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Stability of ϕ4-vector model: Four-loop ε expansion study
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In most papers, ϕ4-field theory with the vector (d-component) field ϕα is considered as a particular case of
the n-component field model for n = d and O(n) symmetry. However, in such a model the symmetry O(d )
admits an addition to the action of a term proportional to the squared divergence of the field ∼h(∂αϕα )2. From
the point of view of renormalization group analysis, it requires a separate consideration, because it may well
change the nature of the critical behavior of the system. Therefore, this frequently neglected term in the action
requires a detailed and accurate study on the issue of the existence of new fixed points and their stability. It is
known that within the lower order of perturbation theory the only infrared stable fixed point with h = 0 exists
but the corresponding positive value of stability exponent ωh is tiny. This led us to analyze this constant in
higher orders of perturbation theory by calculating the four-loop renormalization group contributions for ωh in
d = 4 − 2ε within the minimal subtraction scheme, which should be enough to infer positivity or negativity
of this exponent. The value turned out to be undoubtedly positive, although still small even in higher loops:
0.0156(3). These results cause the corresponding term to be neglected in the action when analyzing the critical
behavior of the O(n)-symmetric model. At the same time, the small value of ωh shows that the corresponding
corrections to the critical scaling are significant in a wide range.
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I. INTRODUCTION

In recent years, the theory of critical behavior has ex-
perienced a renaissance. It is dictated by the emergence
of new theoretical approaches [1–5] and by the fact that
compared to a couple decades ago a number of powerful
numerical methods used for the needs of renormalization
group (RG) approaches have appeared [6–18]. Apart from
that, the computational power of modern hardware opens up
great prospects for breaking into high orders of perturbative
critical thermodynamics by means of RG methods for field
models where previously it was unthinkable due to the tech-
nical features of calculations. One of these problems is the
analysis of the field model, where the quadratic part of the
action differs from the standard one by a term ∼h(∂αϕα )2. In
the general case, such an additive, which preserves rotational
symmetry, is not prohibited by any fundamental restrictions.
To the surprise of the authors, a proper analysis of its presence
in the action of the standard O(n)-symmetric model has not
been presented in the literature, although this could potentially
lead to a change in the usual Heisenberg universality class.
Moreover, the realization of such work is also motivated by
the recently published paper of the authors, in which we
analyze the action in the strong dipole-dipole coupling regime
[19], where the term mentioned above was discarded. The
neglect of this additive was due to the belief that it does not
change the universality class, giving as a stable fixed point
one that contains the zero value of h coordinate (h∗ = 0).
Some discussion and the lowest-order analysis regarding the

stability of such fixed point can be found in Refs. [20,21].
However, the smallness of the exponent requires checking
for the fact that the sign of this quantity does not change in
higher orders, as it frequently happens in the theory of critical
behavior.

The authors of this paper are sure that such an omission in
the general theory should be eliminated as soon as possible.
Thus, in this work, we analyze the stability of the h-vector
model within the minimal subtraction (MS) scheme in the
4 − 2ε dimensions. On the basis of these results, we will
give an unambiguous conclusion regarding the stability of
the corresponding fixed point, or rather the stability of the
ordinary Heisenberg point with respect to the presence of the
∼h(∂αϕα )2 term in the action.

The paper is organized as follows. In Sec. II, the model
and renormalization scheme which we use in this work are
described. Next, in Sec. III the expansions for RG functions
and numerical results are presented. At the end in Sec. IV, we
will draw a conclusion.

II. MODEL AND RENORMALIZATION

The action we plan to study is as follows:

S0 = −
∫

dd x

[
1

2

[
(∂βϕ0α )2 + m2

0ϕ
2
0α + h0(∂αϕ0α )2

]

+ 1

4!
u0T αβγ δ

S ϕ0αϕ0βϕ0γ ϕ0δ

]
, (1)
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where ϕ0α is a d-component bare field, u0 is bare coupling
constants, and m2

0 is bare mass being proportional to T − Tc,
where Tc is the mean-field critical temperature. The tensor
factor T αβγ δ

S reads as follows:

T αβγ δ

S = 1
3 (δαβδγ δ + δαγ δβδ + δαδδγβ ). (2)

The corresponding propagator within the momentum repre-
sentation is

Gαβ (p) = δαβ − p̂α p̂β

p2 + m2
0

+ p̂α p̂β

(1 + h0)p2 + m2
0

, (3)

where the orientation vector is defined as p̂α = pα/p. The
propagator denominator makes it easy to understand the re-
gion of stability, which is determined by the condition h0 >

−1. From the computational point of view, it is convenient to
resort to projectors, in terms of which the propagator is written
as

Gαβ (p) = P⊥
αβ

p2 + m2
0

+ P‖
αβ

(1 + h0)p2 + m2
0

, (4)

with P⊥
αβ = δαβ − p̂α p̂β and P‖

αβ = p̂α p̂β . Let us discuss the
renormalization of the action (1) within the ε expansion
technique. As is well known, the only two- and four-point
one-irreducible Green’s functions are spoiled by the pole
singularities in ε. In the considered model, an additional diver-
gence compared to the O(n)-symmetric model appears in the
quadratic contribution ∼h0 pα pβ . The counterterm necessary
for the renormalization is reproduced by the multiplica-
tive renormalization of the parameter h0. This preserves the
general multiplicative renormalizability of the theory. The
renormalization procedure is reduced to introducing the nec-
essary renormalization constants to bare field theory (1). The
renormalized action has the following form:

S = −
∫

dd x

[
1

2

[
Z1(∂βϕα )2 + Z2m2ϕ2

α + Z4h(∂αϕα )2
]

+ 1

4!
Z3μ

2εuT αβγ δ

S ϕαϕβϕγ ϕδ

]
. (5)

The renormalization constants Zi are calculated perturbatively
in the form of series in renormalized coupling constant u and
for u = 0 they satisfy Zi = 1. The transition from bare action
(1) to renormalized one (5) can be interpreted as redefining of
field and system parameters from bare values to renormalized
ones:

ϕ0α = ϕαZϕ, m2
0 = m2Zm2 , h0 = hZh, u0 = μ2εuZu.

Comparing the bare (1) and renormalized (5) action, the dif-
ferent renormalization constants are related to each other as

Z1 = Z2
ϕ, Z2 = Z2

ϕZm2 , Z3 = ZuZ4
ϕ, Z4 = ZhZ2

ϕ. (6)

Note that, in Ref. [22], the difference between the renormal-
ization constants Z1 and Z4 was interpreted as the difference
between the renormalization constants of the transverse ϕ⊥

α =
P⊥

αβϕβ and longitudinal ϕ‖
α = P‖

αβϕβ components of the field:

ϕ
‖
0α = Z‖

ϕϕ‖
α and ϕ⊥

0α = Z⊥
ϕ ϕ⊥

α . However, in this case it is
impossible to interpret the renormalization constant Z3 in the
form Z3 = ZuZ4

ϕ that violates the multiplicative renormaliz-
ability of the model.

In the MS scheme, the coefficients of the series in
u of the renormalization constants Zi do not depend on
m and μ, but only on dimensionless parameter h which
plays the role of a nonperturbative charge. The renormal-
ization group equations for the Green’s functions can be
obtained from the condition that their bare counterparts—
G(0)

n = 〈ϕ0α1ϕ0α2 . . . ϕ0αn〉—do not depend on the parameter
μ. Taking into account the relation between bare and renor-
malized Green’s functions G(0)

n = Zn
ϕGR

n , we act on both sides
of the equality by the operation D̃μ = μ∂μ|u0,h0,m0 :

D̃μGR
n + nγϕGR

n = 0, (7)

where γϕ = D̃μ ln Zϕ . Passing completely in the operator D̃μ

to the renormalized parameters

D̃μ = Dμ + (D̃μm2)∂m2 + (D̃μh)∂h + (D̃μu)∂u, (8)

we obtain the following equation for the renormalized Green’s
function:

[Dμ + (D̃μm2)∂m2 + βh∂h + βu∂u + nγϕ]GR
n = 0, (9)

where the β functions are defined as

βu = D̃μu, βh = D̃μh. (10)

Also, from the connection between bare and renormalized
parameters, one can extract the following necessary relations:

D̃μm2 = −γm2 m2, βh = D̃μh = −γhh,

βu = D̃μu = −u(2ε + γu), (11)

where anomalous dimensions read as

γm2 = D̃μ ln Zm2 , γh = D̃μ ln Zh, γu = D̃μ ln Zu. (12)

Taking into account all the above, we get the following RG
equation:

[μ∂μ − γm2 m2∂m2 + βh∂h + βu∂u + nγϕ]GR
n = 0. (13)

The anomalous dimensions γϕ , γm2 , γh, and γu do not possess
poles in ε; moreover, within the MS scheme they depend only
on u and h and do not depend on ε at all:

γi = (βh∂h + βu∂u) ln Zi. (14)

Thus all RG functions are expressed in terms of renormal-
ization constants, except the trivial dependence of βu on ε.
Taking into account the relations (14) and (11) the beta func-
tions can be found from the following system:

βu = −u[2ε + (βu∂u + βh∂h)Zu], (15)

βh = −h[(βu∂u + βh∂h)Zh]. (16)

The critical behavior of the system is determined by the fixed
point, or, equivalently, by the zeros of the β functions:

βu(u∗, h∗) = 0, βh(u∗, h∗) = 0. (17)

If the analyzed fixed point is infrared stable that is determined
by the behavior of the β functions, then in the critical region
the Green’s function satisfies the following equation:

[μ∂μ − γ ∗
m2 m2∂m2 + nγ ∗

ϕ ]GR
n = 0, γ ∗

i = γi(u
∗, h∗). (18)

024133-2



STABILITY OF ϕ4-VECTOR MODEL: … PHYSICAL REVIEW E 107, 024133 (2023)

In the next section, we will apply these formulas to specific
Feynman diagrams.

III. RG EXPANSIONS AND NUMERICAL ESTIMATES

Since we are analyzing the stability of an O(n)-symmetric
fixed point, which, as we will show, is stable with respect
to a perturbation of the type ∼h(∂αϕα )2, we do not need
to renormalize the mass to obtain expressions for the crit-
ical exponents ν, α, etc.; they will be the same as in the
case of O(n)-symmetric universality class with n = 4 − 2ε.
Moreover, to simplify the calculations, one can resort to a
massless computational scheme. Let us write down the way
we calculate the renormalization constants. As was said, due
to multiplicative renormalizability of the model it is enough

to remove divergences in two- and four-point one-particle
irreducible Green’s functions which can be denoted as �

(2)
αβ

and �
(4)
αβγ δ , respectively. The counterterms eliminating the

divergences in these functions are polynomials in external
momenta. For �

(2)
αβ it is quadratic polynomial in the form

c1(ε)p2δαβ + c2(ε)pα pβ = p2[c1(ε)δαβ + c2(ε) p̂α p̂β ], while
for �

(4)
αβγ δ the polynomial is of the zero order. In addition, from

the point of view of convenience, we will use the MS scheme
which is expressed by the transition to another perturbative
charge v:

u = v(4π )d/2e(2−d/2)γ , (19)

where γ is the Euler constant. Thus we will determine the
renormalization constants based on the finiteness condition
for the functions ∂p2�

(2)
αβ and �

(4)
αβγ δ/vμ2ε:

(20)

(21)

where symbols δ and p̂ denote the contributions of corre-
sponding tensor structures; the multiplier p−nε appears when
the change of integration variable from momentum to dimen-
sionless (in units of external momentum) one is performed. In
this case the left diagrams depend only on ε and h. Having
done all of these steps, the obtained expressions for renormal-
ization constants have the following structure:

Zi = 1 +
∑
j=1

u j
j∑

l=1

c(i)
jl (h)ε−l . (22)

It is essential that the pole contributions, which are ob-
tained in (20) and (21) from the product of the expansion
(μ/p)kε = 1 + kε ln μ/p . . . , and higher-order pole contribu-
tions (from diagrams and renormalization constants) cancel
each other, which is a very important consequence of the
renormalizability of the theory. This leads to the fact that
the renormalization constants do not depend on μ/p. At the
same time, the interesting for us contribution in (21) does not
depend on the way of momentum passing through a diagram.

Having obtained Z1, Z3, and Z4, as functions of v, h, and
ε we can extract Zϕ , Zv , and Zh by means of the following
expressions:

Zv = Z3

Z2
1

, Zh = Z4

Z1
, Zϕ = √

Z1. (23)

Let us compose all the expressions; as a first step we need to
find the lowest order for the β function of the nonperturbative
charge h in order to analyze a possibility to obtain a new fixed
point or to make sure that only zero-valued h is possible. For
this purpose, it is enough to calculate the pole of the diagram

e111|e|:1

(24)

where we have taken into account symmetry and combinato-
rial factors (n everywhere is replaced by d = 4 − 2ε). After
substituting h0 = hZ4/Z1, by means of Eqs. (20), (21), and
a simplified (valid only in low order) expression for the β

function of h (βh = 2εhv∂v ln Zh), this diagram allows one to
obtain the following result:

βh = h(5h2 + 6h + 4)

27(h + 1)2
v2 + O(v3). (25)

It is easy to see that for a fixed point equation here is only
one real root—h = 0. At this stage, the important question
connected with the stability of this point appears. If it is not
stable, then it is necessary to look for other fixed points and,
obviously, this can be done only in higher orders of perturba-
tion theory. If the point is stable (ωh > 0), but numerical value
of the exponent is small, it is necessary to check whether the
sign does not change in higher orders. The latter is realized in
our case—as it turned out, ωh > 0 does not become negative
in higher orders. It is worth noting that there are situations in
the literature when the conclusion regarding one or another

1Originally description of this diagram notation was presented in
the report in [24].
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TABLE I. Two-point Feynman diagrams up to four loops which
should be calculated in order to extract the ε expansion for ωh. Each
graph is accompanied by nickel index. Nickel index is commonly
used in describing the topologies of Feynman diagrams. The explana-
tion of its modern modifications was described in detail in Ref. [23].

class of universality changes with the growth of the orders of
the perturbation theory [25,26].

Taking into account the value of fixed point coordinate
v∗ = ε/2, which is the same as in the case of O(n)-symmetric
theory with n = 4 − 2ε, the corrections to the scaling expo-
nent equal ε2/27, which in case of physical value of ε = 1/2
gives ∼0.009. As was said above, such a small value of the
correction to scaling exponent forces us to make sure that, in
higher orders of perturbation theory, the sign of this quantity
does not change to negative. Note that, since we are interested
in the case h = 0, it will suffice to consider only terms linear
in h in the βh function. This fact allows one to calculate only
linear contributions in h in all two-legs diagrams, and four legs
can be computed initially for h = 0. In the future, only this
consideration will be enough, since the fixed point with zero
h value turns out to be stable. The corresponding topologies
of diagrams are presented in Table I.

Thus, having calculated all necessary up to four-loops dia-
grams, we obtain the following expansions for β functions:

βv = −2εv + 4v2 − 26

3
v3 + (6984 + 4032ζ3)

216
v4 + O(v5),

βh = 4h

27
v2 − 4h

27
v3 + 2344h

2187
v4 + O(v5). (26)

It is interesting to note that βv differs from its O(4)-symmetric
counterpart [27] starting only from v4:

β4
v = −2εv + 4v2 − 26

3
v3 + (7176 + 4032ζ3)

216
v4 + O(v5).

The fixed point extracted from (26) has the following coordi-
nates:

v∗ = 1

2
ε + 13

24
ε2 + (47 − 168ζ3)

288
ε3 + O(ε4),

h∗ = 0. (27)

Let us now calculate the ε expansion for the correction to
scaling exponent ωh = ∂hβh(h∗, v∗):

ωh = 1

27
ε2 + 5

81
ε3 + (2605 − 3024ζ3)

34992
ε4 + O(ε5), (28)

which numerically reads as follows:

ωh = 0.03704ε2 + 0.06173ε3 − 0.02944ε4 + O(ε5). (29)

FIG. 1. Dependence of construction by means of PBL technique
numerical estimate of exponent ωh on the value of fitting parameter
b. The corresponding Padé approximant is [1/1].

In order to obtain the proper numerical estimates for ωh

the different resummation strategies should be applied [28].
Before we get into the resummation procedures, let us look at
the estimate that can be obtained by a simple direct summation
in case of ε = 1/2. This gives ∼0.0151. Later we will see
that, due to the favorable structure of the expansion, such an
estimate turns out to be quite close to the numbers that are
obtained using various resummation techniques.

As the first method, we choose the simple Padé ap-
proximants. Let the analyzed expansion for ωh read as
ε2 ∑2

k=0 ckε
k . The standard step that should be done in this

case is to reduce the polynomial to such a form that starts
with the constant. The corresponding highest available ap-
proximant is P[1/1]:

P[1/1]

[
2∑

k=0

ckε
k

]
= 0.037037 + 0.0793899ε

1 + 0.476861ε
. (30)

Keeping in mind the factor ε2, for the physically interesting
case (ε = 1/2) we have 0.01549. The number of digits we
have left is due to the accuracy of alternative resummation
methods.

The more tricky method is the Padé-Borel-Leroy (PBL)
technique. This approach is based on the so called Borel
transformation. The resummed value can be found by means
of the following formula:

ωPBL
h,b (ε) = ε2

∫ ∞

0
dt tbe−t P[1/1]

[
2∑

k=0

ck (εt )k

�(k + 1 + b)

]
.

(31)

The fitting parameter b is chosen from the principle of maxi-
mum or minimum value of dependence of analyzed quantity
on b variation. The dependence of numerical estimate of the
PBL approximant on parameter b is demonstrated in Fig. 1.
As an error, we will take the variation of the change in the
PBL estimate when changing the fitting parameter over the
entire range [0,∞). Thus our PBL estimate for ωh equals
0.01559(10).

A more advanced approach, called the conformal Borel
resummation technique, still uses the Borel transform, but
the analytic continuation is sought using a special conformal
mapping. The general idea can be formulated as follows. Let
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TABLE II. Numerical estimates of the correction to scaling ex-
ponents ωh obtained by means of different resummation strategies.
An error is indicated in those cases where it is implied by the
resummation algorithm.

Padé Padé-Borel-Leroy Conformal Borel SSFT

0.01549 0.01559b=0(10) 0.0156(12) 0.01577

the asymptotic behavior of the series coefficients of analyzed
expansion c(ε) = ∑

ckε
k for large order behave as

ck −−−→
k→∞

const k!kb0 (−a)k, (32)

where 1/a is the radius of convergence and b0 is fixed by
the high-order asymptotic behavior of the series. The authors
of Ref. [27] proposed to treat the parameter b = b0 + 3/2
as a free one, to be determined variationally. Once a Borel
transformation, based on this modified asymptotic form, is
performed, the variable ε is conformally mapped onto w as

w(ε) =
√

1 + aε − 1√
1 + aε + 1

, ε(w) = 4w

a(1 − w)2
. (33)

Moreover, it is assumed that the expansion has the strong
asymptotic behavior c(ε) ∼ ελ, ε → ∞. The results are then
improved by a preliminary homogeneous homographic trans-
formation,

ε(ε′) → ε′

1 + qε′ , ε′(ε) → ε

1 − qε
, (34)

and the final approximate estimates are found by applying
the steps mentioned above to the new ε′ expansion. At the
end, the optimal parameters are chosen such that the final
estimate is the least sensitive to changes in these parameters
in the vicinity of their optimal values. After analyzing the
numerical values of the estimates obtained using this method,
we managed to come to the following number: 0.0156(12).

The last procedure we use is the one based on self-similar
factor transformations (SSFT) [29]. The essence of the tech-
nique is to replace the summation with the product, which
should improve the convergence

ωSSFT(ε) = c0ε
2

1∏
j=1

(1 + Aj )
n j , (35)

where constants Aj and n j can be found from

2∑
k=0

(ck/c0)εk =
1∏

j=1

(1 + Aj )
n j + O(ε3). (36)

Based on the expansion (29) we obtain A1 = 2.62039 and
n1 = 0.63604. For ε = 1/2 the value of the exponent equals
0.01577.

Numerical results that were obtained using various resum-
mation techniques were collected in Table II. It can be seen
that the fourth order of perturbation theory makes it possible
to give a good grouping of answers. Based on the results
obtained by means of different resummation strategies, we
come to the following final estimate for correction to scaling
exponent:

ωh = 0.0156(3). (37)

The resulting number allows us to make an affirmative con-
clusion regarding the stability of the standard Heisenberg
universality class to the appearance of the term ∼h(∂αϕα )2.

IV. CONCLUSION

To sum up, in this paper we solved the problem, which
for a long time remained without required attention—the sta-
bility of an O(n)-symmetric fixed point with respect to the
additional term proportional to the divergence of the field in
the action. For this purpose, we have calculated four-loop
ε expansion for correction to scaling exponent ωh. In the
lower orders, we have found that there is only one fixed point
with zero h. Analyzing higher orders, we made sure that the
correction to scaling exponent, although small, is unambigu-
ously positive. Thus we can conclude that discarding the term
∼h(∂αϕα )2 when considering the critical behavior of systems
described by O(n)-symmetric theory is fully justified.
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