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For driven open systems in contact with multiple heat reservoirs, we find the marginal distributions of work or
heat do not satisfy any fluctuation theorem, but only the joint distribution of work and heat satisfies a family of
fluctuation theorems. A hierarchical structure of these fluctuation theorems is discovered from microreversibility
of the dynamics by adopting a step-by-step coarse-graining procedure in both classical and quantum regimes.
Thus, we put all fluctuation theorems concerning work and heat into a unified framework. We also propose a
general method to calculate the joint statistics of work and heat in the situation of multiple heat reservoirs via
the Feynman-Kac equation. For a classical Brownian particle in contact with multiple heat reservoirs, we verify
the validity of the fluctuation theorems for the joint distribution of work and heat.
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I. INTRODUCTION

Work and heat are two fundamental quantities in ther-
modynamics and usually coexist in generic thermodynamic
processes. In stochastic thermodynamics, the definitions of
work and heat are extended from ensemble average quantities
to trajectory functionals [1–3]. A remarkable achievement of
the stochastic thermodynamics is the discovery of the fluc-
tuation theorems, which reformulate various versions of the
second law of thermodynamics from inequalities into equal-
ities [4–10], for example, the Jarzynski equality for work
[1,2], the exchange fluctuation theorem for heat [11], and the
fluctuation theorem for entropy production [12,13].

Despite the coexistence of work and heat in generic ther-
modynamic processes, on most occasions the fluctuation
theorems of work and those of heat were studied separately
in the past. Either the system is in contact with a single
reservoir and meanwhile driven by an external agent, or the
system is in contact with multiple heat reservoirs but with-
out driving. For the first case, by defining the work as a
trajectory functional in stochastic thermodynamics, the work
statistics and the nonequilibrium work fluctuation theorems
have been extensively studied in various classical systems
[1–3,14–45]. The nonequilibrium work fluctuation theorems
were later extended to the quantum realm based on the two-
point measurement definition of the quantum fluctuating work
[5,6,46–54]. The consistency of the two seemingly unrelated
definitions is justified by the quantum-classical correspon-
dence principle for the work statistics [54–59]. A hierarchical
structure of fluctuation theorems concerning work in the case
of a single heat reservoir has been clarified (see the sup-
plemental material of Ref. [30]). For the second case, the
heat statistics has been widely explored in various thermal
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transport models, where the system is usually in contact with
multiple heat reservoirs [60–72]. In the absence of external
driving, the system finally reaches a nonequilibrium steady
state, where the heat exchange satisfies the exchange fluctu-
ation theorem [11] and/or the Gallavotti-Cohen fluctuation
theorem [73]. The heat statistics has also been studied in
relaxation processes in the case of a single heat reservoir but
without driving [21,31,74–86]. Besides the above two cases,
there is the third case. That is, when the system is in contact
with multiple heat reservoirs and meanwhile driven by an ex-
ternal agent. In this case, the fluctuation theorems concerning
work and/or heat has been largely unexplored so far (but see
Refs. [87–89]).

In this article, we study fluctuation theorems of the third
case. The system is weakly coupled to multiple heat reser-
voirs, and meanwhile is driven by an external agent. We find
that in this case the marginal distributions of work or heat
do not satisfy any fluctuation theorems. But only the joint
distribution of work and heat satisfies a family of fluctuation
theorems, which are derived in both classical and quantum
regimes. We discover a hierarchical structure of fluctuation
theorems for the joint distribution of work and heat from
microreversibility [6] of the dynamics by adopting a step-by-
step coarse-graining procedure. Thus, we put all fluctuation
theorems into a unified framework. This is an exhaustive
list of all fluctuation theorems concerning work and heat
for a driven system in contact with multiple heat reservoirs.
Especially, the Jarzynski equality, the Crooks relation, the
exchange fluctuation theorem, and the Clausius inequality can
all be recovered under specific conditions. In addition, we also
discover some new fluctuation theorems that have not been
reported previously.

We also propose a general method to calculate the joint
statistics of work and heat via the Feynman-Kac equation,
and illustrate this method with a classical Brownian particle
in contact with multiple heat reservoirs. For the breathing
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System

FIG. 1. Schematic of an open system under external driving. The
system (illustrated as a harmonic oscillator) is in contact with five
heat reservoirs simultaneously or sequentially. The inverse temper-
atures of the heat reservoirs are βν , ν = 1, 2, . . . , 5. The external
driving is depicted by the change of the frequency λ(t ) of the har-
monic potential.

harmonic oscillator, analytical results of the joint statistics of
work and heat are obtained in both the highly underdamped
and the overdamped regimes, which recover the known results
of work distribution in the highly underdamped and the over-
damped regimes [25,32]. Moreover, we can also calculate the
joint statistics of work and heat in the generic underdamped
regime, which has not been explored so far. The fluctuation
theorems for the joint distribution of work and heat are veri-
fied through the characteristic function of work and heat.

This article is organized as follows. In Sec. II we derive a
family of fluctuation theorems organized in a hierarchy for the
joint distribution of work and heat in the situation of multiple
heat reservoirs. These fluctuation theorems can be grouped
into three categories, the detailed ones (at the trajectory level),
the differential ones (at the distribution level), and the integral
ones. In Sec. III we propose a general method to calculate
the joint statistics of work and heat, and illustrate this method
with a classical Brownian particle in contact with multiple
heat reservoirs. The conclusion is given in Sec. IV.

II. FLUCTUATION THEOREMS OF WORK AND HEAT

As shown in Fig. 1, a system of interest described by
the Hamiltonian HS (γS (t ), λ(t )) is in contact with N differ-
ent heat reservoirs described by the Hamiltonians Hν (γν (t )),
1 � ν � N , where γS (t ) and γν (t ) denote phase-space points
of the system and the ν-th heat reservoir. The external driving
λ(t ), 0 � t � τ is only applied to the system. We suppose
that we can establish or break the interaction between the
system and any of the reservoirs as we choose [15]. The
initial state of the total system is a product state ρ i

tot(�(0)) =
ρ i

S (γS (0)) ⊗ π1(γ1(0)) ⊗ · · · ⊗ πN (γN (0)), where ρ i
S (γS (0))

is the initial distribution of the system, and πν (γν (0)) =
exp[−βνHν (γν (0))]/Zν (βν ) is the canonical distributions of
the νth heat reservoir with the inverse temperatures βν and
the partition functions Zν (βν ).

For the classical dynamics, the state of the total system at
time t is represented by a point �(t ) in the phase space. An
arbitrary trajectory is denoted as � = (γS, γ1, . . ., γN ), where
γS = (xS, pS ) and γν = (xν, pν ) with the position x and the

momentum p are the trajectories of the system and the νth heat
reservoir. For a specific external driving λ(t ), the deterministic
trajectory �d is fully determined by the initial condition �(0)
of the total system.

Through joint measurements of the internal energies of the
system and the heat reservoirs at the beginning and the end
[44], the heat exchange with the νth heat reservoir along the
trajectory � is given by

qν (�) := Hν (γν (0)) − Hν (γν (τ )), (1)

and the trajectory work performed by the external driving
according to the first law is

w(�) :=
ˆ τ

0
λ̇

∂HS

∂λ
dt . (2)

We assume the interactions between the system and the heat
reservoirs are weak and can be neglected in defining the work
and the heat, and the first law holds at the trajectory level by
definition [3]

HS (γS (τ ), λ(τ )) − HS (γS (0), λ(0)) = w(�) +
∑

ν

qν (�).

(3)

In the following, we formulate the fluctuation theorems based
on the classical deterministic dynamics. We remark that
the following results can be parallel formulated in quan-
tum systems weakly coupled to multiple heat reservoirs (see
Appendix A).

A. Detailed fluctuation theorems

To formulate the most detailed fluctuation theorem, we
define the conditional probability density P (�|�(0)) in the
trajectory space, where � can be an arbitrary trajectory (not
necessarily the deterministic trajectory �d determined by
the equation of motion). The deterministic evolution implies
P (�|�(0)) is nonzero only when � = �d. In the reverse
process, the trajectory is represented by �̃(t ) = �[�(τ −
t )] with the time-reversal operation �; the position and
the momentum are x̃S(ν)(t ) = �[xS(ν)(τ − t )] = xS(ν)(τ − t )
and p̃S(ν)(t ) = �[pS(ν)(τ − t )] = −pS(ν)(τ − t ); the Hamil-
tonians are H̃S (γ̃S (t ), λ̃(t )) := �[H (γS (τ − t ), λ(τ − t ))] and
H̃ν (γ̃ν (t )) := �[H (γν (τ − t ))]. The control parameter is as-
sumed to be even parity under the time-reversal operation,
and in the reverse process it changes as λ̃(t ) = λ(τ − t ). As a
consequence of microreversibility, the conditional probability
density of the trajectory in the reverse process satisfies

P̃ (�̃|�̃(0)) = P (�|�(0)), (4)

which can be regarded as the most detailed fluctuation the-
orem. Various fluctuation theorems at different levels can
be derived from Eq. (4) by adopting a step-by-step coarse-
graining procedure.

We also prepare the heat reservoirs in their equilib-
rium states at the initial time in the reverse processes
π̃ν (γ̃ν (0)) = �[πν (γν (τ ))]. For given initial value γν (0) and
final value γν (τ ) of the reservoir trajectories, the conditional
probability density of the system trajectory in the forward
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process is

PS (γS; {γν (τ )}, {γν (0)}|γS (0))

:=
∑
{γν }

P (γS, {γν}|γS (0), {γν (0)})
∏
ν

πν (γν (0)), (5)

where P (γS, {γν}|γS (0), {γν (0)}) = P (�|�(0)), and the
summation over the trajectory γν of the heat reservoirs,
as the path integral, is conditioned on the initial values
γν (0) and the final values γν (τ ). It is similar to define
P̃S (γ̃S; {γ̃ν (τ )}, {γ̃ν (0)}|γ̃S (0)) for the reverse process.
According to Eq. (4), P̃S and PS are both nonzero
simultaneously. Then, we integrate over γν (0) and γν (τ )
and obtain the coarse-grained conditional probability
density PS (γS; {qν}|γS (0)) := ¯ ∏

ν{dγν (0)dγν (τ )δ[qν −
Hν (γν (0)) + Hν (γν (τ ))]}PS (γS; {γν (0)}, {γν (τ )}|γS(0)). The
ratio of the probability densities in the reverse and the forward
processes is

P̃S (γ̃S; {−qν}|γ̃S (0))
PS (γS; {qν}|γS (0))

= e
∑

ν βνqν . (6)

Here qν (−qν) denotes the heat exchange with the νth heat
reservoir in the forward (reverse) process. Equation (6) can
be regarded as the generalization of its single-reservoir
version P̃S (γ̃S; −q|γ̃S (0)) = PS (γS; q|γS (0)) exp(βq)
[13,15,90–97] to the situation of multiple heat reservoirs,
and a coarse-grained version of Eq. (6) has been previously
obtained in Ref. [15] [see Eq. (23) therein].

Together with the initial distribution ρ i
S (γS (0)) of the sys-

tem, we obtain the complete trajectory probability density
PS (γS; {qν}) := PS (γS; {qν}|γS (0))ρ i

S (γS (0)) of observing the
system trajectory γS associated with the heat exchange qν with
the νth heat reservoir. The ratio of the complete trajectory
probability densities is

P̃S (γ̃S; {−qν})
PS (γS; {qν})

= e
∑

ν βνqν
ρ̃ i

S (γ̃S (0))
ρ i

S (γS (0))
. (7)

The initial distributions ρ i
S (γS (0)) and ρ̃ i

S (γ̃S (0)) of the sys-
tem can be arbitrarily chosen. By choosing the equilibrium
states at the inverse temperature βS as the initial distribu-
tions ρ i

S (γS (0)) = π i
S (γS (0)) and ρ̃ i

S (γ̃S (0)) = π̃ i
S (γ̃S (0)), we

can express the detailed fluctuation theorems concerning work
and heat at the trajectory level

P̃S (γ̃S; {−qν})

PS (γS; {qν})
= e−βS[w(γS )−FS]+∑

ν (βν−βS )qν , (8)

where FS = − ln[Z f
S (βS )/Z i

S (βS )]/βS is the free energy dif-
ference of the system. In the classical regime, the work w(γS )
is solely determined by the system trajectory. The detailed
fluctuation theorems (6) and (8) are the fine-grained versions
of the differential fluctuation theorems [15,22].

B. Differential fluctuation theorems

By grouping the system trajectories γS according to the
work w, the initial and final values γS (0) and γS (τ ) of
the phase-space points, we obtain the conditional joint dis-
tribution P(w, {qν}, γS (τ )|γS (0)) := ∑

γS
PS (γS; {qν}|γS (0))

δ(w − ´ τ

0 λ̇∂λHS dt ). The same coarse-graining procedure is

applied to the reverse process. The ratio of the conditional
joint distributions of the reverse and the forward processes
follows from Eq. (6) as

P̃(−w, {−qν}, γ̃S (τ )|γ̃S (0))
P(w, {qν}, γS (τ )|γS (0))

= e
∑

ν βνqν . (9)

Similarly, the complete joint distribution of w, qν ,
γS (τ ), and γS (0) follows as P(w, {qν}, γS (τ ), γS (0)) :=∑

γS
PS (γS; {qν})δ(w − ´ τ

0 λ̇∂λHS dt ). Please note that a
coarse-grained version of Eq. (9) has been previously obtained
in Ref. [15] [see Eq. (4) therein]. For initial equilibrium states
of the system, the ratio of the complete joint distributions
becomes

P̃(−w, {−qν}, γ̃S (τ ), γ̃S (0))
P(w, {qν}, γS (τ ), γS (0))

= e−βS[w−FS]+∑
ν (βν−βS )qν .

(10)

Equations (9) and (10) generalize the results in Refs. [15] and
[22] to the situation of multiple heat reservoirs, respectively.
These two differential fluctuation theorems are the most de-
tailed ones that can be verified in experiments [30].

From the complete joint distribution P(w, {qν}, γS (τ ),
γS (0)), we integrate over the initial and the final phase-
space points and obtain the joint distribution of work and
heat P(w, {qν}) := ˜

dγS (τ )dγS (0)P(w, {qν}, γS (τ ), γS (0)).
Since the right-hand side of Eq. (10) is independent of the
phase-space points, the joint distributions of work and heat
in the reverse and the forward processes satisfy a generalized
Crooks relation

P̃(−w, {−qν})

P(w, {qν})
= e−βS[w−FS]+∑

ν (βν−βS )qν . (11)

We remark that Eq. (11) has been obtained previously in
Refs. [87,88], and a simplified version for the case of a single
heat reservoir has been obtained in Ref. [44]. But the fine-
grained versions of Eq. (11), Eqs. (6)–(10) have not been
reported so far.

By integrating over γS (0), w, and q in Eq. (10), we obtain
a generalized Hummer-Szabo relation

〈
e−βS[w−FS]+∑

ν (βν−βS )qν
〉∣∣

γS (τ )
= π̃ i

S (γ̃S (0))
ρf

S (γS (τ ))
, (12)

which generalizes the results in Ref. [16] to the situation
of multiple heat reservoirs. Here, 〈·〉|γS (τ ) denotes the av-
erage being conditioned on the given final value γS (τ ) of
the system phase-space point, and the marginal distribution
ρf

S (γS (τ )) is obtained by integrating over other variables in
P(w, {qν}, γS (τ ), γS (0)).

By integrating over γS (τ ), w and q in Eq. (10), we obtain a
generalized Jarzynski equality for an initial δ distribution

〈
e−βS[w−FS]+∑

ν (βν−βS )qν
〉∣∣

γS (0) = ρ̃f
S (γ̃S (τ ))

π i
S (γS (0))

. (13)

In Refs. [20,28,30] similar fluctuation theorems were obtained
for a single heat reservoir. Here we generalize the results to
the situation of multiple heat reservoirs. In Eqs. (12) and (13),
ρf

S (γS (τ )) and ρ̃f
S (γ̃S (τ )) are the final nonequilibrium distribu-

tions in the forward and the reverse processes, respectively.
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Clausius’ statement [98] Maximum work principle [98]
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Integral FT Eq. (15)

Generalized Crooks relation Eq. (11) [87,88]

Generalized Hummer-Szabo relation Eq. (12)

Jarzynski equality [1]

Generalized Jarzynski equality Eq. (13)

Exchange FT [11]

Generalized Clausius inequality

single reservoir without driving

Jensen's inequality Jensen's inequalityJensen's inequality
single
reservoir

without
driving

FIG. 2. Hierarchical structure of fluctuation theorems (FTs) for a driven system in contact with multiple heat reservoirs. Fluctuation
theorems at different levels can be derived from microreversibility [6] of the dynamics by adopting a step-by-step coarse-graining procedure.
The fluctuation theorems with red (dark) background have been obtained previously, but these with blue (light) background have not been
reported so far. Please note that Eq. (11) has been previously obtained in Refs. [87,88], and coarse-grained versions of Eqs. (9) and (6) have
been obtained in Ref. [15] [see Eqs. (4) and (23) therein]. A similar hierarchical structure of FTs for the work distribution in the situation of a
single heat reservoir can be found in the supplemental material of Ref. [30].

C. Integral fluctuation theorems

According to Eq. (7), we can obtain the integral fluctuation
theorem

〈
e
∑

ν βνqν
ρ̃ i

S (γ̃S (0))
ρ i

S (γS (0))

〉
= 1. (14)

This is a generalization of the unified integral fluctuation
theorem [4] to the situation of multiple heat reservoirs. In case
the system is initially prepared in an equilibrium state at the
inverse temperature βS , we can express the integral fluctuation
theorem of work and heat as

〈
e−βSw+∑

ν (βν−βS )qν
〉 = e−βSFS , (15)

which can also be obtained from the above differential fluctu-
ation theorems (10)–(13) by integrating over the rest variables
(see Fig. 2). We would like to emphasize that previously it was
believed that in order to construct a fluctuation theorem for a
driven open system, e.g., the Jarzynski equality, the system
is required to be initially prepared in an equilibrium state
whose temperature is the same as that of the heat reservoir.
But in Eq. (15), we loosen this constraint, i.e., the initial
temperature of the system can be different from that (those) of
the heat reservoir(s). Thus, we extend the Jarzynski equality
to a broader domain.

If initially the system has the same inverse temperature
as those of the heat reservoirs βν = βS = β or the system
is isolated from the heat reservoir after the initial prepara-
tion, the equality (15) is reduced to the Jarzynski equality
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〈exp(−βw)〉 = exp(−βFS ) [1]. On the other hand, if there
is no external driving, the equality (15) is reduced to the ex-
change fluctuation theorem of heat 〈exp[

∑
ν (βν − βS )qν]〉 =

1 [11]. From the above analysis we can see that Eq. (15)
unifies the Jarzynski equality [1] and the exchange fluctuation
theorem of heat [11]. From Jensen’s inequality, the Jarzyn-
ski equality and the exchange fluctuation theorem lead to
the maximum work principle and Clausius’ statement of the
second law [98], respectively (see Fig. 2).

As a self-consistent check, one can derive the Clausius in-
equality [98] from Eq. (15). From Jensen’s inequality, the in-
tegral fluctuation theorem (15) leads to a generalized Clausius
inequality −βS (〈w〉 + ∑

ν〈qν〉) + ∑
ν βν〈qν〉 � −βSFS . In

an irreversible cycle considered by Clausius, the free en-
ergy difference is zero FS = 0 due to λ(τ ) = λ(0), and
the state of the system returns to its initial state at the end
of the cycle, i.e., 〈HS (γS (τ ), λ(τ ))〉 − 〈HS (γS (0), λ(0))〉 =
〈w〉 + ∑

ν〈qν〉 = 0. Under these two constraints, the inequal-
ity obtained from the integral fluctuation theorem (15) is
reduced to the Clausius inequality

∑
ν βν〈qν〉 � 0.

We remark that a fluctuation theorem relevant to Eq. (15)
expressed by the internal energy change has been experimen-
tally verified quite recently [99]. Also, an integral fluctuation
theorem for the joint distribution of work and heat was re-
ported for the cyclic operation of heat engines [100–102].

We also notice in Ref. [103] an integral fluctuation theorem
is obtained as

〈
eβSHS (γS (0),λ(0))−β ′

SHS (γS (τ ),λ(τ ))+∑
ν βνqν

〉 = Z f
S (β ′

S )

Z i
S (βS )

, (16)

which can be derived from Eq. (14) by choosing ρ i
S (γS (0)) and

ρ̃ i
S (γ̃S (0)) as two equilibrium states with different inverse tem-

peratures βS and β ′
S . Only by setting β ′

S = βS , can the internal
energy change in Eq. (16) be rewritten into the combination
of work and heat.

The hierarchical structure of fluctuation theorems are sum-
marized in Fig. 2. Figure 2 is an exhaustive list of fluctuation
theorems concerning work and heat for a driven system in
contact with multiple heat reservoirs. All the fluctuation theo-
rems at different levels can be derived from microreversibility
[6] of the dynamics [Eq. (4)] by adopting a step-by-step
coarse-graining procedure. The arrows indicate that the fluc-
tuation theorems in lower panels can be derived from those
in upper panels after the coarse-graining procedure, but the
reverse is not true. From Fig. 2, one can see how the previous
known fluctuation theorems (with red (dark) background) and
the new fluctuation theorems (with blue (light) background)
discovered by us can be fitted into the hierarchical structure
of fluctuation theorems. In Appendix A, we parallel formu-
late a similar hierarchical structure of fluctuation theorems
of work and heat in the quantum regime. We remark that the
detailed [see Eqs. (6) and (8)] and the differential fluctuation
theorems [see Eqs. (9) and (10)] coincide in the quantum
regime [see Eqs. (A5) and (A6)] since a quantum trajectory
is defined in the two-point measurement scheme. Generally,
several different fluctuation theorems can be ascribed to the
fluctuation theorems for entropy production [12,13,104–106].
In Appendix B we formulate the hierarchical structure of
fluctuation theorems for entropy production.

III. JOINT STATISTICS OF WORK AND HEAT IN THE
SITUATION OF MULTIPLE HEAT RESERVOIRS

Recently, the joint distribution of thermodynamic quanti-
ties and their associated fluctuation theorems attract more and
more attention [44,87–89,99–103,107–109]. The joint distri-
bution of work and heat is a quantity of significant importance
to verify the above fluctuation theorems, but has not been
calculated for a nonequilibrium driving process previously. In
the following we study the calculation of the joint distribution
function of work and heat.

We propose a general method to calculate the joint statis-
tics of work and heat when the system is in contact with
multiple heat reservoirs. We would like to emphasize that our
method can recover the known results of the work distribu-
tion in the highly underdamped and the overdamped regimes
[25,32]. Moreover, we can calculate the joint statistics of work
and heat in the generic underdamped regime. Our method
is illustrated via a classical Brownian particle with mass m
moving in a time-dependent potential U (x, λ(t )) with the con-
trol parameter λ(t ). We consider the Brownian particle is in
contact with multiple heat reservoirs with the inverse temper-
atures βν and the friction coefficients κν . From the point of
view of the probability distribution ρ(x, p, t ), the stochastic
dynamics is described by the Kramers equation [110]

∂ρ

∂t
= L [ρ] +

∑
ν

Dν[ρ], (17)

where L characterizes the deterministic evolution

L [ρ] = − ∂

∂x

(
p

m
ρ

)
+ ∂

∂ p

(
∂U
∂x

ρ

)
, (18)

and Dν characterizes the dissipation induced by the νth heat
reservoir

Dν[ρ] = ∂

∂ p

(
κν pρ + κνm

βν

∂ρ

∂ p

)
. (19)

Even through we consider weak coupling between the system
and the heat bath, the system-bath interaction can be strong
in the classical Brownian motion model, especially in the
overdamped situation. Our results are still valid for the clas-
sical Brownian motion model. The validity of the Kramers
equation (17) is ensured by short bath correlation time, and
U (x, λ(t )) represents a renormalized potential that the system
particle feels [111]. A consistent thermodynamic structure is
restored by defining work and heat based on the renormalized
system Hamiltonian HS (x, p, λ) = p2/(2m) + U (x, λ).

In the following, we study the joint statistics of work and
heat for this specific model, and verify the generalized Crooks
relation (11) and the integral fluctuation theorem (15).

A. Feynman-Kac equation for work and heat

In the classical Brownian motion model, both work and
heat are random variables. With the joint distribution of work
and heat P(w, {qν}), the characteristic function of work and
heat is defined as χw,{qν }(s, {uν}) := 〈exp[i(sw + ∑

ν uνqν )]〉.
The characteristic function at time τ can be calculated through

χw,{qν }(s, {uν}) =
¨ ∞

−∞
η(x, p, τ ) dx d p, (20)
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where η(x, p, t ) is a distribution function in the phase space
depending on the values of s and uν . The evolution of
η(x, p, t ) is governed by the Feynman-Kac equation (also
called the twisted Fokker-Planck equation) [53,63]

∂η

∂t
= L [η] +

∑
ν

eiuνHS Dν[e−iuνHS η] + isλ̇
∂U
∂λ

η. (21)

The initial condition is

η(x, p, 0) = ρ(x, p, 0) = e−βSHS (x,p,λ(0))

Z i
S (βS )

, (22)

with the partition function Z i
S (βS ) =˜∞

−∞ exp[−βSHS (x, p, λ(0))] dx d p at the initial time.
Previously, the Feynman-Kac equation was used to calculate
the work statistics and to prove the Jarzynski equality [16].

With the characteristic function, the integral fluctuation
theorem (15) can be rewritten as

χw,{qν }(iβS, {i(βS − βν )}) = e−βSFS . (23)

Such an equality can be easily verified by noting that the
solution to the Feynman-Kac equation (21) with s = iβS and
uν = i(βS − βν ) is

η(x, p, t ) = e−βSHS (x,p,λ(t ))

Z i
S (βS )

. (24)

We rewrite the generalized Crooks relation (11) in terms of
the characteristic function as

χ̃w,{qν }(−s, {−uν})

χw,{qν }(iβS + s, {i(βS − βν ) + uν})
= eβSFS , (25)

where χ̃w,{qν }(s, {uν}) is the characteristic function in the re-
verse process. The equality (25) can also be proven from
the Feynman-Kac equation (21), and the proof is given in
Appendix C.

B. Example: Breathing harmonic oscillator

As an example, we study the joint statistics of work and
heat for a Brownian particle in a breathing harmonic potential
U (x, λ(t )) = mλ2(t )x2/2, where the control parameter λ(t ) is
the frequency. We consider the situation of a single heat reser-
voir with the inverse temperature β and the friction coefficient
κ . The system is initially prepared in an equilibrium state with
the inverse temperature βS . We would like to emphasize that
the extension of the following calculation to multiple heat
reservoirs is straightforward.

In this situation, we assume η(x, p, t ) in a quadratic form

η(x, p, t ) = βSλ(0)

2π
e− a

2
p2

m − b
2 mλ2(t )x2−cλ(t )xp−�. (26)

Substituting Eq. (26) into the Feynman-Kac equation (21), we
obtain the following set of time-dependent ordinary differen-
tial equations

�̇ = −κ

(
1 − a + iu

β

)
, (27)

ȧ = 2κ (a + iu)

(
1 − a + iu

β

)
− 2λ(t )c, (28)

ḃ = 2c

(
λ(t ) − κ

β
c

)
− 2(b + is)

λ̇(t )

λ(t )
, (29)

ċ = λ(t )(a − b) − 2
κ

β
(a + iu)c +

(
κ − λ̇(t )

λ(t )

)
c. (30)

The initial conditions are �(0) = 0, a(0) = βS , b(0) = βS and
c(0) = 0 according to Eq. (22). The characteristic function of
work and heat follows from Eq. (20) as

χw,q(s, u) = λ(0)

λ(τ )

βSe−�(τ )√
a(τ )b(τ ) − c(τ )2

. (31)

In the highly underdamped regime κ � λ(t ), the dynamics
and the work statistics can be calculated with the method
of stochastic differential equation of energy [32,78,102]. For
the breathing harmonic oscillator in the highly underdamped
regime, the kinetic energy and the potential energy are approx-
imately equal a ≈ b (Virial theorem), and the correlation can
be neglected c ≈ 0. The differential equations (27)–(30) can
be reduced to

�̇ = −κ

(
1 − a + iu

β

)
, (32)

ȧ = κ (a + iu)

(
1 − a + iu

β

)
− λ̇(t )

λ(t )
(a + is), (33)

and the characteristic function can be simplified into

χ
w,q
under (s, u) = λ(0)

λ(τ )

βSe−�(τ )

a(τ )
. (34)

As has been shown previously [32,102], we can even ob-
tain analytical results of the work statistics if we adopt the
exponential protocol of the control parameter

λ(t ) = λ(0) exp(αt ), (35)

where α is a constant determining the tuning rate of the con-
trol parameter. For this protocol, the analytical result of the
characteristic function can be obtained as

χ
w,q
under (s, u) = exp[(κ − α)τ/2]

cosh(�τ ) + [β�/(βSκ ) − (αβ − κβ + 2iκu)(αβ − κβ + 2iκu + 2κβS )/(4ββSκ�)] sinh(�τ )
, (36)

where � =
√

(κ − α)2/4 − iακ (s − u)/β. The free energy difference is FS = ατ/βS . One can check that the analytical
expression (36) satisfies the differential fluctuation theorem (25).
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We can similarly consider the overdamped regime. In
the overdamped regime κ 	 λ(t ), the relaxation timescales
of momentum and position are separated. The relaxation
timescale of the momentum is much less than that of
the position, and their joint distribution is in a product
form ρ(x, p, t ) = ρM (p) · ρ̂(x, t ). The momentum distribu-
tion ρM (p) = √

β/(2πm) exp[−βp2/(2m)] is assumed to be
the Maxwellian distribution, while the position distribution
ρ̂(x, t ) = ´∞

−∞ ρ(x, p, t ) d p is effectively governed by the

Smoluchowski equation ∂t ρ̂ = D̂[ρ̂] due to the separation of
the relaxation timescales [112–114]. The dissipative operator
is

D̂[ρ̂] = 1

mκ

∂

∂x

(
∂U
∂x

ρ̂ + 1

β

∂ρ̂

∂x

)
. (37)

Similar to Eq. (20), the characteristic function can be cal-
culated through

χ̂w,q
over (s, u) =

ˆ ∞

−∞
η̂(x, τ ) dx, (38)

where the distribution function η̂(x, t ) satisfies the Feynman-
Kac equation

∂η̂

∂t
= eiuU D̂[e−iuU η̂] + isλ̇

∂U
∂λ

η̂, (39)

with the initial condition

η̂(x, 0) = ρ̂(x, 0) = e−βSU (x,λ(0))

Ẑ i
S (βS )

. (40)

The normalized constant of the initial position distribution is
Ẑ i

S (βS ) = ´∞
−∞ exp[−βSU (x, λ(0))] dx.

We assume the distribution function η̂ in the quadratic form

η̂(x, t ) = λ(0)

√
βSm

2π
e− b̂

2 mλ2(t )x2−�̂. (41)

The Feynman-Kac equation (39) leads to the differential equa-
tions

˙̂� = −λ2(t )

κ

(
1 − b̂ + iu

β

)
, (42)

˙̂b = 2
λ2(t )

κ

(
b̂ + iu

)(
1 − b̂ + iu

β

)
− 2

λ̇(t )

λ(t )
(b̂ + is). (43)

The characteristic function is simplified into

χ̂w,q
over (s, u) = λ(0)

λ(τ )

√
βS

b̂(τ )
e−�̂(t ). (44)

It is worth mentioning that in the overdamped regime ne-
glecting the momentum degree of freedom does not affect the
work statistics [114], but indeed affects to the heats statistics
[85,87,115]. To be consistent with Eq. (31), we supplement
the contribution from the momentum degree of freedom
(fast thermalization at the initial time) to the characteristic
function

χw,q
over (s, u) = χ̂

w,q
over (s, u)√(

1 − iu
β

)(
1 + iu

βS

) . (45)

We will compare Eq. (45) with the exact result [Eq. (31)] in
the overdamped regime in the next subsection.

Similar to the highly underdamped regime, we can even
obtain analytical results of the characteristic function under
some specific protocols of the control parameter. For example,
we choose the protocol [25]

λ(t ) = λ(0)√
1 + εt

, (46)

where ε is a constant determining the tuning rate. The analyt-
ical result of the characteristic function can be obtained as

χw,q
over (s, u) =

(1 + ετ )
δ+ε
4ε

/√(
1 − iu

β

)(
1 + iu

βS

)
{

cosh
[

θ
ε

ln(1 + ετ )
] + sinh

[
θ
ε

ln(1 + ετ )
][

β

βS

(
θ
δ

− (δ+ε)2

4θδ

) + (
1 + 2iu

βS

)
δ+ε
2θ

− iuδ
βθ

(
1 + iu

βS

)]} 1
2

, (47)

where δ = 2λ2(0)/κ and θ =
√

i(s − u)δε/β + (δ + ε)2/4.
The free energy difference is FS = −[ln(1 + ετ )]/(2βS ).
One can check that the analytical expression (47) satisfies the
differential fluctuation theorem (25).

By setting u = 0 in Eqs. (36) and (47), we recover the
known results of the work distribution in the highly under-
damped and the overdamped regimes [25,32]. Actually, we
can calculate the joint distribution of work and heat in the
generic underdamped regime under an arbitrary protocol by
numerically solving Eqs. (27)–(30). In that sense, our method
substantially extends the range of applicability.

C. Joint distribution of work and heat

Previously, either the heat distribution or the work
distribution has been calculated for various systems
[21,24–26,29,75,76,80,84], but the joint distribution of

work and heat has not been calculated so far. For arbitrary
protocols of the control parameter λ(t ), the results of
the characteristic function χw,q(s, u) can be numerically
calculated via Eqs. (27)–(30). As an example to show
the effectiveness of our method, we calculate the joint
distribution P(w, q) of work and heat. The joint distribution
P(w, q) of work and heat is the inverse Fourier transform of
the characteristic function χw,q(s, u).

We consider a compression process under the exponen-
tial protocol λ(t ) = λ(0) exp(αt ) (α > 0) in the underdamped
regime (κ/λ(0) = 1/10) and an expansion process under the
specific protocol λ(t ) = λ(0)/

√
1 + εt (ε > 0) in the over-

damped regime [κ/λ(0) = 10]. In the numerical calculation,
we set the initial frequency λ(0) = 1 and the inverse temper-
atures βS = β = 1, i.e., the system is initially in equilibrium
with the heat reservoir. Both α and ε are set to be 0.05 with
the control time τ = 20.
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FIG. 3. The joint distribution P(w, q) and the marginal distri-
butions P(w) and P(q) at the end τ = 20 of the underdamped
compression process (κ = 0.1, λ(0) = 1, and α = 0.05). The black
dashed line shows w = q. In both the contour map and the marginal
distributions, the gray solid (red dashed) contours illustrate the nu-
merical (analytical) results.

Figure 3 illustrates the joint distribution P(w, q) (contour
map) of work and heat as well as the marginal distributions,
the work distribution P(w) and the heat distribution P(q),
at the end τ = 20 of the compression process in the under-
damped regime (κ = 0.1, λ(0) = 1 and α = 0.05). The joint
distribution P(w, q) is obtained via the two-dimensional dis-
crete inverse Fourier transform of the characteristic function
χw,q(s, u), where s and u range from −400 to 400 with the
interval 0.2. The red dashed contours are obtained from the
analytical expression (36) in the highly underdamped regime,
and agree well with the gray solid contours obtained from
the exact numerical results. In the marginal distributions, the
approximate analytical results (red dashed curves) agree well
with the exact numerical results (gray solid curves).

Figure 4 illustrates the joint distribution P(w, q) as well as
the marginal distributions P(w) and P(q) of work and heat
for the expansion process in the overdamped regime [κ = 10,
λ(0) = 1, and ε = 0.05]. The heat distribution P(q) is more
disperse than the work distribution P(w). In the joint distri-
bution, the agreement between the red dashed contours and
the gray solid contours shows the overdamped approxima-
tion is perfect under the current parameters. Notice that we
have included the contribution from the momentum degree of
freedom to the heat statistics in Eq. (45). In the overdamped
regime, the thermalization of momentum only contributes to
the heat statistics but does not affect the work statistics.

IV. CONCLUSION

In this article, we study the fluctuation theorems when a
system is in contact with multiple heat reservoirs and mean-
while is driven by an external agent. In this circumstance, the
marginal distributions of work or heat do not satisfy any fluc-
tuation theorem. But only the joint distribution of work and

FIG. 4. The joint distribution P(w, q) and the marginal distribu-
tions P(w) and P(q) at the end τ = 20 of the overdamped expansion
process [κ = 10, λ(0) = 1, and ε = 0.05].

heat satisfies a family of fluctuation theorems. We discover
a hierarchical structure of fluctuation theorems for the joint
distribution of work and heat in the situation of multiple heat
reservoirs (see Fig. 2). This is an exhaustive list of fluctuation
theorems concerning work and heat for a driven system in
contact with multiple heat reservoirs. We demonstrate how
these fluctuation theorems at different levels can be derived
from microreversibility [6] of the dynamics by adopting a
step-by-step coarse-graining procedure. Thus, we put all fluc-
tuation theorems into a unified framework. From Fig. 2, one
can also see how the previously known fluctuation theorems
and the new fluctuation theorems discovered by us can be
fitted into the hierarchical structure of fluctuation theorems.
The Jarzynski equality, the Crooks relation, the exchange fluc-
tuation theorem, and the Clausius inequality can be recovered
under specific conditions. The conventional statements of the
second law follow from the integral fluctuation theorems by
utilizing Jensen’s inequality.

We propose a general method to calculate the joint statis-
tics of work and heat via the Feynman-Kac equation. The
joint distribution of work and heat encodes more detailed in-
formation of the nonequilibrium driving processes compared
to the marginal distributions of work or heat. We exemplify
our method with a classical Brownian particle moving in a
time-dependent potential, and obtain explicit results of the
joint distribution of work and heat for the breathing har-
monic oscillator. For the classical Brownian motion model,
the system-bath interaction can be strong, and a consistent
thermodynamic structure is restored by defining work and
heat based on the renormalized system Hamiltonian [111].
In the highly underdamped and the overdamped regimes, we
obtain analytical expressions of the characteristic function of
work and heat under some specific protocols, and recover the
known results of the work distribution [25,32]. In addition,
we can also calculate the joint statistics of work and heat in
the generic underdamped regime, which has not been reported
previously.

024135-8



HIERARCHICAL STRUCTURE OF FLUCTUATION … PHYSICAL REVIEW E 107, 024135 (2023)

The general method can be further employed to study many
other problems in stochastic thermodynamics, for example,
to evaluate the work and the heat statistics in shortcuts to
isothermality [116–119]. Also, it is intriguing to study the
joint statistics of work and heat for generic open quantum
systems [32,53,54]. Extension of our method to calculate the
joint distribution of work and heat to driven open quantum
systems is left for future exploration.
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APPENDIX A: FLUCTUATION THEOREMS:
QUANTUM SETUP

In the quantum setup, the Hamiltonians HS (λ(t )) and Hν

are Hermitian operators. The initial state of the total sys-
tem is represented by the density matrix ρ i

tot = ρ i
S ⊗ π1 ⊗

· · · ⊗ πN in the product form. We consider the initial dis-
tribution of the system is also a canonical distribution ρ i

S =
π i

S = ∑
m pi

S,m|m〉〈m|. The canonical distribution of the νth
heat reservoir πν = ∑

nν
pν,nν

|nν〉〈nν |. Here |m〉 (|nν〉) is the
eigenstate of the Hamiltonian of the system HS (λ(0)) (the
Hamiltonian of the νth heat reservoir Hν), and pi

S,m (pν,nν
) is

the equilibrium population. The evolution of the total system
during the time interval [0, τ ] is given by the unitary evo-
lution Utot = T exp[− ´ τ

0 iHtot(λ(t ))] with the time-ordering
operator T and the total Hamiltonian Htot(λ(t )) = HS (λ(t )) +∑

ν Hν + hint. The interaction Hamiltonian hint is weak and
can be neglected when implementing the two-point measure-
ments for work and heat.

We implement the joint measurements of energies over the
system and the heat reservoirs at the beginning (end) with the
outcomes E i

S,m and Eν,nν
(E f

S,m′ and Eν,n′
ν
), and obtain the tra-

jectory of the transition � = (m, {nν} → m′, {n′
ν}). Here E i

S,m

and E f
S,m′ are the eigenenergies of the system Hamiltonians

HS (λ(0)) and HS (λ(τ )) at the initial and the final time, and
Eν,nν

is the eigenenergy of the Hamiltonian Hν of the νth heat
reservoir. The transition probability is P (m′, {n′

ν}|m, {nν}) =
|〈m′, {n′

ν}|Utot|m, {nν}〉|2, where |m, {nν}〉 is the direct product
of the eigenstates of the system and the heat reservoirs. The
heat exchange with the νth heat reservoir is defined by [44]

qν (�) := Eν,nν
− Eν,n′

ν
. (A1)

The work performed by the external driving, according to the
first law, is [44]

w(�) := E f
S,m′ − E i

S,m +
∑

ν

(
Eν,n′

ν
− Eν,nν

)
. (A2)

In the quantum setup, microreversibility is guaranteed by
the time-reversal invariance of the Hamiltonian

Htot(λ(t ))� = �Htot(λ(t )), (A3)

where � is the quantum mechanical time-reversal (antiuni-
tary) operator [6,50]. For the reverse process, the Hamilto-
nians are associated with the forward ones as H̃S (λ̃(t )) =

�HS (λ(τ − t ))�† and H̃ν = �Hν�
†, where the control pa-

rameter is tuned as λ̃(t ) = λ(τ − t ). The initial canonical
states are π̃ i

S = �π f
S�

† = ∑
m′ pf

S,m′�|m′〉〈m′|�† and π̃ν =
�πν�

† = ∑
n′

ν
pν,n′

ν
�|n′

ν〉〈n′
ν |�†. The corresponding evolu-

tion of the total system is Ũtot = T exp[− ´ τ

0 iH̃tot(λ̃(t ))]. The
probability of the transition from �|m′, {n′

j}〉 to �|m, {n j}〉
is P̃ (m, {nν}|m′, {n′

ν}) = |〈m, {nν}|�†Ũtot�|m′, {n′
ν}〉|2. From

Eq. (A3), one can verify microreversibility of the evolution
�†Ũtot� = U †

tot. Thus, the transition probabilities of the for-
ward and the reverse processes satisfy

P̃ (m, {nν}|m′, {n′
ν}) = P (m′, {n′

ν}|m, {nν}), (A4)

which is the quantum counterpart of Eq. (4).
We prepare the heat reservoirs in their equilibrium states in

both the forward and the reverse processes. For the initial state
|m〉 of the system, the conditional probability of observing the
transition � in the forward process is P (m′, {n′

ν}, {nν}|m) :=
P (m′, {n′

ν}|m, {nν})
∏

ν pν,nν
. We sum over the initial and

the final states of the heat reservoirs PS (m′, {qν}|m) =∑
{nν },{n′

ν } P (m′, {n′
ν}, {nν}|m)δ(qν − Eν,nν

+ Eν,n′
ν
), and ob-

tain

P̃S (m, {−qν}|m′)
PS (m′, {qν}|m)

= e
∑

ν βνqν . (A5)

Here P̃S (m, {−qν}|m′) is similarly defined in the reverse pro-
cess with the initial state �|m′〉 of the system. Equation (A5)
is the quantum counterpart of Eq. (6) or Eq. (9).

Including the initial canonical distribution of the
system, we obtain the probability PS (m′, m, {qν}) =
PS (m′, {qν}|m)pi

S,m of observing the system jumping from m
to m′ with the heat exchange qν . The ratio of probabilities
becomes

P̃S (m, m′, {−qν})

PS (m′, m, {qν})
= e−βS[w(�)−FS]+∑

ν (βν−βS )qν . (A6)

This is the quantum counterpart of Eq. (8) or Eq. (10). By
summing over the initial and the final states of the system
P(w, {qν}) = ∑

m,m′ PS (m′, m, {qν})δ(w + ∑
ν qν − E f

S,m′ +
E i

S,m), it can be verified that the ratio
P̃(−w, {−qν})/P(w, {qν}) also satisfies the generalized
Crooks relation (11). It is straightforward to derive the
quantum counterparts of the differential and the integral
fluctuation theorems (12), (13), and (15).

APPENDIX B: FLUCTUATION THEOREMS
FOR ENTROPY PRODUCTION

Based on Eq. (7), we formulate fluctuation theorems for en-
tropy production in a hierarchy. The entropy change, similar to
work and heat, can also been defined along the trajectory [13].
The entropy change of the νth heat reservoir is determined by
the heat exchange sν = −βνqν , when the heat exchange is
much smaller than the internal energy of every heat reservoir.
The entropy change of the system is related to the initial and
final phase-space points

sS = − ln ρ̃ i
S (γ̃S (0)) + ln ρ i

S (γS (0)). (B1)

The initial distribution ρ̃ i
S in the reverse process can be chosen

as the time-reversal of the final distribution in the forward
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process, i.e., ρ̃ i
S (γ̃S (0)) = �[ρf

S (γS (τ ))]. The total entropy
change is stot = sS + ∑

ν sν .
Then, the detailed fluctuation theorem (6) can be written as

P̃S (γ̃S; {−sν}|γ̃S (0))
PS (γS; {sν}|γS (0))

= e− ∑
ν sν , (B2)

where the heat exchanges in the probability densities
are replaced by the entropy changes of the heat reser-
voirs. Together with the initial distribution ρ i

S (γS (0)) of
the system, we obtain the complete trajectory probability
density PS (γS; sS, {sν}) = PS (γS; {sν}|γS (0))ρ i

S (γS (0)),
where the entropy change of the system is related to the initial
and the final phase-space points [Eq. (B1)]. Equation (7) can
also be written as

P̃S (γ̃S; −sS, {−sν})

PS (γS; sS, {sν})
= e−stot . (B3)

Equations (B2) and (B3) are identical to Eqs. (6) and (7), but
are formulated in terms of entropy changes.

We group the system trajectories according to the entropy
changes sν of the heat reservoirs, the initial and final val-
ues γS (0) and γS (τ ) of the phase-space points, and obtain
the conditional joint distribution P({sν}, γS (τ )|γS (0)) :=∑

γS
PS (γS; {sν}|γS (0)). The differential fluctuation theorem

for the conditional joint distribution is obtained from Eq. (B2)
as

P̃({−sν}, γ̃S (τ )|γ̃S (0))
P({sν}, γS (τ )|γS (0))

= e− ∑
ν sν . (B4)

Please note that a coarse-grained version of Eq. (B4) has
been previously obtained in Ref. [15] [see Eq. (4) therein].
We can define the joint distribution of entropy changes
as P(sS, {sν}) := ∑

γS (0),γS (τ ) P({sν}, γS (τ )|γS (0))ρ i
S

(γS (0))δ[sS + ln ρf
S (γS (τ )) − ln ρ i

S (γS (0))], and obtain the
differential fluctuation theorem

P̃(−sS, {−sν})

P(sS, {sν})
= e−stot . (B5)

By integrating over sS and sν , it is straightforward to
obtain the integral fluctuation theorem

〈e−stot 〉 = 1, (B6)

which has been previously obtained in Ref. [103] [see Eq. (26)
therein]. From Jensen’s inequality, the integral fluctuation
theorem (B6) leads to the principle of increase of entropy,
〈stot〉 � 0 [98]. We illustrate the hierarchical structure of
fluctuation theorems for entropy production in Fig. 5.

APPENDIX C: PROOF OF EQ. (25) BASED
ON KRAMERS EQUATION

We rewrite Eq. (21) as

∂η

∂t
= Kt (s, {uν})[η], (C1)

with the time-dependent operator

Kt (s, {uν})[η] = L [η] +
∑

ν

eiuνHS Dν[e−iuνHS η] + isλ̇
∂U
∂λ

η.

(C2)

Integral FT Eq. (B6)    [103]

[98]Principle of increase of entropy

Differential FTs

Detailed FTs 

coarse graining
system trajectory

given system state

coarse graining
bath trajectory

integrating over

Eq. (B2)

Eq. (B3)

Eq. (B4)

Eq. (B5)

Microreversibility Eq. (4)

Jensen's inequality

FIG. 5. Hierarchical structure of fluctuation theorems for entropy
production. Fluctuation theorems at different levels can be derived
from microreversibility of the dynamics by adopting a step-by-step
coarse-graining procedure. The fluctuation theorem with red (dark)
background has been obtained previously, but these with blue (light)
background have not been reported so far. To derive these fluctuation
theorems, we have assumed the heat exchange is much smaller than
the internal energy of every heat reservoir. Please note that Eq. (B6)
has been previously obtained in Ref. [103] [see Eq. (26) therein], and
a coarse-grained version of Eq. (B4) has been previously obtained in
Ref. [15] [see Eq. (4) therein].

For χw,{qν }(s + iβS, {uν + i(βS − βν )}), the time-
dependent operator becomes

Kt (s + iβS, {uν + i(βS − βν )})[η]

= L [η] +
∑

ν

e(iuν−βS )HS D̆ν[e−(iuν−βS )HS η]

+ isλ̇
∂U
∂λ

η − βSλ̇
∂U
∂λ

η, (C3)

where D̆ν is defined as

D̆ν[·] := eβνHS Dν[e−βνHS ·] = −κν p
∂ (·)
∂ p

+ κνm

βν

∂2(·)
∂ p2

. (C4)

Let us define a new variable ϑ (x, p, t ) :=
exp(βSHS )η(x, p, t ). We rewrite the differential equation (C1)
associated with the operator (C3) as

∂ϑ

∂t
= L [ϑ] +

∑
ν

eiuνHS D̆ν[e−iuνHS ϑ] + isλ̇
∂U
∂λ

ϑ. (C5)

The initial condition is ϑ (x, p, 0) = 1/Z i
S (βS ). At the final

time t = τ , the characteristic function can be rewritten as

χw,{qν }(s + iβS, {uν + i(βS − βν )})

=
¨ ∞

−∞
e−βSH f

S ϑ (x, p, τ ) dx d p, (C6)
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where ϑ (x, p, t ) is propagated according to Eq. (C5), and
the final Hamiltonian is H f

S = HS (x, p, λ(τ )). One can instead
consider the corresponding propagation over exp(−βSH f

S ).
We rewrite ϑ (x, p, τ ) = Uτ [ϑ (x, p, 0)], which is propagated
by the evolution operator Uτ generated by Eq. (C5). For
the integral

˜∞
−∞ ϕ(x, p, τ )Uτ [ϑ (x, p, 0)] dx d p, the conju-

gate evolution operator U †
τ on ϕ(x, p, τ ) satisfies¨ ∞

−∞
ϕ(x, p, τ )Uτ [ϑ (x, p, 0)] dx d p

=
¨ ∞

−∞
U †

τ (ϕ(x, p, τ ))ϑ (x, p, 0) dx d p. (C7)

In the following, we will show the right-hand side of Eq. (C7)
corresponds to the evolution in the reverse process and thus
prove Eq. (25).

The deterministic evolution satisfies¨ ∞

−∞
ϕL [ϑ]dx d p =

¨ ∞

−∞

( p

m
ϑ

)∂ϕ

∂x
−

(
∂U
∂x

ϑ

)
∂ϕ

∂ p
dx d p

(C8)

=
¨ ∞

−∞
L [�(ϕ)]�(ϑ ) dx d p. (C9)

The dissipation term satisfies¨ ∞

−∞
ϕD̆ν[ϑ]dx d p =

¨ ∞

−∞

(
κν

∂ (pϕ)

∂ p
+ κνm

βν

∂2ϕ

∂ p2

)
ϑ dx d p

(C10)

=
¨ ∞

−∞
Dν[ϕ]ϑ dx d p. (C11)

In the reverse process, the control parameter is tuned as λ̃(t ) =
λ(τ − t ). The performed work is rewritten as

isλ̇
∂U
∂λ

= −is ˙̃λ
∂U
∂λ

. (C12)

Both the distributions exp(−βSHS ) and ϑ (x, p, t ) in the
phase space are unchanged under the time-reversal operation,
namely, �[exp(−βSHS )] = exp(−βSHS ) and �[ϑ (x, p, t )] =
ϑ (x, p, t ). Combing Eqs. (C9), (C11), and (C12), and the
facts �[ϑ] = ϑ and �[ϕ] = ϕ, we obtain the identity
relation

¨ ∞

−∞
ϕ

(
L [ϑ] +

∑
ν

eiuν D̆ν[e−iuν ϑ] + isλ̇
∂U
∂λ

ϑ

)
dx d p

=
¨ ∞

−∞
˜Kτ−t (−s, {−uν})[ϕ]ϑ dx d p. (C13)

Therefore, the propagation over ϑ in Eq. (C6) can be re-
placed by the propagation over exp(−βSH f

S ) generated by
˜Kτ−t (−s, {−uν}) in the reverse process:¨ ∞

−∞
e−βSH f

S ϑ (x, p, τ ) dx d p

= Z f
S (βS )

Z i
S (βS )

¨ ∞

−∞
η̃(x, p, τ ) dx d p, (C14)

where η̃(x, p, τ ) is associated with the characteristic function
χ̃w,{qν }(−s, {−uν}) in the reverse process, and the initial con-
dition is η̃(x, p, τ ) = exp(−βSH f

S )/Z f
S (βS ). Thus, we prove

Eq. (25) based on the Kramers equation.
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