolation. The two main mod-
els studied here have different critical exponents but also
different underlying symmetry. To probe universality, we fur-
ther modify the counterrotated model via a tunable parameter
that preserves the underlying symmetry, and find that this
modification changes the distribution and fractal dimension
of critical clusters. This indicates an absence of universal-
ity, although it does not rule out the possible existence of
genuine universality classes for other nonrandom percolation
models. We leave this and many other interesting questions
unanswered, including the relation between these models and
the continuum percolation models of Ref. [16].

We report more results for the “checkerboard” model,
because it is the model that we investigated first. The “counter-
rotated” models may have equally rich and detailed behavior,
but once it seemed clear to us that we are not exploring a single
new universality class, but instead multiple different cases (or
perhaps classes), it seemed less interesting to explore a similar
level of detail for all the models.

This paper proceeds as follows. In Sec. II, we define the
models, and specialize to a “maximally incommensurate”
choice of L′. The methods for probing the percolation tran-
sition on finite systems and nominally infinite systems are
described in Sec. III. Moving to the results, we obtain esti-
mates of D f and Dh for the checkerboard and counterrotated
models in Sec. IV, providing evidence for the lack of univer-
sality. The critical exponent ν for both models is estimated
in Sec. V. In Sec. VI we focus on the checkerboard model,
showing that twofold anisotropy is relevant. Finally, we dis-
cuss these results and outstanding questions for future work
in Sec. VII.

II. MODEL DETAILS

To define a deterministic and quasiperiodic ranking of
the bonds of square lattice L, we need to answer two basic
design questions. First is the choice of lattice(s) L′, whose
incommensurability with the underlying lattice L sets the
quasiperiodicity of the bond occupations. In our setup, we
choose L to be the square lattice whose bond lattice is Z2, and
L′ is a rotated square lattice with primitive lattice vectors �a
and �a⊥ in the basis of Z2. The second decision is the definition
of a continuously tunable parameter to vary the bond occu-
pations, analogous to the probability p of occupying a bond
in random percolation models. In this section, we introduce
the two different self-dual models used in this work, before
elaborating on the “maximally incommensurate” choice of �a.

A. Lattice construction

For both models, label each bond of L by the coordinates
of its midpoint, the integer pair (x, y). In the “checkerboard
model,” L′ is divided into A and B sublattices [Fig. 1(a)],
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FIG. 1. (a) Lattices L (gray), with bonds (black x’s) positioned
at the vertices of Z2, and L′ (red). The solid black circle indicates the
point where L′ coincides with Z2. For the checkerboard percolation
model, the vertices of L′ are marked A and B in a checkerboard
fashion. L′ is chosen to be the Ford lattice, with primitive lattice
vector defined in Eq. (3). Green circles indicate near-commensurate
points, corresponding to the green stars in the left subplot of Fig. 3.
(b) Percolation instance of the checkerboard model produced by
(a) at b = 0. Occupied edges, for which dA(x, y) > dB(x, y), are
shown in gray. Red arrows show the displacements to the nearest
A and B points for two edges of L. Even bonds of L have slope +1
in these figures, while odd bonds have slope −1.
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FIG. 2. Lattices L (gray) with bonds (black x’s) positions at the
vertices of Z2, L′

A (blue), and L′
B (red), for the counterrotated

percolation model. L′
A,B are chosen to be counterrotated Ford lat-

tices [Eq. (3)], with primitive lattice vectors �aA = (
√

3/2, 1/2) and
�aB = (

√
3/2, −1/2).

and dA(x, y), dB(x, y) denote the distance to the nearest A (B)
vertex of L′. Then a given realization of the percolation model
is a graph with the edge set [see Fig. 1(b)]:

E = {(x, y) : b(x, y) ≡ dB(x, y)–dA(x, y) � b}. (1)

The quantity b(x, y) is referred to as the “b score” of the edge
(x, y).

The second model uses two lattices, L′
A and L′

B, which
are counterrotated with respect to L; i.e., �aA = (a1, a2) and
�aB = (a1,−a2) (Fig. 2). Taking L, L′

A, L′
B to all intersect at

one point, a given realization of the model is again defined by
Eq. (1). We call this the “counterrotated model.”

Since A and B vertices are on even footing, both models
are self-dual by design, with percolation transitions at bc = 0.
Since all the lattices involved are square lattices, the mod-
els also have fourfold rotational symmetry. At the self-dual
point, the counterrotated model also has reflection symmetry
through the horizontal, vertical, and θ = π/4 axes, unlike the
checkerboard model. The fourfold rotational symmetry can
be broken by ranking the two bond orientations [slope ±1
in Fig. 1(a)] differently, thus producing a tunable twofold
anisotropy studied in Sec. VI.

As defined, these models have no randomness: having fixed
the lattices and the parameter b, Eq. (1) defines a deterministic
rule for which bonds are present. An ensemble of percolation
instances is formed by taking randomly chosen finite patches
within a single, infinite quasiperiodic system. In the counter-
rotated model, this random choice is manifested by taking the
origin of each sample to be at some random, far displacement
from the point where the three lattices to coincide. In the
checkerboard model, setting the origin at a random distance
from the intersection between L and L′ is (morally) equivalent

to translating L′ by a random two-component vector with
respect to L.1

Crucially, for a fixed translation of the lattice, if (x, y) ∈ E
for some b0, then it also belongs to the edge set for all b > b0.
This means that as we increase b, we only add bonds and
never remove them. This helps avoid nonmonotonicities in
the scaling functions that arise in some other quasiperiodic
models that we have examined. It also simplifies the algorithm
for analyzing fixed n ensembles, where n is the fraction of
bonds present. With n as the tuning parameter, self-duality
of the lattice implies nc = 1/2. For a given L′, we perform a
sweep in n from 0 to 1 by adding bonds in order of increasing
b(x, y).

To probe universality, we also define a tunable family of
counterrotated models with the same symmetry by assigning
each bond a “c score,”

c(x, y) = b(x, y)[a − b(x, y)2], (2)

where a > 0 parameterizes members of the family. Percola-
tion instances defined by occupying bonds with c(x, y) � c
have a self-dual point at c = 0. For a > max[b(x, y)2] = 1/2,
c(x, y) is a monotonic function of b(x, y), so bonds are added
in the same order as the standard counterrotated model. How-
ever, for a < 1/2, c(x, y) is nonmonotonic in b, so bonds are
added in a different order. For sufficiently small a, this is
found to modify the properties of the critical clusters at the
percolation threshold.

B. Maximally incommensurate lattices

The above constructions produce a family of models, pa-
rameterized by the vector �a. To obtain models with smooth
monotonic critical behavior, we want to avoid commensurate
points between L′ and Z2. One choice for L′ that is in some
sense “optimal” is

�a = (
√

3/2, 1/2), (3)

which we dub the “Ford lattice” in reference to the 1925
proof in which this lattice is used [17]. By symmetry, �a =
(
√

3/2,−1/2) is also an optimal choice, which defines L′
B in

our counterrotated construction. In this section, we define the
sense in which these lattices is “maximally incommensurate”
and present an algorithm for finding other optimal lattices.

Consider all the points of the superlattice L′ within a
distance r/a of the origin, where one point in L′ and one
point in Zd coincide with the origin. In d dimensions, there
are ∼(r/a)d such points, each of which can be thought of as
living within the unit cell of Zd . If these points are well spread
out, the closest approach of any of these points (excluding the
origin) to a point in Zd is typically within distance d ∼ a/r.
This motivates us to use the quantity dr/a, where d is the
distance to the closest vertex of Zd , as our metric for how
close to commensurate a point at distance r is. Our goal is to

1Explicitly, the enlarged unit cell of the checkerboard has primitive
lattice vectors �a + �a⊥ and �a − �a⊥. Then let r1, r2 be random numbers
between 0 and 1, and displace L′ by �R = r1�a + r2�a⊥ to define one
sample.
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FIG. 3. Pattern of points with dm < 10 on the Ford lattice (left)
vs one other choice of “optimized” parameters (right), following the
protocol described in the text. The gray line indicates the Ford bound
of C = 1/

√
3. Green stars indicate the the near-commensurate points

circled in Fig. 1(a).

construct L′ such that dr/a remains above some constant C
for all points other than the origin.

In 1D, the best we can do is C = 1 − 1/φ, which is at-
tained by choosing a = φ − 1, where φ is the golden ratio.
In two dimensions, we seek �a = (a1, a2) such that the lattice
specified by primitive lattice vectors �a and �a⊥ = (−a2, a1) has
the largest possible value for the closest approach, min[dr/a].
More precisely, let A = (a1 −a2

a2 a1
), so that a superlattice vertex

with integer coordinates �m = (m1, m2) has coordinates A �m on
the underlying lattice. Letting m ≡ ‖ �m‖, out to some maxi-
mum radius m∗, we compute

dmmin ≡ min
�m

d ( �m)m. (4)

Viewing �a as a complex irrational number α, this maps onto
the problem of maximizing the quantity

k(α) = min
p,q

|α − p/q||q|2, (5)

where p and q are both complex numbers whose real and
imaginary parts are integers. This in turn relates to a problem
long answered in the mathematics literature [17–19]: For any
α, the inequality k(α) < C has infinitely many solutions p, q,
if C � 1/

√
3. Thus, for any choice of �a, we will encounter

infinitely many points for which d ( �m)m � 1/
√

3. However,
Ref. [17] proves that if C < 1/

√
3, then there exists a dense

set of α for which the inequality only has a finite number of
solutions (“near-commensurate points”). One such α is

α = eiπ/6 ⇒ �a = (
√

3/2, 1/2), (6)

which is our Ford lattice. Although a finite number of near-
commensurate points would still be problematic for our
purposes, the Ford lattice enjoys the property that as m in-
creases, the points closest to being commensurate saturate
the Ford bound and occur in a scale-invariant pattern (left
panel of Fig. 3). This makes the model well-behaved near the
percolation transition, free of sharp nonmonotonicities in the
scaling behavior.

The distance where the Ford lattice comes closest to com-
mensurate by this measure is therefore at small m, with
dmmin = dm(1, 0) ≈ 0.518. To improve L′ at small m, we
search (a1, a2) in the octant of the Z2 unit cell defined by
1 − a2 � a1 � 1, a2 � 1/2. Everything is modulo Z2, which
has translation, rotation and reflection symmetry, so all other

octants are equivalent by symmetries. We fix a2 to lie on the
boundary of this octant, a2 = 1/2, and optimize a1 according
to the following strategy. First, we fix a threshold of C = 0.5
and for each �m in order of increasing m, exclude the interval of
a1 for which dm < C. Applied up to m = 100, this procedure
yields a few candidate values for a1. A candidate a1 is then
further optimized by iterating the following steps:

(1) Identify the smallest m∗ for which dm∗ <

min �m:m<m∗ dm.
(2) Either increase or decrease a1 until dm < dm∗ for

some �m : m < m∗, then fine-tune a1 so that dm = dm∗.
One version of this protocol, in which a1 is always in-

creased in step 2, yields lower convergents to a1 = √
3/2,

recovering the Ford lattice. More generally, each iteration of
the algorithm yields a rational a1 with a large denominator,
so that the first commensurate point occurs at large m. One
of these is a1 = 37 805/46 962 ≈ 0.805013, whose pattern of
close approaches is shown in the right panel of Fig. 3. This
other choice of a does better at m = 1, but its structure of
near-commensurate points is less clean, failing to converge to
the Ford bound at large m, and its dmmin

∼= 0.501 is lower than
that of the Ford lattice. We have not systematically searched
the interior of the octant of the unit cell, but every indication
is that the largest dmmin points occur on the boundary, where
we have searched systematically.

C. Boundary conditions

Using the scale-invariant pattern of near-commensurate
points on the Ford lattice, we can also construct a series
of rational approximants to �a for use in periodic boundary
conditions (PBCs). The near-commensurate points of the Ford
lattice come in two sequences: an odd sequence of points near
[Lo

1, Lo
1], and an even sequence near [Le

1, 0]. This motivates the
use of two sequences of system sizes, for which we define the
system on a bounding box with lattice vectors [L1, L2] and
[−L2, L1] and perturb slightly away from the Ford parameters
such that coordinates separated by integer multiples of these
lattice vectors are equivalent.2 In both sequences, L1 is defined
recursively as

L1( j) = 4L1( j − 1) − L1( j − 2). (7)

The first sequence, labeled as the odd parity sequence, has
L1 = L2 and the initial conditions Lo

1(1) = 2, Lo
1(2) = 8. The

opposite parity sequence has L2 = 0 with the initial conditions
Le

1(1) = 6, Le
1(2) = 22 [20].

Further details on open and periodic boundary conditions
are provided in Appendix B. Where possible, we use the
methods described in the next section to work on a “nominally
infinite” lattice, thus avoiding the need to engineer commen-
surate points.

III. METHODS

In this section we describe the numerical methods for ana-
lyzing our quasiperiodic models.

2While one might worry that even a slight perturbation could spoil
the optimality, the chosen perturbation only creates a single commen-
surate point within the finite patch of interest; see Appendix B.
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Algorithm 1 Nominally infinite cluster growth

Input: Seed vertex v0

Maximum b score b0

Output: Cluster C containing v0 at b = b0, with each
site labeled by the b score at which it joins
the cluster

1 b ← −∞;
2 C ← {(v0, b)};
3 B ← empty priority queue of “blocking edges”;
4 for (x, y) edge incident to v0 do
5 Add ((x, y), b(x, y)) to B;
6 end
7 while b < b0 do
8 B, C, b ← grow(B, C, b0);
9 end
10 return C;

A. Nominally infinite methods

A striking property of both models is the existence of a dis-
crete sequence of fractal clusters at the percolation threshold,
rather than the emergent conformal invariance characteristic
of the random percolation critical point. To identify as many
generations of these discrete sequences as possible, we adapt
methods for growing a single cluster or its external hull on
a nominally infinite lattice. These methods are discussed in
turn.

1. Incremental cluster growth

The method for building clusters up to bc = 0 on nominally
infinite lattices is an adaptation of the Leath method [21],
which views percolation as a “wetting” [22] or “epidemic”
[23] process by growing an individual cluster from a single
seed site. The standard algorithm is conducted at a fixed prob-
ability p, and in terms of the b scores defined in the previous
section can be phrased for bond percolation as follows [24].
A “pocket” P is initialized with a single “wet” vertex �v0, and
the cluster C is initially empty. Iteratively until the pocket is
empty, a vertex �v is popped from P and added to C. For each
incident edge that has not already been visited, we assign
a b score b(x, y) (a random number between 0 and 1). If
b(x, y) > p, then the bond is made unoccupied. Otherwise, the
bond is occupied, so its other endpoint �u becomes wet and is
added to the pocket if it has not been already. The algorithm
therefore terminates when all the edges between wet and dry
vertices have been visited and made unoccupied. The same al-
gorithm could be used for nonrandom percolation, with b(x, y)
assigned according to a given deterministic prescription.

Taking cues from the Newman-Ziff algorithm discussed
below [25,26] for performing efficient sweeps in p, we modify
this algorithm to build clusters in the entire range of b scores
up to some b0. The algorithm is given as pseudocode in
Algorithm 1 and the subroutine Algorithm 2. Starting from
b = −∞, each time a bond is assigned a score greater than
b, instead of just being set to “unoccupied,” it is added to a
priority queue of “blocking edges” (line 12 of Algorithm 2).
The growth at a given b ends when all bonds between wet
and dry vertices are blocking edges. In each successive step,

Algorithm 2 Incremental growth of cluster grow

Input: Priority queue of blocking edges B at step i
Cluster C at step i
Maximum b score b0

Output: B at step i + 1
Cluster C at step i + 1
Current b score b

1 Edge e, b score b ← pop B;
2 if b > b0 then return B, C, b;
3 P ← {endpoints of e not already in C};
4 while P �= ∅ do
5 Vertex v ← pop P;
6 Add (v , b) to C;
7 foreach neighbor u of v not already in P or C do
8 (x, y) ← coordinates of edge linking u and v ;
9 if b(x, y) ≤ b then

10 Add u to P;
11 else
12 Add ((x, y), b(x, y)) to B;
13 end

14 end

15 end
16 return B, C, b;

the blocking edge with the smallest b score is removed and a
pocket is initialized with its adjacent dry vertices (line 3). A
full run of the algorithm completes when all blocking edges
have b scores > b0. Taking b0 = bc = 0 therefore generates
the fractal clusters at the critical point, whose mass M scales
as M ∝ rD f where r is the cluster radius and D f the fractal
dimension [27].

Recording the value of b at which each vertex is made
wet also gives a complete record of the clusters containing
the seed vertex for the entire range of b < bc. In practice,
the algorithm may terminate before reaching bc if the clus-
ter exceeds a prespecified mass threshold (chosen to avoid
arbitrarily long runtime). However, since this algorithm only
requires the calculation of b scores for edges that may extend
the single cluster, we can access much larger cluster sizes than
with finite system methods.

2. Identification of hulls

While critical clusters are characterized by the fractal di-
mension D f , their external perimeters (“hulls”) are also fractal
objects, with fractal dimension Dh. The external hull of an
already identified cluster can be obtained using the method in
Refs. [28,29]. In square lattice bond percolation, every point
of Z2 is the midpoint of either an occupied bond of L, or an
occupied bond of its dual. A self-avoiding walk is traversed by
hopping between nearest neighbors on Z2, turning clockwise
(counterclockwise) if the bond belongs to the original (dual)
lattice. To grow the hull “from scratch” in a similar spirit to
the Leath method, without needing to find a full cluster first,
the occupied or unoccupied status of a bond is determined
on the fly [30–32]. The walk terminates, and the hull closes
on itself, when the origin of the walk is re-encountered facing
in the same direction as the first step.

In traversing the hull we keep track of three related quan-
tities. The “hull itself” is defined to consist of the midpoints
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of the links of the self-avoiding walk. This walk is the internal
perimeter of a cluster on one lattice and the external perimeter
of a cluster on its dual. Thus, we can also associate to each
hull a series of “inner” and “outer” bonds adjacent to it. At
the percolation threshold, Ninner, Nouter, and Nhull all scale with
a fractal dimension of Dh, i.e., N ∝ rDh .

It should be noted that unlike the clusters they enclose,
the external perimeters have the feature that as b increases,
some links are added to the hull but others are removed, as
bonds change affiliation from “unoccupied” to “occupied.”
This prevents us from incrementally growing the hulls in an
efficient manner, so we instead only obtain the hulls precisely
at b = bc.

B. Incremental percolation on finite systems

Complementing these methods on nominally infinite lat-
tices, we also collect data on finite lattices with periodic or
open boundary conditions via the Newman-Ziff algorithm.
For a given finite lattice L a percolation instance is constructed
using a weighted union-find algorithm with path compression
[25,26]. Each vertex v of L is labeled with a parent p within
the same cluster and a displacement �d (p → v) from itself to
its parent. A vertex with no parent is the root of the cluster,
and keeps a record of the number of vertices belonging to
the cluster. Thus, to determine whether two vertices belong to
the same cluster, we simply traverse their respective trees of
parents to find the roots. To make the algorithm more efficient,
whenever the “find root” operation is performed, every vertex
along the path to the root is relabeled to point directly to the
root (“path compression”).

The system is initialized with each vertex as the root of its
own isolated cluster. The available edges are sorted accord-
ing to their b scores, then added incrementally in order of
increasing b. For every added edge, connecting vertices u and
v, we find the roots r(u) and r(v) of their respective clusters.
If r(u) �= r(v), we join the two clusters by making the root
of the larger cluster the parent of the other root (“weighted
union”) and setting the mass of this merged cluster to be the
sum of the individual cluster sizes. If r(u) = r(v), then this
newly added edge does not merge any clusters, but it could
complete a path that completely wraps around the boundaries.

A given cluster can wrap around the system along the “+”
direction (defined by the vector [L1, L2]) and/or along the “−”
direction (defined by the vector [−L2, L1]). Wrapping clusters
are identified using the algorithm developed in Ref. [33], by
computing the displacement along the loop from u to v along
the new bond, �euv = (±1, 1), then back from v to r(v) to u.
The total displacement is

�d (u → v → u) = �euv + �d (v → r(v)) + �d (r(v) → u). (8)

If the total displacement is not zero, then a wrapping event
has occurred, and �d (u → v → u) points along a lattice vector
associated with the periodic boundary conditions.

Since bonds are added in an incremental fashion, the pre-
cise bond rank (in terms of n or b) of the first wrapping event
along each direction can be identified. We can then define
�+(x) and �−(x) as the probabilities that the sample contains
a wrapping cluster in the + or − direction, respectively (which
are equivalent in the absence of anisotropy). The probability

that two vertices belong to the same cluster decays exponen-
tially in the nonpercolating phase, with a correlation length
ξ that diverges as (n − nc)−ν [27]. Thus, in principle, the
wrapping probability can be scaled according to

�wrap(n, L) = f [L1/ν (n − nc)],

�wrap(b, L) = g[L1/ν (b − bc)], (9)

for scaling functions f (x), g(x).
Note that wrapping events can never occur with open

boundary conditions; instead, we look for “spanning clusters”
which contain vertices belonging to opposite boundaries. The
finite-size corrections to scaling are generally more severe for
the spanning clusters than for the wrapping probability, so
�span is inferior to �wrap for determining ν [34,35]. However,
since the available system sizes and orientations for PBCs
are constrained by the commensurability of L and L′, the
crossing probabilities provide a useful alternative observable,
particularly when we add twofold anisotropy in Sec. VI.

IV. FRACTAL CLUSTERS

By constructing instances of the Ford lattice percolation
models in finite and nominally infinite systems, we now de-
termine the exponents D f and Dh which describe the critical
clusters at nc = 1/2. We find stark qualitative and quantita-
tive differences from the cluster size distribution for random
percolation, in both models.

A. Checkerboard model

First we consider the distribution of cluster sizes for the
checkerboard model, on finite system sizes with periodic
boundary conditions. Despite being produced by different in-
commensurate translations of L′ with respect to L, samples
fall into just a few groups at b = 0, whose connected com-
ponents are identical up to a translation by a lattice vector
of L.

Of the three populations, defined explicitly in Sec. V, pop-
ulation I of samples with system sizes of the form [Lo

1, Lo
1]

consists of samples where the wrapping threshold is strictly
positive, i.e., the clusters at b = 0 do not wrap around either
boundary. In Fig. 4(a), we plot the cumulative cluster size
distribution for this population, defined as

C1(s) =
smax∑
s′=s

n(s′)/s′, (10)

where n(s′) is the number density per lattice site of clusters of
mass s′ sites, and smax is the mass of the largest cluster. This
distribution is overlaid with that of the random percolation
model, which has a power law tail of slope −τ = −1 − d/D f

and a rounded “shoulder” at s ∼ LD f [27]. In contrast, the
checkerboard Ford distribution consists of a series of finite
steps; only after smoothing this “staircase” would we have a
power-law tail similar to the random case.

The clusters comprising these steps belong to two species,
all possessing fourfold symmetry. As illustrated in Fig. 4(b),
successive generations of each species contain holes occupied
by earlier generations. More details on this fractal structure
are provided in Appendix A; we have not been able to discover
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FIG. 4. (a) Cumulative critical distribution of cluster sizes s sites
in the checkerboard Ford model, for population I of [Lo

1, Lo
1] system

sizes (wrapping threshold bc > 0). Dashed lines: critical random
percolation, with thin gray line showing power-law decay with τ =
187/91. (b) Zoom-in on one quadrant of a critical (n+ = n− = 1/2)
percolation cluster (blue) of mass 8632 sites exhibiting fourfold sym-
metry, showcasing the fractal structure of smaller fourfold symmetric
connected clusters (different colors) that are also present. Axes indi-
cate the orientations of +/− bonds on the underlying lattice, relative
to the cluster. See Appendix A for more illustrations of the critical
clusters.

the analytic form for the two sequences of cluster sizes, so we
leave this as an unsolved puzzle to challenge the interested
reader.

Random percolation, for example, on a square lattice, has
an emergent conformal symmetry at its critical point, where
the large connected clusters have a probability distribution
that asymptotically has continuous scale invariance and full
rotational symmetry (which are familiar subgroups of con-
formal symmetry) [4–6]. Our quasiperiodic model’s critical
point, however, is manifestly not conformally invariant, since
the large connected clusters only have a discrete scale in-
variance and do not have any emergent continuous rotational
invariance; they only have the fourfold rotational invariance
that is there already microscopically.

Having identified these fractal clusters, their fractal dimen-
sion can be determined to excellent precision and is found to
be higher than that of random percolation. For this we use
the nominally infinite lattice methods. From the definition
M(r) ∝ rD f for a cluster of mass M and linear dimension r,
the inferred exponent from two successive generations of a
given sequence is

D f ( j, j − 1) = log[M( j)/M( j − 1)]

log[r( j)/r( j − 1)]
. (11)

This asymptotes towards the “true” fractal dimension in the
limit of j → ∞.

In Eq. (11) we need to define a measure of the mass M
and radius r of each cluster. For the mass we use the num-
ber of sites (which is empirically observed to lead to faster
convergence than using the number of edges). For the radius,
a standard choice is the radius of gyration:

rgyr( j) =
√

I ( j)/M( j), (12)

where I ( j) is the moment of inertia of the jth generation
cluster. The values of D f inferred from the scaling of mass
with radius of gyration are plotted in orange in Fig. 5(a) for the

FIG. 5. (a) Fractal dimension Df and (b) fractal hull dimension
Dh inferred from the scaling of A (solid lines) and B (dashed lines)
clusters and hulls in the checkerboard Ford model. In panel (a),
blue curves come from using r( j)/r( j − 1) = 2 + √

3 in Eq. (11),
while orange curves use r( j) = rgyr( j). In panel (b), blue, orange,
and green curves use the number of hull links, inner bonds, and
outer bounds, respectively, as N ( j) in Eq. (15), with r( j)/r( j − 1) =
2 + √

3 for all curves.

A and B sequences. Also shown in Fig. 5(a) is a series of es-
timates D f ( j, j − 1) which converges slightly faster, obtained
by substituting the asymptotic scale factor between successive
generations:

lim
j→∞

r( j)

r( j − 1)
= 2 +

√
3. (13)

This scale factor originates from taking L′ to be the Ford
lattice, whose near-commensurate points are discretely scale-
invariant with the same scale factor. Our resulting estimate of
D f is

D f = 1.911943 ± 10−7, (14)

in contrast to the random percolation value of 91/48 =
1.89583....

A similar method is used to determine the fractal dimen-
sion of the hulls, examples of which are shown in Fig. 20 of
Appendix A. A given hull can be defined as a closed path
composed of links in between the occupied bonds on one
lattice and the occupied bonds on its dual lattice. Then the
number of inner bonds, outer bonds, and hull links all scale as
N ( j) ∝ r( j)Dh . Thus, the inferred fractal hull dimension is

Dh( j, j − 1) = log[N ( j)/N ( j − 1)]

log[r( j)/r( j − 1)]
. (15)

As with the fractal cluster dimension, we obtain the fastest
convergence by substituting 2 + √

3 for r( j)/r( j − 1). A con-
servative estimate of Dh is [Fig. 5(b)]:

Dh = 1.801847 ± 10−6, (16)

significantly larger than the random percolation value of Dh =
7/4.

B. Counterrotated model

Turning to the counterrotated model, we again obtain a
discrete sequence of fractal clusters at the critical point, with
the scale factor 2 + √

3. Unlike the checkerboard model, there
is only one species of cluster, the fourth generation of which
is shown in Fig. 6(a). Since the individual clusters have only a
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(a)

(b)

FIG. 6. (a) Fractal cluster of mass 1244 and (b) its external hull
in the counterrotated model. In both panels, the bonds of L have
been aligned with the horizontal and vertical. In panel (b), black, red,
and blue lines respectively indicate the inner bonds, outer bonds, and
“hull itself” as defined in the text.

twofold rotational symmetry, each generation in the sequence
consists of two clusters which are mirror images of each
other. Thus, the total population of critical clusters again only
has the fourfold rotational symmetry that is microscopically
present. The population of critical clusters is also invariant
under reflections about the horizontal and vertical axes, axes
of symmetry present at the critical point of the counterrotated
model but not the checkerboard model.

Compared to the checkerboard model’s critical clusters,
these “belt-buckle” clusters are significantly less dense than
the “pinwheel” clusters of the checkerboard model, and the
contrast between the hulls of the respective models is even
starker [Fig. 6(b)]. Using Eqs. (11) and (15), we arrive at the
following estimates for D f and Dh (Fig. 7):

D f = 1.707234 ± 4×10−6, (17)

Dh = 1.33850 ± 5×10−6. (18)

Through the formulation of random percolation as a Q→1
Potts model, the hull fractal dimension Dh is known to

FIG. 7. (a) fractal dimension Df and (b) hull exponent Dh in the
counterrotated Ford model. The colors are the same as in Fig. 5.

FIG. 8. Scaling of cluster mass (left) and hull length (right) vs
radius of gyration for variations of the counterrotated model tuned
by a [Eq. (2)]. In both panels, 200 samples were taken at each a
with an upper cutoff of M = 350 000 and Nhull = 106, discarding
samples that reached the cutoff. Dashed lines are power laws with
Df = 1.707243 and Dh = 1.33850.

satisfy [36]:

Dh = 1 + 1/ν. (19)

As we will see in Sec. V, neither of our quasiperiodic models
obeys this relation. The counterrotated model is a particularly
clear example of this, as Eq. (19) would imply ν > νrandom,
whereas we instead obtain clear evidence of the opposite. This
should come as no surprise, since in the absence of quenched
randomness, the mapping to a Potts model no longer applies.

C. c scores and lack of universality

In Fig. 8, the critical clusters and hulls are plotted for the
“c score” variations on the counterrotated Ford model
[Eq. (2)], with a ranging from 0.02 to 0.3. For a = 0.3, the
clusters at the percolation threshold belong to the same dis-
crete sequence as for the standard (a � 1) model. But as a
is decreased, two changes occur: the discrete sequence breaks
up into a broader distribution of cluster sizes, and the fractal
dimension changes. The latter trend is particularly noticeable
for the hulls. Over the range of a considered, Dh tends to
increase with decreasing a.3

The sensitivity of Dh, and to a lesser extent D f , to a is evi-
dence against universality. In the usual concept of universality
classes of phase transitions, the universality class is the full set
of exponents. The fractal dimensions of the critical clusters
provide a good test of universality because the precision is
best and the variations are large enough to cleanly see. As
discussed in the next section, our estimate of ν is much less
precise, and we focus solely on the original “b score” models.

V. DETERMINATION OF ν

Another key difference between the quasiperiodic and ran-
dom percolation models is in the exponent ν. In this section,
we employ two different methods—one using the sequence of
critical clusters on nominally infinite lattices, the other using
an observable defined for periodic boundary conditions—to
estimate ν. Although the uncertainties are large, and the two

3This only holds down to small but finite a, since for a = 0 the
original model is recovered, just with a rescaling b → −b3.
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FIG. 9. Scaling collapse for the counterrotated model. Left: Un-
scaled data, from generations 2–7 of cluster masses (Table III). Right:
scaling collapse with ν = 1, excluding M(2) = 17. In both panels,
light ribbons indicate standard error across samples. Value of ν

inferred from scaling the slope of y(b) for y in the interval [0.01,
1.7] (solid) and [0.5, 1.7] (dashed) [Eq. (22)] is shown as an inset.

methods yield somewhat different estimates for the checker-
board model, all estimates of ν fall significantly below its
random percolation value of 4/3.

A. Scaling collapse on nominally infinite systems

Our method for determining ν from the incremental cluster
growth on nominally infinite lattices relies on the following
scaling hypothesis for the probability of hitting on a cluster of
mass � S [24]:

P(s � S, p) = c0S2−τ f [c1(p − pc)Sσ ]

= c0S1−d/D f f [c1(p − pc)S1/νD f ]. (20)

By definition σ = 1/νD f and the scaling relation τ =
d/D f + 1 still holds for deterministic percolation (where our
tuning parameter is b or n instead of p) [27]. Equation (20)
was used to determine pc for random percolation in 3D mod-
els [37,38], where σ and τ had already been determined.
Conversely, in our deterministic models, we know bc = 0,
nc = 1/2, and have a very good determination of D f , so a
scaling collapse of P(s � S, b)S2/D f −1 versus bS1/νd f for dif-
ferent S yields an estimate of ν.

The scaling collapse for the counterrotated model is shown
in Fig. 9. Choosing S to be the masses M( j) of the fractal

1.00 0.75 0.50 0.25 0.00

(p pc)S1/ Df
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FIG. 10. Scaling collapse for random percolation according to
Eq. (20), with Df = 91/48, ν = 4/3. Inset shows unscaled data,
including S = 24 which is omitted from the scaling collapse.

FIG. 11. Scaling collapse of Eq. (20) with ν = 0.95 for species
A (left, cf. Table I) and B (right, cf. Table II) of critical clusters in the
checkerboard Ford model.

clusters at b = 0, and using the fact that M( j) ∝ (2 + √
3) j ,

Eq. (20) can be rewritten as

y(b, j) ≡ P[s � M( j), b](2 +
√

3) j(2−D f )

= g[b(2 +
√

3) j/ν]. (21)

The scaling function g(x) is roughly linear near the critical
point, so ν can be estimated from scaling the slope m of the
unscaled data y(b, j) versus j:

ν( j, j − 1) = log[2 + √
3]

log[m( j)/m( j − 1)]
. (22)

This yields a critical exponent of

ν = 1.0 ± 0.05. (23)

The right panel demonstrates a good scaling collapse with
ν = 1. The inset shows the inferred ν( j, j − 1) from the
slope in the interval y ∈ [0.01, 1.7] (solid) and y ∈ [0.5, 1.7]
(dashed). The inferred exponent is somewhat sensitive to the
range of the fit, but remains within the stated uncertainty of
±0.05. A consistent estimate of ν is obtained taking n as the
tuning parameter rather than b, since n(b) is a smooth function
in the infinite system size limit.4

To confirm the validity of this method, the data for random
percolation are shown in Fig. 10, using a sequence of masses
with scale factor of 8. An excellent scaling collapse is ob-
tained with ν = 4/3 and D f = 91/48, the known exponents
for random 2D percolation.

For the checkerboard model, we perform a separate scaling
collapse for the A and B sequences of cluster sizes (Fig. 11).
The best overall scaling collapse is obtained with ν ≈ 0.95,
but ν( j, j − 1) is not converging very well with j. In partic-
ular, while the curves for MB(3) = 208 and MB(4) = 2576 of
sequence B coincide nicely, the MB(5) = 31952 curve (pur-
ple) is less steep, suggesting a larger ν. Thus, in the next
subsection we study the behavior on finite systems to obtain
an alternative estimate of ν.

B. Distribution of wrapping events

Standard methods for determining ν come from finite-size
scaling of observables on tori, such as the wrapping prob-
ability [Eq. (9)]. With the incremental method described in

4See Eq. (C3) in Appendix C for an explicit expression for n(b).
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Sec. III B, we can identify the number of occupied bonds at
each “wrapping event” in individual samples. The first wrap-
ping event occurs when a cluster wraps in one of the directions
of periodic boundary conditions. Zero or more bonds are then
added before this percolating clusters also wraps in the orthog-
onal direction, referred to as the “second wrapping event.” Let
N1 denote the number of bonds at the first wrapping event,
N2 the number of bonds at the second wrapping event, and
Ne = L2

1 + L2
2 the total number of available edges on a system

of size [L1, L2]. In the case of random percolation, where the
wrapping probability is a smooth function of n = N/Ne ad-
mitting the scaling collapse �wrap(n) = f [(n − nc)L1/ν], the
wrapping interval �N = N2 − N1 scales with system size as
�N ∝ L2−1/ν [26],5 as does the standard deviation of N1 and
N2 across samples. But in the checkerboard model with L′
constructed from rational approximants to the Ford lattice (see
Appendix B for the explicit construction), the behavior in the
vicinity of nc is remarkably uniform across samples. For both
sequences of system sizes, �N = 1. This naively yields ν =
1/2, but this spurious exponent is just a manifestation of the
fact that f in this case has a step function at the transition. To
probe the critical region beyond this step, we avail ourselves
of observables beyond the wrapping probability, discussed
below.

Not only is �N = 1 in all samples, but the range of N1, N2

across samples is also of order 1. Explicitly, percolation in-
stances can be divided into three groups. For system sizes of
the form [Le

1, 0], N1 = Ne/2, N2 = Ne/2 + 1; in the absence of
twofold anisotropy, the first wrapping event is equally likely
to be in the + or − direction. Since the distribution of b(x, y)
is perfectly symmetric about 0, fixed b = 0 ensembles all
have a wrapping in only one direction.6 Samples with system
sizes of the form [Lo

1, Lo
1] fall into two categories. In the first,

dubbed population I, the wrapping events are at strictly pos-
itive b, with (N1, N2) = (Ne/2 + 1, Ne/2 + 2). In the second,
population II, the wrapping thresholds are strictly negative,
(N1, N2) = (Ne/2 − 1, Ne/2).

If we consider ensembles of fixed b rather than fixed n,
then we find that on finite system sizes a different spurious
exponent is deduced, because b(n) has several sharp steps
near n = 1/2, leading to qualitative differences in the scaling
functions. This is discussed in further detail in Appendix C.
In the Appendix, we also study the crossing probability with
open boundary conditions and find that its scaling function is
likewise dominated by steps very close to the critical point.

5To be precise, Ref. [26] reports the wrapping probability as a
function of the occupation probability p by convolving ensembles at
fixed rank n with a binomial distribution. In this section we instead
concern ourselves with ensembles at fixed n; see Sec. V D below.

6This may seem to contradict our earlier statement that all samples
in a given population have the same connected components. To be
more precise, the bulk (nonpercolating) clusters are identical. The
wrapping cluster has the same composition of vertices in each sam-
ple, but samples differ with respect to the placement of the “wrapping
bond.” In all samples, this percolating cluster spans the system (in the
sense of open boundary conditions) in both directions, but only wraps
around the periodic boundary in the + or − direction.
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FIG. 12. (a) R(n, nc ), as defined in Eq. (24), for population I of
samples with [L, L] PBCs in the checkerboard Ford model. (b) Crit-
ical exponent ν( j, j − 1) inferred from the scaling of the slope of
R(n, nc ) for three populations [Eq. (26)]. (c) Scaling collapse of
R(n, nc ) for population I with ν = 0.9 (left, excluding L = 8), and
the zoomed-in spurious scaling collapse with ν = 1/2 (right).

C. Largest cluster ratio

Since the scaling collapse for both the wrapping and span-
ning probabilities is dominated by steps in f (x) and in b(n)
very close to the critical point, we instead seek an observable
whose scaling function is not just a step function. Our chosen
observable is the ratio of the mass (number of sites) of the
largest cluster smax at n to that of the largest cluster at 1 − n:

R(n, nc) = 〈log[smax(n)/smax(2nc − n)]〉, (24)

where nc = 1/2, and the average is taken over fixed n ensem-
bles in the same population. This is statistically equivalent to
taking the average of the log of the ratio of the mass of largest
cluster on the original lattice to that on the dual lattice.

Whereas the wrapping probability is strictly 0 or 1 outside
the narrow interval around n = nc, R(n, nc) is amenable to
scaling over a larger interval because it increases monotoni-
cally all the way up to n = 1 [Fig. 12(a)]. The scaling collapse
to R(n, nc) = f ((n − nc)L1/ν ) is consistent with

νchecker ≈ 0.9 ± 0.1 (25)

and is shown in the left panel of Fig. 12(c) for population I of
the odd parity sequence.

Overall, this method favors smaller ν than that inferred
from the nominally infinite system methods, but has large
uncertainties due to several factors. We can try to deduce ν

by scaling the slope of R(n, nc) between consecutive system
sizes L( j), analogously to Eq. (22):

ν( j, j − 1) = log[L( j)/L( j − 1)]

log[m( j)/m( j − 1)]
. (26)
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The slope m( j) in the range R(n, nc) = [−R0, R0] is esti-
mated as R0/(n0 − nc) where R(n0, nc) = R0. The inferred
ν( j, j − 1) turns out to be quite sensitive to R0. With R0 = 3,
ν( j, j − 1) converges fairly well with j for the odd sequence
of system sizes, L = 8, 30, 112, 418 [blue and orange curves
in Fig. 12(b)]. However, a scaling collapse of comparable
quality is obtained for slightly higher ν, and the exponent
deduced from even system sizes L

√
2 = 22, 82, 306 is not yet

converging (green curve).
Zooming in further, the scaling function for R(n, nc) also

contains several small steps. Indeed, taking R0 = 1, we would
infer ν = 1/2, as from the wrapping probability. The scaling
collapse with ν = 1/2 is shown in the right panel of Fig. 12(c).
Thus, the spurious exponent of 1/2 arises from a rounding of
the central step in the scaling function, which has ν ≈ 0.9, by
subleading effects.

In place of Eq. (24), we could instead define the log ratio
by, rather than taking the ratio of the largest cluster size with
n0 and N − n0 bonds on the original lattice, taking the ratio
of the largest cluster size on the original lattice, to the largest
cluster size on the dual lattice. Since populations I and II are
related via a duality transformation, this alternate definition
essentially relates a sample of population I at n0, to a sample of
population II at N − n0. The main difference from our original
definition is that, filtering on one of the populations, R(nc, nc)
is either strictly positive (for population I) or strictly negative
(population II). The overall scaling remains consistent with
our reported ν.

From the scaling collapse with ν = 0.9, it would be
tempting to conclude that ν < 2/d = 1, which by the Harris
criterion would imply that added randomness is relevant [39].
However, given the piecewise nature of the scaling function
and the discrepancy between the exponent inferred from nom-
inally infinite methods versus finite-size scaling, we do not
have sufficient evidence to make this claim. Nevertheless,
both methods of determining ν clearly exclude the random
percolation exponent of ν = 4/3, for both the checkerboard
and counterrotated models.

D. Comparison with random percolation

In addition to having a different exponent ν, the critical
scaling of random percolation differs from the quasiperiodic
Ford models in several ways. Here we offer a brief summary
of these differences, some of which have already been men-
tioned in the foregoing discussion.

Random bond percolation is typically studied in the analog
of fixed b ensembles, where the deterministic parameter b is
replaced by the probability p of occupying a bond. But the
Newman-Ziff algorithm [25,26] naturally lends itself toward
fixed n ensembles, by assigning each bond a random “p score”
between 0 and 1, and adding bonds in order of increasing p.
The typical wrapping threshold is then at pc = nc = 1/2. As
noted in Ref. [40], the two ensembles give similar results,
unlike for the checkerboard model. A key difference from
the checkerboard model is the absence of steps in either the
scaling functions f (x), g(x) for any of the observables stud-
ied, or in the function n(p), which just follows a binomial
distribution at a given p. Therefore, scaling collapses of the
form f ((n − nc)L1/ν ) and g((p − pc)L1/ν ) are both consistent

FIG. 13. Scaling collapse of R(n, nc ) with [L, L] PBCs for
random percolation, ν = 4/3, with the inset showing the smooth
behavior of R(n, nc ) (unscaled) zoomed in near nc = 1/2.

with the known exponent ν = 4/3. In particular, we obtain
an excellent scaling collapse of R(n, nc) (Fig. 13) with ν =
4/3, confirming that this is a valid, although nonstandard,
observable for obtaining ν. R(n, nc) is smooth on both large
and small scales, as the average mass of the largest cluster
increases continuously with n. A complementary method for
obtaining ν comes from the scaling of the average wrapping
interval, that is the difference in n or p between the first
and second wrapping event. Whereas for the quasiperiodic
checkerboard model all samples have the same wrapping
interval �N = 1, for random percolation �N ∝ L2−1/ν , and
�b ∝ L−1/ν , as expected.

The emergent conformal symmetry at the critical point of
random percolation is well studied [4–6]. One consequence of
this is that added twofold anisotropy is marginal. The response
to anisotropy in the checkerboard model is the focus of the
next section.

VI. TWOFOLD ANISOTROPY

As a further demonstration of how quasiperiodicity man-
ifests in a qualitatively different percolation transition from
the random model, we also consider a perturbation away from
square symmetry wherein the fractions of the bonds present
along the two directions are different. In this Section of our
paper, we focus on the checkerboard model.

Explicitly, let q = (x + y) mod 2 denote the parity of the
bond at position (x, y); with our choice of origin, odd (even)
bonds are oriented at an angle of +π/4 (−π/4) from horizon-
tal. Then the criterion for cutting this bond is modified from
Eq. (1) to

b(x, y) > b + b′(−1)q, (27)

where b′ parameterizes the anisotropy between odd and even
bonds.

Once again, instead of working in terms of b, we can take
fixed (n+, n−) ensembles, where

n± = n ± n′. (28)

Choosing n+ �= n− breaks the symmetry of the original model
under rotation by π/2.
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FIG. 14. (a) Sketch of the two-parameter phase diagram for the
checkerboard Ford model in the vicinity 0.3 < n± < 0.7 of the
multicritical point. Blue (red) shading indicates the horizontally
(vertically) percolating phase in the n+ - n− plane. [Farther from
the multicritical point this phase diagram has more structure, but
we have not thoroughly explored those regimes.] (b) Ratio of the
two-point correlation function C(�r) along the vertical and horizontal
axes, on a [82,0] geometry with PBCs, for n′ = 0 (darkest blue),
0.005,0.01,0.015,0.02,0.25,0.03,0.04, and 0.05 (bright yellow), at
n = 1/2.

For random percolation, such a twofold anisotropy is
marginal: It results in a finite anisotropy in the scaling limit,
so a line of fixed points with varying twofold anisotropy. To
wit, on the square lattice with probabilities p+ and p− for
occupying ± parity bonds, self-duality gives the critical line
pc

+ + pc
− = 1 [41–43]. But this entire fixed line is equivalent

in the scaling limit to the isotropic system under a simple rel-
ative scaling of the two directions; if p+ = Rp− the crossover
to quasi-1D percolation only occurs in the limits R → ∞ and
R → 0 [44]. This is not the case in the checkerboard model;
instead, the anisotropy is relevant and the phase transition
breaks into two quasi-1D percolation transitions along the
strong and weak axes, as sketched in Fig. 14(a). Here, we
comment on some of the subtleties of this phase diagram, and
the extent to which these features are unique to the Ford lattice
checkerboard model.

A. Fixed n′

For quasiperiodic checkerboard percolation on the Ford lat-
tice, we find that this added anisotropy in Eq. (27) is relevant.
Explicitly, define the two-point function

C(�r) = 〈χ (�v ↔ �v + �r)〉, (29)

where χ (�v → �u) denotes the event that vertices �v and �u are
connected by a path of occupied bonds in a given sample.
For [Le

1, 0] = [82, 0] with PBCs, the average is taken over
(1) all vertices �v on the finite lattice (with �r the displacement
between �v and �u up to a periodic boundary lattice vector) and
(2) 1200 samples.

In the absence of applied bias, C(�r) has fourfold rotation
symmetry (but not the full rotational invariance characteristic
of random percolation at its critical point). But for n′ �= 0, the
microscopic anisotropy induces perpendicular “strong” and
“weak” axes along which the two-point function is respec-
tively enhanced or reduced. Explicitly, we fix n± = 1/2 ± n′
and measure the two-point correlation function for all dis-
placements �r. For n′ �= 0, intuitively one would expect the

strong axis to align with the direction of the stronger bonds
(i.e., oriented along angle +π/4 if n′ > 0), but we instead
find that for n′ � 0.015, the two-point function is the most
long-ranged along the horizontal direction, i.e., at an angle of
−π/4 with respect to the applied bias, and shortest-ranged
along the vertical direction.

The ratio of the vertical to horizontal connectivity func-
tion C(0, r)/C(r, 0) is plotted as a function of the distance
r in Fig. 14(b). For n′ = 0, all data points fall around
C(0, r)/C(r, 0) = 1, owing to the fourfold symmetry. No-
tably, for n′ � 0.015 the ratio decreases as a function of r,
rather than settling at a constant which could be scaled away.
Finite-size effects prevent us from drawing strong conclusions
about smaller n′; Fig. 14(b) indicates that for [82,0] PBCs at
n′ = 0.005 the strong axis is tilted toward the vertical, but
this behavior is sensitive to the boundary conditions and the
system size.

B. Scaling collapse at n+ = 0.555

To further quantify the effect of the anisotropy, we fix n+
and add − bonds one by one in order of increasing b(x, y),
thus tracing a vertical line in the phase diagram of Fig. 14(a).
Fixing n+ in the range 0.3 < n+ < 0.7 and scanning n−,
the percolation transition in the vertical direction remains
at n− = 1/2 for L → ∞. For 0.5 + O(1/L) < n+ < 0.7, the
horizontal percolation transition, which is along the strong
connectivity axis, occurs at lower occupation, n− ∼= 0.293.
Thus, we now have two percolation transitions, one for each
direction. The scaling for both of these transitions is consistent
with ν = 1, the exponent for 1D percolation.

In the isotropic case, scaling collapse of the wrapping
probability with b or with n yields different exponents, both
spurious, as elaborated upon in Appendix C. Fortunately, this
is not the case at a safe distance from the multicritical point;
there the two scalings are both consistent with ν = 1 for
this transition in the percolation along only one of the two
directions. To wit, the scaling collapse for the vertical cross-
ing probability (with open boundary conditions), �v (n+ =
0.555), is shown in Fig. 15(a), both in terms of n− (left) and
b− (right). The scaling function in terms of n− consists of
three steps, occurring at half-integer values of L1(n− − 0.5).
As with the isotropic model, each step function has a slope
∝ 1/L2 for a finite system, so the curves with increasing L
are still sharpening up rather than collapsing neatly on top of
each other. These steps are a consequence of the distribution
of b scores, which has discrete steps at finite system sizes; the
scaling with b− is much smoother. But although the scaling
functions f and g are quite different, it must be emphasized
that both are consistent with ν = 1, and as the scaling collapse
captures more than just the rounding of a single step function,
this is a genuine critical exponent. Scaling of the quantity
0.5 − 〈nc

−〉(L) ∝ L−1/ν , where 〈nc
−〉(L) is the mean or median

vertical crossing threshold at system size L, also yields ν = 1.
The vertical percolation transition occurs within the hor-

izontally percolating phase, which is why different system
sizes intersect at �v = 1 in the unscaled plot. In turn, the hor-
izontal percolation transition occurs at far lower n− ≈ 0.293,
b− ≈ −0.215, as seen from the intersection of the two largest
system sizes in Fig. 15(b). Since this transition occurs far
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FIG. 15. (a) Vertical crossing probability and (b) horizontal
crossing probability in the checkerboard Ford model as a function
of n− (left) and b− (right). All panels are at fixed n+ = 0.555, with
ν = 1 scaling collapse as an inset. L1 = 31 (blue) is excluded from
the scaling collapse.

away from the multicritical point where the steps in b(n) are
located, the scaling functions for �h are smooth in terms of
both n− and b−.

We chose to use open boundary conditions here because
with PBCs, only the even sequence of system sizes has bound-
aries aligned with the horizontal/vertical (Le

1 = 0). It should
be emphasized, though, that the data collapse with PBCs is
also consistent with ν = 1, and the horizontal transitions oc-
cur at the same b− and n−. Consistent results are also obtained
from a scaling collapse of R(n−, 0.5) at n+ = 0.555, even
when we zoom in close to n− = 0.5. That is, while R(n−, 0.5)
still has steps near the transition like in the isotropic version
of the model, these steps are consistent with ν = 1 rather than
the spurious ν = 1/2 that arises in the isotropic case.

C. Extended phase diagram

The full phase diagram in the vicinity of the multicriti-
cal point can be completed using the underlying symmetries
of the model. We now elaborate further on the following
hypothesized scenario: for L → ∞, the multicritical point
immediately split into horizontal and vertical phases, and the
horizontal axis is the strong axis for arbitrarily small n′. To
see why this is sensible based on the data at finite sizes, let
�nv

−(n+, L1) = 1/2 − 〈nc
−〉v (L1) denote the deviation of the

median vertical wrapping or crossing threshold below infinite
system size limit of (nc

−)v = 1/2, at a fixed n+. This quantifies
the difference between the phase boundary in a finite sample
and the putative phase boundary drawn in Fig. 14(a). Simi-
larly, let �nh

+(n−, L1) denote the deviation of the finite system
size horizontal percolation threshold and the hypothesized

FIG. 16. (a) Median wrapping thresholds in the vertical (solid
lines) and horizontal (dashed lines) direction as a function of n+
in the checkerboard Ford model. Gray vertical and horizontal lines
indicate the putative thresholds for infinite L, and �nh

+, �nv
− are

the deviations of the finite L thresholds from these respective phase
boundaries. Gray line of slope −1 is the line of varying n′ that passes
through the multicritical point. (b) Horizontal wrapping probability
for n+ ranging from 0.5 to 0.55, for [82,0].

phase boundary at n− = 0.5 extending down to n− = (nc
−)h ≈

0.293. These quantities are indicated in Fig. 16(a). As noted
in the previous subsection, �nv

−(0.555, L) ∝ 1/L, a relation
that approximately holds throughout the interval 0.5 < n+ <

1 − (nc
−)h. Under the transformation from the original lat-

tice to the dual lattice, n+ ↔ 1 − n−, �v ↔ 1 − �h, so we
expect—and Fig. 16(a) confirms—that �nh

+ also scales as
1/L1. Thus, as L increases, the interval in n+ in which the hor-
izontal wrapping threshold drops from 1/2 to (nc

−)h shrinks
toward zero.

Now let us return to the setup in which we fix n± =
1/2 ± n′ and vary n′, which corresponds to a line with slope
−1 through the multicritical point. The ratio of the two-point
connectivity function along the vertical and horizontal, plotted
for [82,0] in Fig. 14(b), presents a puzzle: For very small
positive n′, the two-point function is in fact greater along
the vertical axis, seemingly contrary to our proposed phase
diagram. As seen from Fig. 16(a), however, for finite L the
line n+ + n− = 1 passes through a critical region at small
n′ where the horizontal and vertical percolation transitions
cannot be cleanly separated, and where for some samples the
vertical wrapping cluster develops first. Thus, whereas for
sufficiently large n′ all samples are in the horizontally perco-
lating, vertically nonpercolating phase, below an L-dependent
cutoff n′

c(L), the opposite can occur. For individual samples,
this critical region can extend to somewhat larger n′ than
Fig. 16(a) suggests, as the distribution of horizontal wrap-
ping thresholds becomes bimodal with a peak near (nc

−)h

and another near 1/2, before changing to a single peak at
(nc

−)h for sufficiently large n+ [Fig. 16(b)]. While we cannot
definitively rule out an alternate phase diagram where n′

c(L →
∞) remains finite, the trend with increasing L suggests that
this critical region shrinks toward the multicritical point as
L → ∞, yielding the phase diagram advertised in Fig. 14(a).
A similar phase diagram can be drawn in terms of b+ and
b−, but for a finite sample, the finite-size effects at small b′
will become entangled with the presence of sharp steps in the
function b′(n′).
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Since the horizontal percolation phase boundary extends
down to n− = (nc

−)h ≈ 0.293 for a wide range of n+ > 1/2,
the self-duality of the lattice implies that the vertical phase
boundary remains at (nc

−)v = 1/2 out to n+ ≈ 0.707. Be-
yond this point, as shown in Fig. 16(a), the vertical wrapping
threshold decreases sharply. In this regime, the separation into
horizontally and vertically percolating phases is no longer
appropriate, as the principal axes of the anisotropy begin to
rotate away from the horizontal/vertical and toward the axes
of the applied bias. The results for n′ > 0.7 depend on the sys-
tem size and boundary conditions, and we have not carefully
explored that part of this phase diagram.

D. Comparison with other models

One of the many surprises of the Ford checkerboard model
is that in the presence of twofold anisotropy, the strong/weak
axes align with horizontal/vertical, whereas the average two-
point connectivity along the axes of applied bias remain equal.
This is in contrast to random percolation, where for large
enough n′ C(�r) is larger by a constant factor along the mi-
croscopically favored direction (π/4). The orientation of the
strong axis also depends on the lattice L′ used in the checker-
board construction. While twofold anisotropy appears to be
relevant for �a = (37805/46962, 1/2) found via the optimiza-
tion protocol, at large bias, the strong axis aligns at an angle
somewhat below π/4.

A special feature of the Ford checkerboard model that
explains, in part, the preference for the horizontal and vertical
axes is the strong sensitivity of the “local occupation rates” to
arbitrarily weak bias. Consider a lattice with periodic bound-
aries aligned with [L1, 0] and [0, L1], so that the number of
available bonds in each row and column is L1, half of which
are +. For x0 = 0, ..., L1 − 1, the quantity

n±(x0) = |E ∩ {(x, y) ∈ L : x = x0}|
L1/2

(30)

is the occupation rate of ± bonds in the column with x coor-
dinate x0.

As shown in Fig. 17(a), at a global occupation rate of
n+ = n− = 1/2, the local occupation rates in an individual
sample of the Ford model are very homogeneous: N±(x)
oscillates quasiperiodically between L1/2 + 1 and L1/2 − 1.
In comparison, the local occupation rates for a random per-
colation instance are statistically homogeneous, but with a
significantly larger variance. The same trend holds with open
boundary conditions, excluding the columns along the edges.
Thus, at precisely n+ = n− = 1/2 the quasiperiodic Ford
model is homogeneous in a much stronger sense than the
random model.

This changes dramatically when we turn on the anisotropy:
for n′ > 0, there are rare columns where n−(x) = 0, and
others where n+(x) = 1. This is shown for n′ = 0.01 and
open boundary conditions in Fig. 17(b). In Fig. 17(b) we
also plot the local occupation rates at the same n′ for �a =
37805/46962, 1/2. In this case, the distributions of n±(x)
have significant overlap, and both distributions become nar-
rower as L increases, while also remaining narrower than the
distributions in the random percolation model at the same
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FIG. 17. Local occupation rates of + and − bonds along columns
of the lattice. (a) Occupation rates for system size [82,0] with PBCs at
n+ = n− = 1/2 for quasiperiodic checkerboard Ford (left) and ran-
dom percolation (right). (b) Occupation rates for system size [511,0]
with OBCs at n+ = 0.51, n− = 0.49 for checkerboard Ford (left) and
the quasiperiodic checkerboard model with optimized parameters
(right).

n′. For some purposes, where we might wish to avoid the
static 1D inhomogeneity in local occupation rates found in the
checkerboard Ford model, this makes the optimized choice of
�a appealing.

Another alternative to the Ford checkerboard model which
sidesteps some of these peculiarities is the counterrotated
model analyzed in previous sections. The checkerboard model
is able to “select” strong/weak axes other than the axes ±π/4
of microscopic bias because it lacks any reflection symmetry.
To wit, note that taking L′ to be the Ford lattice with �a− =
(
√

3/2,−1/2) in place of �a+ = (
√

3/2, 1/2) would swap the
behavior along the horizontal and vertical axes in the above
discussion, making the vertical axis the strong connectivity
axis for n′ > 0. However, one of the advantages of the coun-
terrotated model is its possession of additional reflection
symmetries. The twofold anisotropy breaks the symmetry
under reflection through the horizontal and vertical axes but
preserves the reflection axes ±π/4. This implies that the
strong and weak axes must align with the microscopic bias,
along ±π/4, like in random percolation. The relevance of
twofold anisotropy in this model remains a question for future
work.

VII. DISCUSSION

The quasiperiodic models discussed in this paper have
several features that distinguish them from random bond
percolation, including: critical exponent ν < 4/3, a self-
similar sequence of fourfold or twofold symmetric fractal
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clusters with different fractal dimension than random criti-
cal percolation, and relevance of twofold anisotropy. Thus,
replacing randomly chosen bonds with deterministically and
quasiperiodically chosen bonds changes the universality class
of the percolation transition. This is in contrast with the
three-dimensional Anderson localization transition for non-
interacting particles, where such a change from random to
quasiperiodic potential does not change the universality class
[45].

Next we briefly mention some open questions that remain
for future study:

Further research is required to determine whether there
exists a larger universality class of quasiperiodic models, or
whether the critical behavior is specific to the choice of L′
and other specifics of the models. The latter alternative is true
of variations on the counterrotated model, as evidenced by the
changing properties of fractal clusters and hulls as we tuned
the parameter a. However, it may still be the case that a more
robust universality class does exist for quasiperiodic models
with a different symmetry.

In this paper, we focused on just one member of the
checkerboard and counterrotated classes of models, the Ford
lattice. Modifying �a changes the fractal sequence of cluster
sizes and the specifics of the response to twofold anisotropy,
although the estimated ν for a checkerboard model using
one of the optimized choices of L′ [�a ≈ (0.805013, 1/2)] is
roughly consistent with that obtained here. Thus, the invention
and exploration of other substantially different quasiperiodic
percolation models (such as those of Ref. [16]) will be in-
teresting, to see what variety of behavior can occur. Could
there be some other nonrandom quasiperiodic percolation
models that, like random percolation, do have an emergent
conformal invariance at criticality, or is that not possible
without randomness? In a conformally invariant finite sys-
tem, the crossing probability between the intervals [x1, x2]
and [x3, x4] on opposite boundaries, which can be expressed
in terms of four-point functions of boundary operators,
depends only on the cross-ratio, (x4 − x3)(x2 − x1)/(x3 −
x1)(x4 − x2) [3]. In future studies, it would be useful to ver-
ify explicitly the failure of this ansatz for checkerboard and
counterrotated models.

Notably, conformal invariance is also absent in another
statistical mechanics model with nonrandom quasiperiodicity,
that of dimer coverings on Ammann-Beenker tilings [46].
Like in our percolation models, certain correlation functions
in that model exhibit discrete scale invariance but lack confor-
mal symmetry. It may also be interesting to make contact with
work on “conformal quasicrystals,” quasiperiodic tilings used
to construct discretized conformal field theories [47].

As mentioned in the introduction, our motivation for
this work comes from the application to monitored quan-
tum circuits. As a preliminary study in this direction, we
considered a spacetime translation-invariant Clifford circuit
with dual-unitary gates which is a “good scrambler” in terms
of entanglement generation and contiguous code length in
the absence of measurements [48]. When projective mea-
surements are added to this circuit in a quasiperiodic pattern
according to the checkerboard prescription, we find that there
is a measurement-induced phase transition far from the self-

dual point, at b ≈ −0.306 (n ≈ 0.225). While follow-up work
is necessary to determine the critical exponents, the present
evidence suggests ν ≈ 1, which falls outside the universality
class of the random Clifford transition. This is in contrast with
the findings of Ref. [10], which used a different quasiperi-
odic arrangement of measurements defined by a superlattice
whose lattice vectors are aligned with the underlying cir-
cuit, and found approximately the same exponents as the
random model. The random Clifford universality class of
the measurement-induced transition has emergent conformal
invariance [49], but is distinct from the random percolation
universality class [50]. Thus, in future work it will be interest-
ing to compare the exponents of the quasiperiodic percolation
transition to those of the quasiperiodic circuit transition. Is
there any sense in which we can define “spacetime clusters”
at the circuit critical point with discrete scale invariance, as at
the percolation threshold?
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APPENDIX A: MORE DETAILS ON FRACTAL CLUSTERS

In the checkerboard model, there are two species of fractal
clusters, whose discrete scale invariance and fourfold (not
continuous) rotational invariance means that the critical point
is not conformally invariant. Meanwhile, the critical clusters
in the counterrotated model have only twofold symmetry, with
clusters of a given size coming in pairs related by reflection.
In this section, we provide more details on the structure of
these clusters and the corresponding hulls. Although we have
not been able to arrive at an analytic form for the sequence of
cluster sizes, their rich structure is closely tied to the discrete
scale-invariant pattern of near-commensurate points on the
Ford lattice.

1. Checkerboard model

Figures 18 and 19 show the first five generations of the A
and B species in the checkerboard model. These figures were
obtained by applying the incremental percolation method with
periodic boundary conditions, for which all the clusters on the
finite system are generated (rather than just growing a single
cluster). At b = bc, n = nc, all of the clusters that do not wrap
around the boundary are precisely the ones identified in the
nominally infinite system, and constitute the discrete steps in
the cluster size distribution seen in Fig. 4(a).
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FIG. 18. Species A of fractal clusters in the checkerboard Ford model: mass 107 064 (pink, with smaller clusters around its periphery
also shown), 8632 [blue, with the gray box indicating the quadrant shown in Fig. 4(b)], 696 (gold), 56 (green), and 4 (dark blue). For the two
smallest clusters, the edges are also shown, and the clusters (of mass 17 and 1, respectively, belonging to species 2) enclosed on the dual lattice
are indicated with dashed lines and +’s. The arrows labeled −, + indicate the bond directions in the underlying lattice L.
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FIG. 19. Species B of fractal clusters in the checkerboard Ford model: Mass 31 952 (gray, with smaller clusters around its periphery also
displayed), 2576 (yellow), 208 (orange), 17 (red), and 1 (black). For the three smallest clusters, the edges contained in the cluster are also
shown.

Clusters belonging to species A are rotated squares with
small ornamental features. As j → ∞, the edges of the
square enclosing the cluster become aligned with the prin-
cipal lattice vectors of the Ford lattice, �a = (

√
3/2, 1/2)

and �a⊥ = (−1/2,
√

3/2). Species B consists of “pinwheel”-
shaped clusters, and the edges of the enclosing square
align with (

√
3/2,−1/2) and (1/2,

√
3/2) as j → ∞, which

are the lattice vectors of a counterrotated Ford lattice at
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TABLE I. First seven generations of critical clusters of species A in the checkerboard Ford model. The columns from left to right are: the
generation m; number of vertices V ; number of edges E ; E − V ; the mass of the largest cluster enclosed by this cluster on the dual lattice;
number of links in the external hull Nhull; number of occupied edges adjacent to the hull Nin; and number of unoccupied edges adjacent to the
hull Nout. Entries marked with an asterisk are conjectured based on the trend observed in the first five generations.

— V E E − V Dual Nhull Nin Nout

1 4 4 0 1 12 4 8
2 56 60 4 17 140 48 64
3 696 756 60 208 1500 508 560
4 8632 9388 756 2576 16092 5368 5560
5 107 064 116 452 9388 31952 172 652 57284 57936
6 1 327 928 1 444 380* 116 452* 396 304* 1 852 396 613 304 615 640
7 16 470 456 17 914 836* 1 444 380* 4 915 408* 19 874 492 6 575 668 6 583 864

j A( j) EA( j) EA( j − 1) B( j) NA
hull( j) NA

in( j) NA
out( j)

θ = −π/6. Thus, whereas the underlying lattice L has the
point group D4, with axes of reflection symmetry along
the horizontal, vertical, and ±π/4 [51], superimposing the
checkerboard at the Ford angle of θ = π/6 preserves only the
fourfold rotational symmetry. The fractal clusters exhibit no
additional emergent symmetry at the critical point.

Since members of both species are fourfold symmetric,
the inertia tensor is diagonal in any basis. The mass of each
cluster scales approximately as M( j) ∝ r( j)D f where r is the
radius of gyration. In the main text, D f was determined from
the scaling of the mass versus radius of gyration of the first
seven generations on a nominally infinite lattice. On finite
system sizes of length L, D f can also be inferred from the
mass of the largest cluster, which scales as smax(L) ∝ LD f at
the critical point, and from the average cluster size, which is
the second moment of the cluster size distribution and scales
at the percolation threshold as

〈s2〉(L) ∝ L2−η, (A1)

where the exponent η is related to the fractal dimension via the
hyperscaling relation η = 2 + D − 2D f [27]. Consistent with
the hyperscaling relation, the estimates of D f inferred from
the scaling of smax and 〈s2〉 converge to the same value. This
value is in agreement with Eq. (14), but with less precision
since the computational burden of finding all the clusters,
rather than just growing a single cluster, limits the accessible
system sizes.

Ideally, we could determine D f exactly by finding an ana-
lytic expression for the sequences A( j) and/or B( j). We leave

this as a challenge to the game reader and compile the details
of the first seven generations in Table I and Table II for species
A and B, respectively.

As seen in Figs. 18 and 19, each cluster contains holes
occupied by younger generations of each species. Scaling up
from generation m to m + 1, the holes inside the cluster also
scale up by one generation, and new holes appear belonging
to the youngest generation. Moreover, examining the edges
belonging to each cluster also allows us to determine the
composition of clusters on the dual lattice. The mth generation
of species A encloses the mth generation of species B on the
dual lattice. In turn, for m > 2, the mth generation of species
B only encloses a much smaller cluster on the dual lattice,
namely the ( j − 2)th generation of species A. This is related
to the fact that the external perimeters of B clusters have a
much smaller “inner core” than those of A clusters (Fig. 20).
Large enough generations also enclose several smaller clusters
on the dual lattice. Explicitly, a graph containing E edges and
V vertices encloses E − V + 1 dual lattice clusters. Here an-
other facet of the fractal structure emerges: the quantity E − V
for the mth generation is equal to the number of edges for
the ( j − 1)th generation. In summary, then, the two species
are closely related both on the original lattice and on the dual
lattice.

2. Counterrotated model

Data on the first eight generations of clusters, and the first
nine generations of hulls, for the counterrotated model are

TABLE II. First seven generations of critical clusters of species B in the checkerboard Ford model, with columns as in Table I. In the
column labeled “Dual”, — indicates that the cluster encloses no clusters on the dual lattice (i.e., is a tree).

— V E E − V Dual Nhull Nin Nout

1 1 0 −1 — — — —
2 17 16 −1 — 68 16 28
3 208 224 16 4 756 224 264
4 2576 2800 224 56 8116 2584 2716
5 31 952 34 752 2800 696 87 076 28 448 28 904
6 396 304 431 056 34752* 8632* 934 244 307 736 309 348
7 4 915 408 5 346 464* 431 056* 107 064* 10 023 572 3 310 808 3 316 496

m B( j) EB( j) EB( j − 1) A( j − 2) NB
hull( j) NB

in( j) NB
out( j)
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FIG. 20. External perimeter of the fourth-generation A clus-
ter (M = 8632, Nhull = 16092, top) and fourth-generation B cluster
(M = 2576, Nhull = 8116, bottom) in the Ford checkerboard model.
As in Fig. 6(b), black, red, and blue lines, respectively, indicate the
inner bonds, outer bonds, and “hull itself.”

reported in Table III. Since there is only one species, the
self-similar structure (as exhibited in Fig. 6) is much simpler
than for the checkerboard model. The “length” L of the cluster
is the side length of the smallest square enclosing the cluster,
whose sides are aligned with the horizontal and vertical axes
in Fig. 2. Since all of the critical clusters are aligned with
±π/4, i.e., along the + or − bonds of L, the length along the
major axis is L

√
2. As expected, L( j)/L( j − 1) converges to

2 + √
3. L(2), ..., L(8) follow sequence A263942 in Ref. [20].

The other quantities do not follow any known sequences, but
we empirically observe that Nout( j) = Nin( j) + 10 for m � 3.
Another quirk is that at b = 0, the smallest clusters have mass
2, not 1. This means that for a given vertex, at least one of the
incident edges has b(x, y) � 0.

TABLE III. First nine generations of critical clusters in the coun-
terrotated model. L is the side length of a square enclosing the cluster
(which is oriented at ±π/4 with respect to the square), and V is the
number of sites. Nhull, Nin, Nout are the number of hull links, adjacent
bonds internal to the hull, and adjacent bonds external to the hull. For
the ninth generation, only the hull was obtained.

— L V Nhull Nin Nout

1 1 2 8 1 6
2 6 15 44 16 24
3 28 132 244 108 118
4 110 1244 1420 654 664
5 416 11 780 8276 3836 3846
6 1558 111 580 48 236 22 382 22 392
7 5820 1 056 900 281 140 130 476 130 486
8 21726 10 011 100 1 638 604 760 494 760 504
9 — — 9 550 484 4 432 508 4 432 518

m L( j) V ( j) Nhull( j) Nin( j) Nin( j) + 10

APPENDIX B: BOUNDARY CONDITIONS
FOR THE CHECKERBOARD MODEL

In this Appendix, we give details on the open and peri-
odic boundary conditions used for finite-size scaling in the
checkerboard model.

1. Open boundary conditions

Since L and L′ are not commensurate, if we do not distort
L′, we must use open boundary conditions, which we define
to fulfill two conditions: First, to take full advantage of the
self-dual nature of the model in the bulk, the boundaries need
to be fine-tuned so that the lattice is completely self-dual. This
construction, which requires the nominal system size L1 to be
odd and results in a staggered lattice with (L + 1)/2 vertices
in each row, is shown in Fig. 21. The system should also have
an aspect ratio of 1, so that the length of the top/bottom bound-
aries and left/right boundaries are all equal. This preserves the
underlying symmetry under π/2 rotations in the absence of
the anisotropic term.

2. Periodic boundary conditions

Using the discrete scale-invariant pattern of near-
commensurate points on the Ford lattice, we also construct
two sequences of rational approximants to �a for use in pe-
riodic boundary conditions (PBCs) as described in the main
text. To ensure that coordinates separated by integer multiples
of [L1, L2] and [−L2, L1] are fully equivalent, these points
must have equal parity with respect to both L and L′. Equal
parity on L means L1 + L2 must be even, and ensures that the
PBCs identify odd bonds with odd bonds and even with even.
Equal parity on L′ is needed to identify the same sublattices on
the checkerboard, so letting [L1, L2] = A[l1, l2], l1 + l2 must
be even as well.

L1( j), l1( j), and l2( j) for each sequence of system sizes
with PBCs all obey the same recursion relation:

x( j) = 4x( j − 1) − x( j − 2)

⇒ lim
j→∞

x( j)

x( j − 1)
= 2 +

√
3. (B1)
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FIG. 21. Lattice L (black, solid lines) and dual lattice (blue,
dashed lines) for a system of nominal size L1 = 7 and open bound-
ary conditions, consisting of L2

1 = 49 bonds and (L1 + 1)2/2 = 32
vertices.

The “even” sequence of system sizes has Le
2 = 0, so

the periodic boundaries align with horizontal and vertical,
with Le

1(1) = 6, Le
1(2) = 22 [20]. The alternating sequence,

denoted “odd,” has Lo
2 = Lo

1, so the periodic boundaries are ro-
tated by π/4 with respect to horizontal/vertical, with Lo

1(1) =
2, Lo

1(2) = 8. In either case, a system periodic under [L1, L2]
contains |V| = (L2

1 + L2
2 )/2 vertices, and up to L2

1 + L2
2 edges.

The system size L is then defined as
√|V|, although it is

sometimes more illuminating to perform a scaling collapse
with L1.

l1( j) and l2( j) are related to these sequences of system
sizes by

le
1 (0) = 1, le

1 (1) = 5, le
2 ( j) = −Le

1( j)/2, (B2a)

lo
1 ( j) = Le

1( j + 1)/2, lo
2 ( j) = Le

1( j)/2. (B2b)

Note that le
1 ( j)/Le

1( j) defines a series of lower principal con-
vergents to a1 = √

3/2 (see entry A001834 of Ref. [20]),
while le

2/Le
1( j) = −a2 = −1/2. Meanwhile, lo

1 ( j)/Lo
1( j) de-

fines a series of upper approximants to a1 + a2 = (1 +√
3)/2, while lo

2 ( j)/Lo
1( j) defines a series of upper approx-

imants to a1 − a2 = (1 − √
3)/2. This means that for the

odd parity sequence, a1 and a2 are adjusted slightly below
their Ford values to make the periodic boundary conditions
commensurate, whereas for the even parity sequence, (a1, a2)
are both slightly above their Ford values. Moreover, adjusting
�a to satisfy [L1, L2] = A[l1, l2] yields commensurate lattice
vectors

�d± = [(L1 ± L2)/2, (L1 ∓ L2)/2], (B3)

such that every A vertex on the checkerboard is partnered with
a B vertex at a displacement of �d±.

FIG. 22. (a) b(n) averaged over samples for the even sequence
of system sizes, [Le

1, 0], near nc = 1/2 in the checkerboard Ford
model. (b) Scaling collapse of the average wrapping probability,
�wrap(b) = 1

2 [�+(b) + �−(b)], in fixed b ensembles, implies a spu-
rious exponent ν = 1. L1 = 1142 not shown.

APPENDIX C: FINITE-SIZE SCALING
IN THE CHECKERBOARD MODEL

In the main text, we noted that the wrapping interval for
PBCs gives rise to a spurious exponent ν = 1/2 when working
in ensembles at fixed n. In this Appendix, we expand on the
origin of this exponent, detailing the scaling collapse of the
wrapping probabilities and crossing probabilities for fixed n
as well as fixed b ensembles.

1. Distributions of b scores

The fraction of occupied bonds, n = N/Ne, where Ne =
2L2 is the number of available bonds and N the number of
occupied bonds, is a monotonic function of b:

n(b) = |E (b)| = |{(x, y) : b(x, y) � b}|. (C1)

Although n(b) is monotonic, the presence of sharp steps in
the distribution of b(x, y) near b = 0 on finite lattices leads
to significantly different scaling functions f (x) and g(x). In
particular, the fact that n(b) is not a smooth function near
b = bc leads to different exponents inferred from the wrap-
ping probability [Eq. (9)]. To shed some light on this, we study
the distribution of b scores b(x, y) versus their rank.

For PBCs, the distribution of b scores is perfectly symmet-
ric about 0, i.e., b(n) = −b(1 − n), due to the commensurate
point in the middle of the lattice [Eq. (B3)]:

b(x, y) = −b[ �d± + (x, y)]. (C2)

Focusing on the vicinity of the wrapping threshold, there is
a large step at b = 0, with smaller steps nearby at discrete
intervals. Different samples can have different widths and
heights for the steps, but widths of the intervals between steps
are concentrated around �n = 1/2L1 as shown in Fig. 22(a).

For the even parity sequence of system sizes, [Le
1, 0], the

wrapping in one direction occurs at b < 0 (n < 1/2) when
bond e− gets added and the wrapping in the other direction
occurs at b > 0 (n = 1/2) when the next bond e+ gets added.
Thus, the two bonds e−, e+ which mediate the wrapping are
displaced by a commensurate lattice vector �d±, and the wrap-
ping events occur on either side of a large step in the b scores.
Since the steps in the b scores, including the one centered at
b = 0, have an average height �b ∝ 1/L, finite-size scaling
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of the wrapping interval in terms of b would imply ν = 1.
This can also be seen from the scaling collapse of g(bL1)
[Fig. 22(b)]. While �wrap(b) is a smooth function of b, this
is solely due to the smooth distribution of b scores within the
central step, which has a tail all the way down to �b = 0.
The deduced exponent from this scaling collapse is contrary to
the exponent ν = 1/2 inferred from �N = 1. Neither of these
inferred exponents is the “true” critical exponent, however,
since they only capture the finite-size rounding of the step in
the scaling function f (x).

It should be emphasized that the steps in b(n) near n = nc

are fundamentally a finite-size effect, not the consequence
of adjusting L′ to use PBCs. As L → ∞, the height and
width of the central step both go to 0 as 1/L. In the limit
of infinite system size, under the assumption that the vertices
of Z2 are uniformly distributed within the enlarged unit cell
of the checkerboard on L′, which appears to hold when L′ is
the “maximally incommensurate” Ford lattice, n(b) takes the
somewhat unwieldy functional form:

n(b) = 1

2
+ b

8β+β−

{
− 2γ

[
2b2 log(1 + γ

√
2)

+β+β− log

(
−1 + |b|β+

√
2 + γ

√
2

β+

)

− log(2γ +
√

2)

]
+ 4

√
2 − 4|b|β+ − γ

√
2

}
, (C3)

where

β± = 1 ± |b|
√

2, γ =
√

1 − b2.

Substituting b → b
√

2 yields the expression for n(b) in the
counterrotated model (for which b ranges from −1/

√
2 to

1/
√

2). From Eq. (C3), n(b) is continuous with a continuous
first derivative at b = 0. Therefore, one advantage of the nom-
inally infinite methods used in the main text is that scaling as
a function of n and b give consistent results for the critical
exponent ν, as in random percolation.

2. Crossing probabilities

Turning to OBCs, while the typical spanning threshold in
both directions is nc ≈ 1/2, the distribution of thresholds has
secondary peaks at a distance of �n ∝ 1/L above or below
1/2. Thus, the scaling function f for the average crossing
probability, defined as 1

2 [�+(n) + �−(n)], consists of more
than one step, unlike the wrapping probability. At the level

FIG. 23. Cumulative distribution function of (Nc
+ − Nc

−)/L1 for
quasiperiodic Ford model (left) vs random bond percolation (right),
with open boundary conditions. Black dashed curve is the cumulative
normal distribution function with mean 0, standard deviation 1/2.

of a single sample, while the majority of samples have a
spanning interval �N = O(1), an extensive fraction instead
have �N = O(L).

These large spanning intervals and concomitant secondary
peaks in the threshold distribution originate primarily from
a spontaneous inhomogeneity in the number of occupied +
and − bonds at the threshold, denoted Nc

±. The cumulative
distribution function of (Nc

+ − Nc
−)/L1 is plotted in Fig. 23,

exhibiting a large central step along with secondary steps
at ±1/4. Note that, aside from the fact that with OBCs the
number of available (+) bonds is 1 more than the number of
available (−) bonds (the opposite is true on the dual lattice),
there is no microscopic bias toward either parity bond. For
this reason, the secondary steps are of either sign, and we
can think of the infinite system as containing patches with
a spontaneous preference for either parity. This spontaneous
imbalance is related to the static 1d inhomogeneity in the
presence of anisotropy [Fig. 17(b)]. The O(L) surplus of + or
− bonds can be thought of as producing an effective nonzero
n′ of either sign in that patch of the system, which in turn im-
plies the existence of columns or rows with anomalous local
occupation rates. Indeed, in such patches, the large spanning
interval arises when, after a cluster has already crossed in one
direction, a strip of bonds all in the same row or column of
the lattice and with the same parity are added consecutively
before the cluster can cross in the other direction.

This is in contrast to PBCs, where |Nc
+ − Nc

−| � 1 at each
wrapping threshold, and the wrapping interval consists of
adding just one bond of either parity rather than an entire
row. It is also qualitatively different from what occurs for
random bond percolation (right panel of Fig. 23). In that case,
Nc

+ − Nc
− follows an approximately normal distribution, with

variance σ 2 = L2
1/4.
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