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Effects of mortality on stochastic search processes with resetting
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We study the first-passage time to the origin of a mortal Brownian particle, with mortality rate μ, diffusing in
one dimension. The particle starts its motion from x > 0 and it is subject to stochastic resetting with constant
rate r. We first unveil the relation between the probability of reaching the target and the mean first-passage
time of the corresponding problem in absence of mortality, which allows us to deduce under which conditions
the former can be increased by adjusting the restart rate. We then consider the first-passage time conditioned
on the event that the particle reaches the target before dying, and provide exact expressions for the mean and
the variance as functions of r, corroborated by numerical simulations. By studying the impact of resetting for
different mortality regimes, we also show that, if the average lifetime τμ = 1/μ is long enough with respect to
the diffusive time scale τD = x2/(4D), there exist both a resetting rate r∗

μ that maximizes the probability and a
rate rm that minimizes the mean first-passage time. However, the two never coincide for positive μ, making the
optimization problem highly nontrivial.
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I. INTRODUCTION

There is a plethora of situations in nature which can de-
scribed by randomly moving objects in search for a fixed
target. A short list of examples includes diffusion-controlled
chemical reactions [1], diffusion in trapping environments [2],
and animals or even microorganisms in search of food [3,4].
These may be often formulated as first-passage problems for
a stochastic process, where one is mainly interested in the
statistics of the first-passage time (FPT), namely, the random
variable that describes the time to reach the target for the first
time [5]. A closely related quantity is the survival probability,
which can be defined as the probability that the target is not
reached up to a certain time t .

Not surprisingly, being able to identify efficient strategies
to minimize the time required to complete the search is of
considerable importance, both practically and theoretically. In
recent years, it has been pointed out that resetting intermit-
tently a stochastic process to its initial condition can notably
increase the search efficiency [6–35]. For instance, let us
consider the paradigmatic example of a Brownian particle in
one dimension, that starts its motion from x0 = x in search of
a target located at the origin of coordinates. The first-passage
time for this problem follows the Lévy-Smirnov distribution,
with probability density function (PDF) given by [36]

f0(x, t ) = x√
4πDt3

exp

(
− x2

4Dt

)
, (1)
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where D is the diffusion constant. One can check from this
expression that the total probability E (x) of reaching the target
starting from x is one:

E (x) =
∫ ∞

0
f0(x, t )dt = 1. (2)

Nevertheless, if we consider the first moment of the distri-
bution, namely, the mean first-passage time (MFPT), due to
the power-law decay t−3/2 of f0(x, t ), we obtain a divergent
MFPT, independently of the initial distance from the origin.
Hence, the diffusing particle reaches the target with proba-
bility one, but the expected time to perform this passage is
infinite. This divergence is mostly due to the contribution
of trajectories that initially diffuse away from the target, for
which the first-passage time may be arbitrarily large. The
probability of these contributions exhibits a relatively slow
power-law decay, which, as already mentioned, is responsi-
ble for the divergence of the MFPT. Now it is intuitive that
restarting the process from time to time, in such a way that the
time scale of a diffusive excursion is cut off by the average
time between two resetting events, will eliminate those “bad”
contributions, and yield a finite MFPT.

The most studied type of resetting protocol is the one that
assumes independent and identically distributed time intervals
between resetting events, drawn from an exponential distribu-
tion:

φr (t ) = r exp(−rt ), (3)

where r is the (constant) resetting rate. A resetting protocol of
this kind is also called Poissonian resetting, due to the fact that
the number of restarts up to time t follows Poissonian statis-
tics. It has been shown that, introducing this restart protocol in
the one-dimensional Brownian search problem, for any r > 0
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the system shows a finite MFPT, which is given by [8]

〈T0(r; x)〉 = exp(x
√

r/D) − 1

r
. (4)

Note that for both r → 0 and r → ∞ the previous expression
yields diverging limits, which means that there exists an opti-
mal value r∗

0 of the rate where 〈T0(r; x)〉 reaches a minimum.
The two divergences are easily explainable: For r → ∞, the
average time between restarts tends to zero; hence most of
the times the particle is reset before being able to reach the
target, and the process is thus restarted again and again. For
r → 0 instead, we must recover the behavior of the reset-free
process, which indeed exhibits a diverging MFPT. We remark
that also different kinds of resetting protocols have been con-
sidered, e.g., resetting at fixed time intervals [16,32,37–39] or
with time-dependent resetting rates [14,33,40], which, how-
ever, do not change drastically the aforementioned features.
For comprehensive reviews, see [41,42].

A problem that has been partially overlooked in the liter-
ature concerns the impact stochastic resetting may have on
the first-passage properties of evanescent systems, e.g., an
object, such as a radioactive species, subject to a natural decay
process [43]. Systems of this kind are ubiquitous in nature,
especially in the context of chemical reactions or biochemical
processes. Examples include phenomena such as lumines-
cence quenching or excimer formation [44], degradation
mechanisms associated with morphogen gradients [45,46],
and recombination of a pair of particles [47].

In practice, in these systems the diffusive objects can “dis-
appear” after a certain amount of time, which in most cases is
treated as a random variable drawn from a given PDF ψ (t ).
If the first moment of the distribution is well defined, this
introduces the constraint of a finite expected lifetime for the
stochastic process. Needless to say, this radically alters the
first-passage properties of the system, as has been investigated
largely in the literature: We refer here to studies on normal and
anomalous diffusion [48,49], hopping models in one or more
dimensions [50–52], continuous-time random walks [53,54],
space-time-coupled random walks [55], and random walks on
hierarchical graphs [56]. Although in this paper we focus on
first-passage problems, we point out that research on evanes-
cence is not limited to them [57].

The first consequence of considering first-passage pro-
cesses with finite expected lifetime is that the probability of
reaching the target becomes smaller than one, as the particle
may “die” before completing the search. Remarkably, intro-
ducing resetting can increase the probability that the search
process will complete successfully, and one can even identify
an optimal rate that maximizes the probability [58]. Another
consequence is that the MFPT can never be infinite, because
the time scale of the system is ruled by the average life-
time. Recall that introducing resetting at high rates for an
immortal system yields a diverging MFPT, which is a crucial
observation to deduce the existence of a minimal MFPT. For
evanescent systems, on the other hand, the MFPT cannot take
arbitrarily large values, and thus it is expected that, even if
resetting is introduced, it will remain bounded for each value
of the resetting rate. Consequently, inferring the possibility
of optimizing the MFPT becomes a much less trivial task,

not least because one must keep in mind that the resetting
mechanism also affects the probability of success.

In this paper we investigate the first-passage problem of
a Brownian particle in one dimension that starts its motion
from x > 0, in search of a target located at the origin. The
dynamics is subject to stochastic resetting at constant rate r
and the particle can decay after a random time exponentially
distributed, with mortality rate μ. We first develop a general
theory that allows us to compute the quantities of interest,
such as the probability of a successful search or the condi-
tional MFPT, for an arbitrary first-passage process subject to
Poissonian resetting and an exponentially distributed decay
time. In particular, In Sec. II we derive the PDF of the first-
passage time; in Sec. III we obtain the probability of success
and show that it can be expressed in terms of the MFPT of the
corresponding problem in absence of mortality, which lets us
deduce the conditions under which resetting can increase the
probability; in Sec. IV we compute the conditional MFPT and
the variance, showing how both can be derived from the prob-
ability of success and highlighting the relation between the
conditional MFPT and the moments of the FPT in absence of
mortality. Then, in Sec. V we apply the previously developed
theory to the aforementioned problem of one-dimensional
search processes, showing that the probability of success and
the conditional MFPT take on drastically different behaviors
depending on the mortality rate considered. Finally, in Sec. VI
we draw our conclusions.

II. FIRST-PASSAGE TIME DISTRIBUTION

As we have already mentioned, in this paper we will only
consider exponential distributions for both the time intervals
between resetting events and the “decay” time of the system.
The PDF of the former is denoted with φr (t ) as in Eq. (3),
while the latter is drawn from

ψμ(t ) = μ exp(−μt ), (5)

where μ is the constant mortality rate. The system is thereby
characterized by the time scales τr = 1/r and τμ = 1/μ,
where τr is the average time between resets and τμ is the
average lifetime. We point out that the restart mechanism here
considered only affects the dynamics, and does not reset the
decay time.

Let �μ(t ) be the probability that the system does not decay
up to time t , which, according to Eq. (5), is given by

�μ(t ) = μ

∫ ∞

t
e−μτ dτ = e−μt . (6)

We consider an absorbing boundary located at the origin, and
denote with Q(x, t ; μ, r) the survival probability up to time
t of a particle with mortality μ, that starts its motion from
x0 = x > 0 and is reset at rate r to the starting position. We say
that a mortal particle subject to stochastic resetting survives if
it does not reach the target and does not decay up to time t ;
hence

Q(x, t ; μ, r) = qr (x, t )�μ(t ), (7)

where qr (x, t ) is the survival probability, for the same prob-
lem, of an immortal walker in the presence of resetting.
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Now, the difference between the particles that have sur-
vived up to time t and those that have survived up to time
t + dt corresponds to the particles associated with the search
processes that have stopped in the interval (t, t + dt ), either
because the target has been reached or because the particle
has decayed. We thus define the PDF of the stopping time:

F (x, t ; μ, r) = −∂Q(x, t ; μ, r)

∂t
(8)

= fr (x, t )�μ(t ) + qr (x, t )ψμ(t ), (9)

where fr (x, t ) is the first-passage time of an immortal particle,
defined as

fr (x, t ) = −∂qr (x, t )

∂t
, (10)

and we used d�μ(t )/dt = −ψμ(t ).
Clearly, the stopping time PDF is expressed as the sum of

two contributions: The first term on the right-hand side (rhs)
of Eq. (9) corresponds to the PDF of the time of a successful
search process, whereas the second one is the PDF of the
stopping time due to the decay of the particle. Here we are
interested only in the former:

F1(x, t ; μ, r) = fr (x, t )�μ(t ). (11)

If we consider its Laplace transform, by keeping in mind
Eq. (6), we obtain

F̃1(x, s; μ, r) =
∫ ∞

0
e−(s+μ)t fr (x, t )dt = f̃r (x, s + μ), (12)

where f̃r (x, p) is the Laplace transform of the first-passage-
time PDF for an immortal particle with resetting. It can be
shown that, in the case of resetting performed at constant rate
r, f̃r (x, p) can be expressed as [8,15]

f̃r (x, p) = (p + r) f̃0(x, p + r)

p + r f̃0(x, p + r)
, (13)

where f̃0(x, p) is the Laplace-transformed first-passage-time
PDF of the reset-free system, namely,

f̃0(x, p) =
∫ ∞

0
e−pt f0(x, t )dt . (14)

It follows that

F̃1(x, s; μ, r) = (s + μ + r) f̃0(x, s + μ + r)

s + μ + r f̃0(x, s + μ + r)
. (15)

III. PROBABILITY OF REACHING THE TARGET:
RELATION WITH THE MFPT IN

ABSENCE OF MORTALITY

We now observe that

F̃1(x, 0; μ, r) =
∫ ∞

0
F1(x, t ; μ, r)dt (16)

is the total probability of hitting the target, which will hence-
forth be denoted by E (μ, r; x). In virtue of Eqs. (12) and (13),
this can be written as

E (μ, r; x) = f̃r (x, μ) = (μ + r) f̃0(x, μ + r)

μ + r f̃0(x, μ + r)
. (17)

Since it specifies the possibility of an outcome out of different
alternatives (in our case, the particle can either reach the target
or decay), E (μ, r; x) is a splitting probability [36,59]. Notably,
Eq. (17) states that f̃r (x, μ), which defines the distribution
(in Laplace space, with Laplace variable μ) of the FPT for a
system of immortal particles undergoing Poissonian resetting,
is equal to the probability that the same system will reach the
target once the constraint of a finite mean lifetime τμ = 1/μ

is introduced. Hence, the moments of the FPT distribution in
absence of mortality can be derived from E (μ, r; x), and in
particular the MFPT can be obtained from

∂E (μ, r; x)

∂μ

∣∣∣∣
μ=0

= ∂ f̃r (x, μ)

∂μ

∣∣∣∣∣
μ=0

= −〈T0(r; x)〉, (18)

where 〈T0(r; x)〉 is the MFPT. Indeed, from Eq. (17) we cor-
rectly obtain

− ∂E (μ, r; x)

∂μ

∣∣∣∣
μ=0

= 〈T0(r; x)〉 = 1 − f̃0(x, r)

r f̃0(x, r)
, (19)

as is known from the theory of first passage with restarts (see,
for example, [15]). By inverting the previous equation, we can
write

f̃0(x, r) = 1

1 + r〈T0(r; x)〉 , (20)

and by plugging this expression into Eq. (17), after the
substitution r → μ + r, we find a general relation between
E (μ, r; x) and 〈T0(r; x)〉, which reads

E (μ, r; x) = 1

1 + μ〈T0(μ + r; x)〉 . (21)

Now note that for r = 0

E (μ, 0; x) = f̃0(x, μ) = 1

1 + μ〈T0(μ; x)〉 , (22)

hence E (μ, 0; x) is strictly smaller than one for μ > 0. Can
we increase this probability by introducing resetting in the
system? An immediate consequence of Eq. (21) is that, if for
some r > 0 we have

〈T0(μ + r; x)〉 < 〈T0(μ; x)〉, (23)

then we surely increase the probability: E (μ, r; x) >

E (μ, 0; x). In particular, if 〈T0(r; x)〉 has a minimum at r∗ >

μ, then E (μ, r; x) has a maximum at r∗ − μ. Indeed, by taking
the derivative with respect to r, one can write

∂ ln E (μ, r; x)

∂r
= −μ

∂〈T0(μ + r; x)〉
∂r

, (24)

hence the stationary points of E (μ, r; x) correspond to sta-
tionary points of 〈T0(μ + r; x)〉. If the MFPT has the global
minimum at r∗

0 , and no other stationary points, as it happens
in the case of diffusion discussed in the Introduction [see
Eq. (4)], then the splitting probability has the global maximum
at r∗

μ = r∗
0 − μ. We therefore have the simple relation

r∗
μ = r∗

0 − μ, (25)

which agrees with that obtained in [58] for the specific case of
mortal Brownian searchers in one dimension.
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The situation where the MFPT has a single critical point
(a minimum) is commonly observed in many systems with
resetting, for example, the aforementioned normal diffusion
[8], diffusion in logarithmic potentials [24], diffusion in an
interval [21], nonlinear diffusion [60], and also diffusion
with resetting at time-dependent rates [14,33]. In such cases,
Eq. (25) tells us that r∗

μ exists only if r∗
0 > μ. It follows that

E (μ, r; x) can be maximized only if the mortality rate is below
a given threshold μ∗, which is precisely given by r∗

0 , i.e.,
μ∗ = r∗

0 . In terms of time scales, the average lifetime τμ must
be larger than τ ∗

0 = 1/r∗
0 , which is the average time between

resets for an immortal particle, when the process restarts at the
optimal rate.

IV. CONDITIONAL FIRST-PASSAGE TIME:
MEAN AND VARIANCE

In this section we study the first two moments of the
conditional FPT, which are obtained by averaging only over
those processes that actually reach the target. We will find that
both present significant differences from the corresponding
moments in absence of mortality.

By definition, the first moment, namely, the conditional
MFPT, is given by

〈Tμ(r; x)〉 =
∫ ∞

0 tF1(x, t ; μ, r)dt∫ ∞
0 F1(x, t ; μ, r)dt

, (26)

which can be conveniently computed from

〈Tμ(r; x)〉 = − ∂ ln F̃1(x, s; μ, r)

∂s

∣∣∣∣∣
s=0

. (27)

By using Eq. (15) we obtain an equation in which 〈Tμ(r; x)〉
is expressed in terms of f̃0(x, p) and its derivative:

〈Tμ(r; x)〉 = 1 + r f̃ ′
0(x, μ + r)

μ + r f̃0(x, μ + r)
− 1

μ + r

− ∂ ln f̃0(x, μ + r)

∂r
, (28)

where we used the notation

f̃ ′
0(x, p) = ∂ f̃0(x, p)

∂ p
. (29)

Although the previous equation provides an exact expres-
sion in terms of the fundamental quantity f̃0(x, p), it is worth
highlighting the dependence of the conditional MFPT on the
moments of the FPT distribution in absence of mortality. From
Eqs. (12) and (17), we have F̃1(x, s; μ, r) = f̃r (x, s + μ) and
E (μ, r; x) = f̃r (x, μ). Hence Eq. (27) becomes

〈Tμ(r; x)〉 = −∂ ln E (μ, r; x)

∂μ
, (30)

and, by using Eq. (21), we obtain

〈Tμ(r; x)〉 = 〈T0(μ + r; x)〉 + μ∂μ〈T0(μ + r; x)〉
1 + μ〈T0(μ + r; x)〉 . (31)

Then, by using [15]

2
∂〈T0(p; x)〉

∂ p
= 2〈T0(p; x)〉2 − 〈T 2

0 (p; x)〉, (32)

we can write

〈Tμ(r; x)〉 = 〈T0(μ + r; x)〉 − μ〈T 2
0 (μ + r; x)〉

2 + 2μ〈T0(μ + r; x)〉 . (33)

Let us first observe that for μ = 0 one correctly recov-
ers 〈T0(r; x)〉. If instead we consider positive mortality rates
μ > 0, for r = 0 we obtain the conditional MFPT in absence
of resetting, which reads

〈Tμ(0; x)〉 = 〈T0(μ; x)〉 + μ∂μ〈T0(μ; x)〉
1 + μ〈T0(μ; x)〉 (34)

= −∂ ln f̃0(x, μ)

∂μ
, (35)

where the second line can be derived by using the expression
for 〈T0(μ; x)〉 given by Eq. (19); alternatively, it follows from
Eq. (28). For r → ∞ instead, we use Eq. (28) and consider
the three terms on the right-hand side separately. The first one
tends to 1/μ: This can be shown by observing that f̃ ′

0(x, p) is
the Laplace transform of −t f0(x, t ), and from the initial value
theorem we have

lim
p→∞ p f̃0(x, p) = lim

t→0
f0(x, t ), (36)

− lim
p→∞ p f̃ ′

0(x, p) = lim
t→0

t f0(x, t ). (37)

The second one converges to zero, while Eq. (35) suggests that
the third term corresponds to 〈Tμ+r (0; x)〉, hence for r 	 μ

we can approximate

〈Tμ(r; x)〉 ≈ τμ + 〈Tr (0; x)〉. (38)

For diffusion processes, we expect the last term on the rhs
of this equation to vanish in the r → ∞ limit. Indeed, this
represents the conditional MFPT of a diffusive particle with
mortality rate μ = r in absence of resetting. For very large
r, i.e., in the high-mortality limit, the main contribution to the
average time to reach the target comes from very fast searchers
[49]. It follows that the conditional MFPT converges to the
average lifetime τμ = 1/μ:

lim
r→∞〈Tμ(r; x)〉 = τμ. (39)

We point out that this result, valid for diffusion, is based on
the fact that there is always a positive probability of covering
arbitrarily large distances in arbitrarily short times. For pro-
cesses subject to the constraint of a finite propagation speed
c, however, the term 〈Tr (0; x)〉 is not expected to converge to
zero. A counterexample is given by run-and-tumble particles:
The Laplace transform f̃0(p; x) for this case has been widely
considered in the literature. In one dimension and with sym-
metric initial conditions, it reads [18,19,26,61]

f̃0(x, p) = 1

2γ
[p + 2γ −

√
p(p + 2γ )]e−τc

√
p(p+2γ ), (40)

where γ is the tumbling rate and τc = x/c. One can verify that
Eq. (35) yields

〈Tμ(0; x)〉 = τc

(
1 + β√
1 + 2β

)
+ τμ

2

(√
1 + 2β − 1

1 + 2β

)
, (41)

where β = γ /μ. In the limit of high mortality, one obtains

lim
μ→∞〈Tμ(0; x)〉 = τc, (42)
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hence 〈Tμ(0; x)〉 does not vanish, and Eq. (39) in the case of
run-and-tumble particles must be replaced by

lim
r→∞〈Tμ(r; x)〉 = τμ + τc. (43)

In the following we will only focus on diffusion processes,
for which Eq. (39) may be considered valid. The effects of
finite propagation speeds will be investigated in forthcoming
work. However, the important point is that, in contrast to the
case of immortal searchers, both the limits limr→0〈Tμ(r; x)〉
and limr→∞〈Tμ(r; x)〉 are finite. Then, deducing the existence
of stationary points, e.g., a minimum, for the conditional
MFPT becomes a highly nontrivial task. Of course, one can
try to approach the problem analytically, but the expressions
obtained for the derivative reveal a rather complex structure,
which makes it difficult to deduce its general properties. In the
Appendix we show that the critical points satisfy

1 − μ2∂r〈T0(μ + r; x)〉
1 + μ〈T0(μ + r; x)〉

∂〈T0(μ + r; x)〉
∂r

= −μ
∂2〈T0(μ + r; x)〉

∂r2
, (44)

from which we deduce that an optimal rate that maximizes
the probability of a successful search generally does not also
minimize the conditional MFPT. Indeed, as we have seen in
Sec. III, the rate r∗

μ that maximizes E (μ, r) exists if there is
r∗

0 > μ that minimizes 〈T0(r; x)〉, in which case we have r∗
μ =

r∗
0 − μ. If we plug this value into Eq. (44), the left-hand side

(lhs) vanishes, but the rhs in general does not. Consequently,
we expect that probability and mean first-passage time are
optimized for distinct resetting rates.

We can extend the analysis to the second moment. In par-
ticular, observe that the variance

σ 2
μ(r; x) = 〈

T 2
μ (r; x)

〉 − 〈Tμ(r; x)〉2 (45)

can be computed as

σ 2
μ(r; x) = ∂2 ln F̃1(x, s; μ, r)

∂s2

∣∣∣∣∣
s=0

, (46)

and indeed

∂2 ln F̃1(x, s; μ, r)

∂s2

∣∣∣∣∣
s=0

= ∂2F̃1(x, s; μ, r)/∂s2

F̃1(x, s; μ, r)

∣∣∣∣∣
s=0

−
[

∂F̃1(x, s; μ, r)/∂s

F̃1(x, s; μ, r)

∣∣∣∣∣
s=0

]2

= 〈
T 2

μ (r; x)
〉 − 〈Tμ(r; x)〉2. (47)

By using Eq. (15) we find

σ 2
μ(r; x) =

[
1 + r f̃ ′

0(x, μ + r)

μ + r f̃0(x, μ + r)

]2

− 1

(μ + r)2

−
[

∂ ln f̃0(x, μ + r)

∂r

]2

+ μ f̃ ′′
0 (x, μ + r)/ f̃0(x, μ + r)

[μ + r f̃0(x, μ + r)]
, (48)

and once again, by recalling the relation between F̃1(x, s; μ, r)
and E (μ, r; x), we can also derive the variance from the split-
ting probability. Indeed, Eq. (46) can be rewritten as

σ 2
μ(r; x) = ∂2 ln E (μ, r; x)

∂μ2
, (49)

and, recalling Eq. (30), we can write a simple relation between
σ 2

μ(r; x) and 〈Tμ(r; x)〉:

σ 2
μ(r; x) = −∂〈Tμ(r; x)〉

∂μ
. (50)

For r = 0, one has

σ 2
μ(0; x) = −∂〈Tμ(0; x)〉

∂μ
(51)

= ∂2 ln f̃0(x, μ)

∂μ2
, (52)

while in the limit r → ∞, we find that the variance can be
estimated as

σ 2
μ(r; x) ≈ 1

μ2
+ σ 2

r (0; x). (53)

Hence, by using similar arguments as those used before, we
may say that for diffusion processes the variance converges to
τ 2
μ = 1/μ2:

lim
r→∞ σ 2

μ(r; x) = τ 2
μ, (54)

with the same caveat as Eq. (39).
In the following, it will be useful to evaluate the sign of the

derivative ∂〈Tμ(r; x)〉/∂r for r → 0, which indicates whether
the introduction of resetting with infinitesimally small rate
increases or decreases the conditional MFPT. In the Ap-
pendix we show that the condition of having a negative slope
reads

CV2
μ > [1 − E (μ, 0; x)]ζ 2

μ − E (μ, 0; x)ζμ, (55)

where we have introduced the coefficient of variation, CVμ,
of the reset-free mortal process,

CVμ =
√〈

T 2
μ (0; x)

〉 − 〈Tμ(0; x)〉2

〈Tμ(0; x)〉 = σμ(0; x)

〈Tμ(0; x)〉 , (56)

and the dimensionless quantity ζμ,

ζμ = 〈Tμ(∞; x)〉
〈Tμ(0; x)〉 . (57)

The gap

As we have seen in the previous section, the conditional
MFPT is finite for both r = 0 and r → ∞. In general, there
are no constraints on the relation between 〈Tμ(0; x)〉 and
〈Tμ(∞; x)〉 = τμ, and, depending on the mortality rate, we
can have τμ > 〈Tμ(0; x)〉 or vice versa. As a consequence,
the existence of critical points cannot be demonstrated with
simple arguments, as it happens for immortal systems. It can
be useful to introduce the gap �μ(r) = τμ − 〈Tμ(r; x)〉, which
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can be expressed as

�μ(r) = τμ

1 − μ2∂μ〈T0(μ + r; x)〉
1 + μ〈T0(μ + r; x)〉 , (58)

and is defined so that one has τμ > 〈Tμ(r; x)〉 when
�μ(r) > 0. Note that the equation for the critical points,
Eq. (44), can be rewritten as

�μ(r)
∂〈T0(μ + r)〉

∂r
= −∂2〈T0(μ + r)〉

∂r2
, (59)

which reveals how the position of these points depends on the
gap and the shape of the MFPT in absence of resetting.

The quantity �μ(r) carries information about the effects of
resetting on the system. First, let us consider the initial gap

�μ(0) = τμ

1 − μ2∂μ〈T0(μ; x)〉
1 + μ〈T0(μ; x)〉 , (60)

which does not depend on r and is thus a property of the reset-
free mortal system. A positive initial gap is observed when

∂〈T0(μ; x)〉
∂μ

<
1

μ2
. (61)

Then, if we consider once again the typical situation of a
single critical point for 〈T0(μ; x)〉, the condition �μ(0) > 0
is necessary (but not sufficient) to optimize the probability of
reaching the target with the introduction of resetting in the
system. Indeed, we have seen in Sec. III that in this case
the probability can be increased only if μ < r∗

0 , where r∗
0

is the position of the minimum of 〈T0(r; x)〉. The derivative
∂〈T0(r; x)〉/∂r evaluated at r = μ must hence be negative,
which implies a positive initial gap. Intuitively, we expect
resetting to help if the particle can live long enough to com-
plete the search before it dies, viz., if τμ > 〈Tμ(0; x)〉, which is
equivalent to �μ(0) > 0. Otherwise, if τμ < 〈Tμ(0; x)〉, only
particles that survive longer than average can complete the
search, and it is intuitive that resetting in this condition makes
the task harder, decreasing the probability of success.

It is thus meaningful to know the mortality rates for which
there is a transition between a negative gap and a positive gap.
These are given by the solutions of

∂〈T0(μ; x)〉
∂μ

= 1

μ2
. (62)

In the typical situation, this equation has a solution, since the
lhs is usually not bounded and increasing. Consequently, we
expect to observe a negative initial gap for sufficiently high
mortality rates.

Finally, the gap helps us deduce the existence of minima
or maxima for 〈Tμ(r; x)〉. Indeed, let us assume that �μ(0) is
positive, so that the reset-free system has τμ > 〈Tμ(0; x)〉. We
know that limr→∞〈Tμ(r; x)〉 = τμ, as shown in the previous
section. Thus, if we can observe �μ(r) < 0, i.e., if the con-
ditional MFPT is larger than the average lifetime for some r,
then there must exist rM such that 〈Tμ(rM ; x)〉 is the global
maximum:

〈Tμ(rM ; x)〉 > τμ. (63)

Furthermore, if �μ(0) > 0, then a sufficient (but not neces-
sary) condition for the existence of a minimum is that the
derivative ∂〈Tμ(r; x)〉/∂r be negative for r → 0. On the other

hand, if �μ(0) is negative, then τμ < 〈Tμ(0; x)〉, while we
still have limr→∞〈Tμ(r; x)〉 = τμ. Then, in this case, a pos-
itive ∂r〈Tμ(r; x)〉 for r → 0 is a sufficient condition for the
existence of a maximum, whereas a positive �μ(r) for some
r would imply the existence of a global minimum.

V. FIRST-PASSAGE OUTSIDE THE POSITIVE
AXIS IN ONE DIMENSION

In this section we will apply the theory developed earlier to
the case of Brownian searchers in one dimension. We assume
that the motion starts from x0 = x > 0, while the target is lo-
cated at the origin, and we call D the diffusion coefficient. The
PDF of the FPT for this problem in Laplace space, without
resetting and mortality, reads

f̃0(x, p) = exp

(
−x

√
p

D

)
. (64)

When we introduce resetting and mortality, we can compute
the probability of reaching the target from Eq. (17), which
yields

E (μ, r; x) = μ + r

μew + r
, (65)

where w = x
√

(μ + r)/D. For r = 0 we recover the proba-
bility of hitting the target for mortal walkers in absence of
resetting [49], which we write as

E (μ, 0; x) = exp

(
−2

√
τD

τμ

)
, (66)

where we have introduced the diffusive time scale τD =
x2/(4D). By analyzing the derivative with respect to r of
Eq. (65), we find that E (μ, r; x) is increasing whenever

2 − w > 2e−w. (67)

This condition may be satisfied only up to a value w∗
0 , which

is of course the solution of 2 − w = 2e−w given by

w∗
0 = 2 + W0

(
− 2

e2

)
≈ 1.5936. (68)

Here W0(z) denotes the principal branch of the Lambert
function. Therefore, the splitting probability is increasing for
w < w∗

0 and decreasing for w > w∗
0 , and so we have the

global maximum at w = w∗
0 . The resetting rate maximizing

E (μ, r; x) is thus

r∗
μ = D

(
w∗

0

x

)2

− μ = r∗
0 − μ, (69)

as shown in Sec. III. We recall that r∗
0 = D(w∗

0/x)2 is the
optimal rate that minimizes the MFPT in absence of mortality,
which is given by

〈T0(r; x)〉 = ex
√

r/D − 1

r
. (70)

As we have already mentioned, r∗
μ exists only if μ is below

the critical value r∗
0 . Otherwise, the derivative of E (μ, r; x) is

negative for any r > 0 and no critical point is seen. In terms of
time scales, we need τμ > ατD, with α = (2/w∗

0 )2 ≈ 1.575.
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FIG. 1. Numerical verification of the theoretical results for (a) the conditional MFPT, given by Eq. (71), and (b) the standard deviation,
defined as the square root of Eq. (72): For each value of μ, the data sets are obtained by simulating N = 2 × 107 processes, with small time
step dt = 5 × 10−5, showing very good agreement. Note that for better readability, we plot 〈Tμ(r; x)〉/τμ and 〈σμ(r; x)〉/τμ.

We now consider the conditional MFPT, which can be
obtained from the splitting probability by using Eq. (30). A
derivative with respect to μ of E (μ, r; x) yields

〈Tμ(r; x)〉 = r(ew − 1) + μwew/2

(μ + r)(μew + r)
, (71)

and a second derivative can be computed to obtain the vari-
ance:

σ 2
μ(r; x) = e2w[(μ + r)2 + (w − 4)(μ/2)2] − r2

(μ + r)2(μew + r)2

− rew[rw + (w2 + 3w + 8)(μ/4)]

(μ + r)2(μew + r)2
. (72)

The validity of these exact expressions is also confirmed by
our numerical simulations (see Fig. 1). Note that for r = 0 we
recover some previously known results [49],

〈Tμ(0; x)〉 = x

2
√

Dμ
= √

τDτμ, (73)

σ 2
μ(0; x) = x

4
√

Dμ3
= 1

2

√
τDτ 3

μ, (74)

while for r → ∞ we obtain the anticipated limits:

lim
r→∞〈Tμ(r; x)〉 = 1

μ
, (75)

lim
r→∞ σ 2

μ(r; x) = 1

μ2
. (76)

As we have already seen, we can get the behavior of the
conditional MFPT curve from the gap �μ(r). The sign of the
gap is ruled by Eq. (58), and in particular we have a positive
gap when

∂〈T0(μ + r; x)〉
∂μ

<
1

μ2
. (77)

But from Eq. (70) one can verify that, for any fixed μ, a
threshold can be found for the resetting rate r beyond which
the derivative is always greater than 1/μ2. It follows that the
gap is always negative beyond this threshold, and thus we have

〈Tμ(r; x)〉 > τμ for each r sufficiently large. If we assume
that initially �μ(0) > 0, then there must exist a rate where
〈Tμ(r; x)〉 assumes its global maximum: In fact, the gap is ini-
tially positive, always negative after the threshold, and tends
to zero for r → ∞. So it must have a global minimum, which
implies the existence of a global maximum for 〈Tμ(r; x)〉.
Note that, from Eqs. (73) and (75), having �μ(0) > 0 cor-
responds to having

μ <
4D

x2
, (78)

that is, τμ > τD. Thus, we can say that as long as the mortal-
ity is lower than 1/τD, the conditional MFPT curve always
exhibits a global maximum. For higher mortality rates, on
the other hand, we have �μ(0) < 0; then there is never any
change in the sign of the gap, which remains negative for each
r. In this case, we can only conclude that 〈Tμ(r; x)〉 is bounded
from below by τμ: A maximum may still exist, but surely there
is no global minimum.

Further information can be obtained by analyzing the con-
dition given by Eq. (55), which says whether the introduction
of an infinitesimal resetting rate decreases the conditional
MFPT. The ratio ζμ now reads

ζμ = 〈Tμ(∞; x)〉
〈Tμ(0; x)〉 = 2

x

√
D

μ
=

√
τμ

τD
, (79)

and CV2
μ is equal to

CV2
μ = σ 2

μ(0; x)

〈Tμ(0; x)〉2
= 1

x

√
D

μ
= 1

2
ζμ, (80)

hence Eq. (55) reads

[1 − E (μ, 0; x)]ζ 2
μ − [

E (μ, 0; x) + 1
2

]
ζμ < 0, (81)

or equivalently, since the values of ζμ are restricted to the
positive real axis,

ζμ <
1 + 2E (μ, 0; x)

2 − 2E (μ, 0; x)
. (82)
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FIG. 2. [(a), (b)] Examples of conditional MFPT curves (solid red lines), given by Eq. (71), and the corresponding standard deviations
(dashed blue lines), i.e., the square root of Eq. (72), in the low-mortality regime. The insets display the splitting probability, Eq. (65), with
vertical dashed lines corresponding to the position of the optimal rate r∗

μ = r∗
0 − μ that maximizes E (μ, r; x) [see Eq. (69)]. (c) Transition of

the conditional MFPT curve in the low-mortality regime. The markers represent the minimum of each curve, if present. For very low mortality
rates, the curve has a global minimum for some positive rm. As μ increases, the difference 〈Tμ(0; x)〉 − 〈Tμ(rm; x)〉 becomes smaller and smaller,
and eventually changes sign. Finally, for μ large enough the minimum disappears. With our choice of the system parameters (x = D = 1), the
curves have a global minimum for μ � 0.15. The values of rm are (curves from top to bottom): rm ≈ 2.3774 for μ = 0.075, rm ≈ 2.3172 for
μ = 0.1, and rm ≈ 2.1855 for μ = 0.15; for 0.15 � μ � 0.35 the minima are just local, and located at r ≈ 2.0348 for μ = 0.2, rm ≈ 1.8563
for μ = 0.25, and rm ≈ 1.2474 for μ = 0.35. Note that in all cases we obtain rm < r∗

μ. For μ = 0.4 and higher instead there is no minimum
for positive values of r. (d) Derivative with respect to r of the conditional MFPT, for the case μ = 0.1 illustrated in (a). The curve is computed
from Eq. (89) and equal to zero for three values of r, which are rM ≈ 0.0881, rm ≈ 2.3172, and rM ≈ 279.1657, corresponding to three critical
points of 〈Tμ(r; x)〉. The inset displays more clearly the presence of the third zero.

Equation (82) may be rewritten as

ζμ <
e2/ζμ + 2

2e2/ζμ − 2
, (83)

which is solved for ζμ < ζ ∗ ≈ 0.5371, yielding μ >

4D/(xζ ∗)2, that is, τμ < βτD, with β = (ζ ∗)2 ≈ 0.2884.
Hence, as long as the mortality rate is below this value, the
introduction of resetting with infinitesimally low r always
hinders the conditional MFPT.

The previous analysis thus revealed the existence of differ-
ent mortality regimes that modify the behavior of 〈Tμ(r; x)〉,
which are summarized in Figs. 2 and 3:

(i) For μ < 1/(ατD), with α ≈ 1.575, the system is in the
low-mortality regime [Figs. 2(a) and 2(b)]. The average life-

time is sufficiently large, i.e., τμ > ατD, and the probability
of reaching the target can thus be maximized by introducing
resetting at the optimal rate r∗

μ = 1/(ατD) − μ. The initial
gap �μ(0) is positive; therefore, 〈Tμ(r; x)〉 is initially smaller
than the average lifetime. However, it becomes always larger
than τμ for r large enough and attains its maximum for some
positive rM . For resetting rates higher than rM , the curve
decreases monotonically toward τμ. The conditional MFPT
increases when we consider resetting at infinitesimally small
rates; hence the existence of minima is not guaranteed [see,
for instance, Fig. 2(b), where we have chosen μ = 1 and no
minimum is seen]. However, the curve can actually assume
the global minimum for some positive rm, if we consider μ

small enough, as shown in Fig. 2(a), with μ = 0.1. To better
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FIG. 3. Examples of conditional MFPT curves (solid red lines), given by Eq. (71), and the corresponding standard deviations (dashed blue
lines), i.e., the square root of Eq. (72), in the (a) intermediate-, (b) high-, and (c) extreme-mortality regimes. The insets display in each case
the splitting probability, Eq. (65). (d) Comparison between the conditional MFPT (solid red curve) and its large-r asymptotic approximation
(dashed black line) given by Eq. (85), in the extreme-mortality regime (with τμ = 0.1 and τD = 1). The approximation becomes valid for
r � 102, i.e., when τr = 1/r is much smaller than τμ.

investigate this transition, in Fig. 2(c) we consider different
values of μ � 1/(ατD) and evaluate numerically the exis-
tence of a minimum. In the caption, we report the rm that
we obtain for the chosen values of μ. One can verify that in
every case rm < r∗

μ. With our choice of the system parameters
(x = D = 1), for mortality rates μ � 0.15 there is in effect a
global minimum. For higher rates, the minimum is just local,
standing at higher values than 〈Tμ(0; x)〉. For μ � 0.35 the
minimum disappears. Note that, since the curve is increasing
for very low resetting rates, the minimum, if present, is always
preceded by a local maximum [see, for example, Fig. 2(d),
where we plot the derivative of the curve for μ = 0.1]. Finally,
Fig. 2(a) seems to suggest that the position of the minimum
coincides with the rate rc at which the conditional MFPT and
the standard deviation are equal, i.e., σμ(rc; x) = 〈Tμ(rc; x)〉.
However, closer analysis reveals that it is not the case: For
μ = 0.1, we find numerically rm ≈ 2.3172 and rc ≈ 2.3884.
We discuss this in the next section.

(ii) For 1/(ατD) < μ < 1/τD, the system is in the
intermediate-mortality regime. The average lifetime is larger

than the diffusive time scale, but not large enough to make
resetting effective to increase the probability of reaching the
target, i.e., τD < τμ < ατD. The typical behavior of the condi-
tional MFPT is presented in Fig. 3(a). The initial gap �μ(0),
as in the previous regime, is positive, and indeed the curve
reaches a maximum for some rM , above which it decreases
monotonically and finally converges to τμ.

(iii) For 1/τD < μ < 1/(βτD), with β ≈ 0.2884, the
system is in the high-mortality regime. The average lifetime
is now shorter than the diffusive time scale, but still larger
than βτD, i.e., βτD < τμ < τD. An example of the MFPT
curve is displayed in Fig. 3(b). The initial gap is now
negative, that is, 〈Tμ(0; x)〉 > τμ, meaning that in the system
without resetting only a relatively small set of particles with
a longer-than-average lifetime can complete the search. By
introducing resetting into the system, we gradually eliminate
from this set the particles that decay the fastest, decreasing
the probability of success but increasing 〈Tμ(r; x)〉. Hence,
for low values of r, the effect is similar to the previous cases:
The curve initially increases with r, reaches its maximum
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for some rM , and for r > rM it always decreases
towards τμ.

(iv) For μ > 1/(βτD), we have the extreme-mortality
regime. The average lifetime is so short, i.e., τμ < βτD, that
for any value of r the system is essentially in the same sit-
uation we observed for the previous cases when r > rM [see
Fig. 3(c)]. The initial gap is negative and the introduction of
infinitesimally small resetting rates reduces the conditional
MFPT. As a consequence, we observe a curve that decreases
monotonically toward τμ. This happens because the particles
decay so fast that resetting, even for infinitesimally small
resetting rates, progressively “filters out” the slower search
processes.

Now that we have a fairly complete picture, we can try to
understand qualitatively how resetting affects the first-passage
properties of the system. It should be clear that the behavior
of the conditional MFPT as a function of r varies with the
duration of the average lifetime τμ with respect to the diffusive
time scale τD.

Let us consider first the low-mortality regime depicted in
Fig. 2(a), where we have τμ 	 ατD. For r = 0, the splitting
probability is close to one [see Eq. (65)]; hence the few par-
ticles that do not reach the target are those that decay during
long diffusive excursions away from it. When we introduce
resetting at very low rates, we occasionally “save” one of
these particles, returning it to the starting point and allowing
it to hit the target before decaying. We hence increase the
probability of a successful search. However, since the rate is
low, we let a particle diffuse for a long time before resetting
it. Therefore, this particle brings a contribution that increases
the conditional MFPT. If we consider higher resetting rates,
we save more and more particles, but we increase 〈Tμ(r; x)〉
even more, up to the point where we reach a local maxi-
mum. With even higher values of r, we reach the domain of
rates where resetting also decreases 〈Tμ(r; x)〉. This basically
happens because τr is such that the particles diffusing away
from the target are not allowed to move too far away, but at
the same time, those that diffuse toward the target are not
hindered by the resetting mechanism. We then arrive at a
rate rm that minimizes the conditional MFPT. Slightly above
rm, we are still saving more and more particles (the splitting
probability is still increasing), but we are also starting to
increase 〈Tμ(r; x)〉. When we reach r∗

μ, we obtain the largest
possible E (μ, r; x). For r > r∗

μ we are gradually decreasing
the splitting probability, basically because we are considering
such high rates that some of the particles that would reach
the target without resetting are no longer able to do so. In-
deed, eventually E (μ, r; x) < E (μ, 0; x). At the same time,
we are also increasing 〈Tμ(r; x)〉, because we are resetting the
particles more and more. By considering higher and higher
rates, we eventually reach a regime where 〈Tμ(r; x)〉 > τμ.
This means that now, due to the resetting mechanism, only
particles that survive longer than average can complete the
search. However, since the system cannot sustain arbitrarily
long lifetimes, there must be a maximum value that we can
observe for 〈Tμ(r; x)〉, which is obtained for some rM . Above
rM , the conditional MFPT decreases monotonically toward
τμ: We can understand this behavior by considering that if
we take a particle with τμ 	 τr , where τr is the average time
between two resetting events, then it is reset approximately

Nr ≈ τμ/τr times before decaying. We can then interpret the
search process as a sequence of Nr Bernoulli trials, where
each trial is the search process of a particle with mortality
rate μ = r without resetting, and we imagine to stop the trials
at the first success. The probability of success of each single
trial is of course q = E (r, 0; x) = exp(−2

√
τD/τr ), and the ex-

pected number of trials before the first success is Ns
r = 1/q =

exp(2
√

τD/τr ). Hence, an exponentially large number of trials
is expected before observing the first success. But the number
of trials cannot be arbitrarily large, because τμ is finite, and
thus in most cases the process is concluded unsuccessfully.
Therefore, even for those few processes that end in success,
a high number of attempts is expected, and the target is most
likely reached after about Nr failed attempts. This means that
in this very high resetting regime, 〈Tμ(r; x)〉 can be estimated
as

〈Tμ(r; x)〉 ≈ τμ + 〈Tr (0; x)〉 (84)

≈ τμ + √
τDτr . (85)

Indeed, one can verify that the same estimate is obtained from
an asymptotic expansion of Eq. (71) for large r. This is also
illustrated in Fig. 3(d), where we plot 〈Tμ(r; x)〉 for τμ = 0.1
and τD = 1. Consequently, τμ < βτD and we are thus in the
extreme mortality regime. Note that for low r, resetting has
little effect on 〈Tμ(r; x)〉, because τμ 	 τr and so the particle
is unlikely to undergo resetting before decaying. For high rates
instead, the approximation becomes valid and we observe a
power-law decay of 〈Tμ(r; x)〉 ∼ τμ + √

τD/r, as predicted by
Eq. (85).

The behavior of 〈Tμ(r; x)〉 in other regimes can be ex-
plained from the one just analyzed. It is sufficient to consider
the previous curve from some r0 > 0. For example, the regime
presented in Fig. 2(b) can be understood from the previous
one, by starting at rm < r0 < r∗

μ, and the shape of the curve
in Fig. 3(c) has the same explanation as the previous case
for r0 > rM . Of course, we are not claiming that we observe
equivalent curves in this way, only that they their behaviors
have the same qualitative explanation.

As a final remark, we emphasize that the behavior of the
system depends on the size of the two time scales τμ = 1/μ

and τD = x2/(4D). We have shown that, for fixed τD, different
regimes are encountered by considering different values of
τμ. However, we could have obtained the same description by
fixing τμ and varying τD. In other words, the transition to the
different regimes presented above can also occur, for a given
value of mortality, as the initial position x or the diffusion
constant D varies.

The conditional MFPT is not minimal at the rate which
makes it equal to the standard deviation

One of the most interesting results of stochastic resetting
concerns a general property exhibited by the optimal resetting
rate. It has been proven that for an arbitrary FPT process, sub-
ject to stochastic restarts with exponentially distributed time
intervals, the relative fluctuation in the FPT, when the restart
rate is optimal, is exactly unity [15]. In other words, if we
introduce the coefficient of variation, CV(r) = σ0(r)/〈T0(r)〉,
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FIG. 4. (a) Behavior of rm (green triangles), rc (blue squares), and r∗
μ (red circles) versus μ. For each μ, we consistently find rm < rc < r∗

μ.
For μ → 0, all three converge to r∗

0 (dashed horizontal line). Note that rm, rc, and r∗
μ exist in different ranges of μ: For mortality rates

μ � 0.35 we cannot find any rm, for μ � 1.1 there is no rc, while r∗
μ exists only for μ � r∗

0 (note the dash-dotted vertical line at μ = r∗
0 ).

(b) Conditional MFPT (purple solid line) and standard deviation (blue dashed line) for μ = 0.1. The position of the minimum of 〈Tμ(r; x)〉
(marker), rm ≈ 2.3172, clearly differs from the rate at which the two curves are equal, rc ≈ 2.3884. Also note that σμ(rm; x) > 〈Tμ(rm; x)〉.

we must have

CV(r∗
0 ) = σ0(r∗

0 )

〈T0(r∗
0 )〉 = 1. (86)

This relation has been well established for different resetting
systems [22,24,27]. Deviations from this result may occur if
the time intervals between resetting events are not exponen-
tially distributed [15,16], or due to the time cost to perform a
single step in discrete-time random-walk models [39,62,63].
However, as observed previously, we also find that this gen-
eral result does not hold when we introduce mortality in the
system. For instance, by considering the case μ = 0.1, we pre-
viously found that the rate rc ≈ 2.3884 that makes the relative
fluctuation equal to unity is slightly above rm ≈ 2.3172. The
same analysis can be repeated for different μ, and we con-
sistently find rm < rc. This happens both when the minimum
is local and when it is global. Furthermore, we always have
rc < r∗

μ; hence

rm < rc < r∗
μ. (87)

Moreover, by looking at Fig. 2(b), we see that there may
exist rc even in those cases where there is no minimum for
〈Tμ(r; x)〉.

A complete picture is presented in Fig. 4(a), where we have
evaluated numerically rm, rc, and r∗

μ for different values of μ.
In every case, we find that the chain of inequalities in Eq. (87)
is satisfied. As previously anticipated, rm, rc, and r∗

μ exist in
different domains, and in particular, there is a range of μ,
which we estimate as 0.35 � μ � 1.1, where the conditional
MFPT has no minimum for positive r, yet we can find rc such
that σμ(rc; x) = 〈Tμ(rc; x)〉.

For μ → 0, however, we should recover the general result
known for immortal systems. Indeed, we see that all the nu-
merical values converge to r∗

0 , which, we recall, is the rate
that minimizes the MFPT. Thus, we can say that as long as
the lifetime is infinite, an arbitrary FPT process subject to
stochastic Poissonian resetting exhibits the property described

by Eq. (86), viz., there is a unique rate r∗
0 that minimizes the

MFPT and makes the relative fluctuation in the FPT equal to
unity. If we consider instead a finite lifetime, the probability
of reaching the target, the relative fluctuation of the FPT, and
the conditional MFPT are optimized at different rates, whose
values are μ dependent.

To better understand the origin of the deviation from
Eq. (86), let us consider the expression for 〈Tμ(r; x)〉 of
Eq. (33). One can verify that the derivative with respect to
μ and the derivative with respect to r satisfy the following
relation:

∂〈Tμ(r; x)〉
∂r

=
〈
T 2

0 (μ + r; x)
〉

2(1 + μ〈T0(μ + r; x)〉)2
+ ∂〈Tμ(r; x)〉

∂μ
.

(88)
Recalling Eq. (50), the previous equation is equivalent to

∂〈Tμ(r; x)〉
∂r

= 〈T 2
0 (μ + r; x)〉

2(1 + μ〈T0(μ + r; x)〉)2
− σ 2

μ(r; x), (89)

hence, the critical points r∗ of 〈Tμ(r; x)〉 satisfy

σ 2
μ(r∗; x) =

〈
T 2

0 (μ + r∗; x)
〉

2(1 + μ〈T0(μ + r∗; x)〉)2
. (90)

Now, by using Eqs. (31) and (32), we can translate this equa-
tion into a condition involving the coefficient of variation of
the mortal system,

CVμ(r∗) =
√〈T0(μ + r∗; x)〉2 − ∂μ〈T0(μ + r∗; x)〉
〈T0(μ + r∗; x)〉 + μ∂μ〈T0(μ + r∗; x)〉 , (91)

which, in general, is different from Eq. (86). Moreover, we
also have a counterexample to a universal result, valid for any
arbitrary restart protocol [16], affirming that at the optimal
resetting rate

CV(r∗
0 ) � 1. (92)

Instead, Fig. 4(b) shows a case where at r = rm the standard
deviation is larger than the conditional MFPT. For the sake of
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completeness, we also point out that the previous inequality
is recovered for r∗

μ. Once again, we can trace this back to the
presence of mortality, that splits the optimal rate r∗

0 for the
immortal system in three different rates. Hence, the properties
of the immortal system at r∗

0 may diverge from those of the
mortal system at rm.

The derivative given by Eq. (89) is displayed in Fig. 2(d),
for the case μ = 0.1. We used the expression for the variance
of Eq. (72), while the second moment 〈T 2

0 (p; x)〉 can be easily
obtained from Eq. (32). We recall that in this case the con-
ditional MFPT is characterized by three critical points [see
Fig. 2(a)]. Indeed, we find three values of r for which the
derivative vanishes: The first, which corresponds to a local
maximum, is encountered at rM ≈ 0.0881; the second, which
corresponds to the global minimum, is found at rm ≈ 2.3172;
and the third is at rM ≈ 279.1657, corresponding to the global
maximum. This essentially confirms the condition for the
critical points expressed by Eq. (91), and explains why we
observe deviations from the general result of Eq. (86).

VI. SUMMARY AND CONCLUSIONS

In this paper we have revisited the first-passage problem to
the origin of one-dimensional diffusion undergoing stochastic
resetting at constant rate r, extending it to the case where
the particle lifetime is a random time t distributed according
to ψμ(t ) = μ exp(−μt ), with μ > 0 defined as the mortal-
ity rate. This introduces the new time scale τμ = 1/μ into
the problem, corresponding to the average lifetime of the
particle, in addition to the two already present, namely, the
average time interval between two resetting events, τr = 1/r,
and the diffusive time scale τD = x2/(4D). Depending on
the relative magnitude of the various time scales, the system
exhibits completely different properties that may diverge sig-
nificantly from the behavior in absence of mortality.

The first quantity we investigated is the probability that the
process ends by reaching the target before the particle decays,
E (μ, r; x). Interestingly, this quantity is closely related to the
MFPT of immortal particles, as described by Eq. (21). This
allowed us to deduce that if the latter can be minimized for a
certain resetting rate r∗

0 , then the former is maximized for r∗
μ =

r∗
0 − μ, assuming that μ < r∗

0 . Thus, starting from the MFPT
in absence of mortality, one can define the ranges of μ within
which resetting can increase the probability of a successful
search.

We then considered the first two moments of the FPT,
to provide a statistical description in terms of its mean and
variance. These moments are obtained by averaging only over
those processes that actually reach the target, so they are
called conditional moments. Notably, the conditional MFPT,
〈Tμ(r; x)〉, can be derived from E (μ, r; x) [see Eq. (30)]. A
first consequence due to mortality is that 〈Tμ(r; x)〉 has finite
limits for both r → 0 and r → ∞, which makes the optimiza-
tion problem much more complicated. In general, the behavior
of the conditional MFPT is strongly affected by the value of
the mortality rate, and we were able to identify four different
regimes where 〈Tμ(r; x)〉 and the corresponding E (μ, r; x)
have different properties.

The case in which mortality is so low as to allow both
maximizing the probability and minimizing the conditional

MFPT is certainly of great interest, and it is also the one
that is most reminiscent of what is observed in absence of
mortality. An example is the case μ = 0.1 that we examined
earlier, displayed in Fig. 2(a). Indeed, 〈Tμ(r; x)〉 has the global
minimum for a certain resetting rate rm, which is preceded and
followed by two maxima, a local one and the global one. The
presence of these two maxima is due to mortality: In fact, in
the presence of an infinite lifetime, two divergences would
be observed instead. Note that rm does not coincide with
the rate that maximizes the probability, r∗

μ. Thus, one must
decide whether it is preferable to increase the probability of
a successful search, resulting in a slightly higher conditional
MFPT, or to lower the MFPT as much as possible, while also
decreasing the probability. Another effect due to mortality is
the deviation from the result of Eq. (86). Indeed, we found that
the relative fluctuation in the FPT is not unitary at rm; instead,
this condition is achieved at a different rate rc, and we have
rm < rc < r∗

μ.
The other cases are equally interesting in that they show

how various mortality regimes can introduce significant dif-
ferences from a description based on infinite lifetimes. Finally,
let us stress that, except for the extreme mortality regime,
the conditional MFPT always has a global maximum for
some finite resetting rate rM . This may be relevant for some
applications where, instead of minimizing the MFPT, one is
instead interested in increasing it as much as possible, for
example, when storing hazardous species whose leakage is
to be reduced [64]. Of course, it is intuitive that resetting at
higher and higher rates increases more and more the MFPT.
But the constraint of a finite average lifetime causes this
growth to stop at a well-defined resetting rate rM . It is true
that increasing the rate above rM decreases the probability
of leakage, but it also decreases the average time, and so,
again, one must consider which of the two situations is more
favorable.

We believe we have highlighted many interesting features
peculiar to first-passage problems with resetting and mortality.
Although we have focused only on one-dimensional diffusion,
this paper can be a starting point for future work examining
different and possibly more complex problems than the one
analyzed here.

APPENDIX: DERIVATIVE OF THE
CONDITIONAL MFPT

In this Appendix we report some explicit calculations re-
garding the derivative with respect to the resetting rate of the
conditional MFPT. We begin with the expression given by
Eq. (28) in the main text:

〈Tμ(r; x)〉 = 1 + r f̃ ′
0(x, μ + r)

μ + r f̃0(x, μ + r)
− 1

μ + r

− ∂ ln f̃0(x, μ + r)

∂r
, (A1)

where

f̃ ′
0(x, p) = ∂ f̃0(x, p)

∂ p
. (A2)
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The derivative with respect to r of Eq. (A1) reads

∂〈Tμ(r; x)〉
∂r

= f̃ ′
0(x, μ + r) + r f̃ ′′

0 (x, μ + r)

μ + r f̃0(x, μ + r)

− [ f̃0(x, μ + r) + r f̃ ′
0(x, μ + r)][1 + r f̃ ′

0(x, μ + r)]

[μ + r f̃0(x, μ + r)]2

+ 1

(μ + r)2
− ∂2 ln f̃0(x, μ + r)

∂r2
, (A3)

which depends on f̃0(x, p), f̃ ′
0(x, p), and f̃ ′′

0 (x, p). We can also
obtain an alternative expression involving 〈T0(r; x)〉 and its
derivatives by considering Eq. (31) of the main text, which
yields

∂〈Tμ(r; x)〉
∂r

= 1

1 + μ〈T0(μ + r; x)〉

[
μ

∂2〈T0(μ + r; x)〉
∂r2

+ 1 − μ2∂r〈T0(μ + r; x)〉
1 + μ〈T0(μ + r; x)〉

∂〈T0(μ + r; x)〉
∂r

]
,

(A4)

where we used the fact that
∂〈T0(μ + r; x)〉

∂μ
= ∂〈T0(μ + r; x)〉

∂r
. (A5)

Note that, by setting the lhs of Eq. (A4) to zero, one obtains
the condition

1 − μ2∂r〈T0(μ + r; x)〉
1 + μ〈T0(μ + r; x)〉

∂〈T0(μ + r; x)〉
∂r

= −μ
∂2〈T0(μ + r; x)〉

∂r2
, (A6)

which is a general equation for the critical points of 〈Tμ(r; x)〉.
From this equation, we see that if 〈T0(r; x)〉 has a local mini-
mum at r∗ > μ, with ∂2〈T0(r; x)〉/∂r2 > 0 at r = r∗, then for

r = r∗ − μ the rhs of Eq. (A4) is positive and thus the con-
ditional MFPT is locally increasing. Conversely, if 〈T0(r; x)〉
has a local maximum at r∗ > μ, with ∂2〈T0(r; x)〉/∂r2 < 0
at r = r∗, then 〈Tμ(r; x)〉 is locally decreasing. In particular,
if there exists r∗

0 > μ that minimizes 〈T0(r; x)〉, then r∗
μ =

r∗
0 − μ maximizes the probability of a successful search (see

Sec. III), but increases the conditional MFPT relative to lower
resetting rates.

The sign of the derivative ∂〈Tμ(r; x)〉/∂r for r → 0 indi-
cates whether the introduction of resetting with infinitesimally
small rate increases or decreases the conditional MFPT. By
evaluating Eq. (A3) at r = 0 we get

∂〈Tμ(r; x)〉
∂r

∣∣∣∣
r=0

= f̃0(x, μ)

μ

[
f̃ ′
0(x, μ)

f̃0(x, μ)
− 1

μ

]
+ 1

μ2

− ∂2 ln f̃0(x, μ)

∂μ2
, (A7)

which is equivalent to

∂〈Tμ(r; x)〉
∂r

∣∣∣∣
r=0

= − E (μ, 0; x)

μ

[
〈Tμ(0; x)〉 + 1

μ

]
+ 1

μ2
− σ 2

μ(0; x). (A8)

By introducing the coefficient of variation, CVμ, of the reset-
free mortal process,

CVμ =
√〈

T 2
μ (0; x)

〉 − 〈Tμ(0; x)〉2

〈Tμ(0; x)〉 = σμ(0; x)

〈Tμ(0; x)〉 , (A9)

and the dimensionless quantity ζμ,

ζμ = 〈Tμ(∞; x)〉
〈Tμ(0; x)〉 , (A10)

the condition of having a negative slope, so that the introduc-
tion of resetting decreases the MFPT, reads

CV2
μ > [1 − E (μ, 0; x)]ζ 2

μ − E (μ, 0; x)ζμ. (A11)
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