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Universal scaling of higher-order spacing ratios in Gaussian random matrices
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Higher-order spacing ratios are investigated analytically using a Wigner-like surmise for Gaussian ensembles
of random matrices. For a kth order spacing ratio (r (k), k > 1) the matrix of dimension 2k + 1 is considered. A
universal scaling relation for this ratio, known from earlier numerical studies, is proved in the asymptotic limits
of r (k) → 0 and r (k) → ∞.
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I. INTRODUCTION

Random matrix theory (RMT), introduced more than 50
years ago, has been applied successfully in various fields
[1–3]. Originally it was introduced to explain the intricate
spectra of heavy nuclei [4]. Later, it has found applications in
complex networks [5,6], many-body physics [7–11], wireless
communications [12], etc. One of the main objectives of RMT
is to study the spectral fluctuations in these systems. These
fluctuations can be used to characterize the different types of
phases of these complex systems, for example, integrable to
chaotic limits of the underlying classical systems [13–15],
thermal or localized phases of condensed matter systems
[9–11,16], etc. Bohigas, Giannoni, and Schmit conjectured
that the eigenvalue fluctuations in a quantum chaotic system
can be modeled by one of the three classical ensembles of
RMT depending on the underlying symmetry. These ensem-
bles having Dyson indices as β = 1, 2, and 4 respectively
correspond to Hermitian random matrices whose entries are
chosen/distributed independently, respectively, as real (GOE),
complex (GUE), or quaternionic (GSE) random variables [1].

The most popular measure to model the spectral fluc-
tuations is the nearest-neighbor (NN) level spacings, si =
Ei+1 − Ei, where Ei, i = 1, 2, . . . are the eigenvalues of the
given Hamiltonian H . A surmise by Wigner states that in
a time-reversal invariant system (β = 1) does not have a
spin degree of freedom, these spacings are distributed as
P(s) = (π/2)s exp(−πs2/4), which indicates the level repul-
sion. This result is very close to the exact one which has been
obtained later on [1,3,17]. For such systems, the Gaussian
orthogonal ensemble (GOE) is well suited to study the sta-
tistical properties of their spectra. There are other ensembles
also commonly used in RMT, namely, the Gaussian unitary
ensemble (GUE) and Gaussian symplectic ensemble (GSE)
having a Dyson index of β = 2 and 4, respectively. The
GUE is applicable to systems without time reversal whereas
GSE to spin-1/2 systems having time reversal respectively
but no rotational symmetry [1,3]. The member matrices of
these families are real symmetric, complex Hermitian, and
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quaternion self-dual, respectively [18]. These ensembles have
been implemented successfully in various fields [2,19]. In
this paper, the Gaussian ensembles are studied in detail and
various analytical results are obtained.

When the fluctuations are studied using the spacing distri-
bution, one needs to carry out the procedure called unfolding
the spectra which takes off the system-dependent spectral
properties, i.e., the average part of the density of states (DOS)
[1,4,20–24]. Thus, the comprehension of the system’s DOS
is required. This procedure is nontrivial and cumbersome es-
pecially in many-body physics where not enough eigenvalues
are available to get a good fit of the DOS [20,21,25–27]. It
can reduce the accuracy of statistical tests in such systems. It
is also shown that short-range correlations are not sensitive
to the unfolding method whereas the long-range level cor-
relations are strongly dependent on the unfolding procedure
employed (see Ref. [27] for more details).

This challenging problem can be resolved by using the NN
spacing ratio [16], because it is independent of the local DOS
which implies that unfolding is not required. It is defined as
ri = si+1/si, i = 1, 2, . . .. For the case of Gaussian ensembles,
a Wigner-like surmise for the distribution of ri, P(r), has been
obtained as follows [28,29],

P(r, β ) = 1

Zβ

(r + r2)β

(1 + r + r2)(1+3β/2)
, β = 1, 2, 4, (1)

where Zβ is the normalization constant. It must be noted
here that this distribution has been derived using only three
eigenvalues with the Gaussian weight. The expression will
change with the matrix dimensions N (as observed in Ref. [29]
for N = 4) as well as the weight. Although small deviations
for smaller N are observed and pointed out in Ref. [28], this
works as a very good approximation for large N and in the
bulk of the spectrum. The exact analytical expression for any
N still remains an open question.

This distribution has found many applications to study
the eigenvalue statistics in spin systems [11,16,26,30–35], in
triangular billiards [36], in the Hessians of artificial neural
networks [37], in the Sachdev-Ye-Kitaev model [38–42], in
quantum field theory [43], and to quantify symmetries in
various complex systems [44,45].
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As pointed in Refs. [28,29], the distributions in Eq. (1)
are universal, i.e., they can be applied without any unfolding
or renormalization to the eigenvalues of complex physical
systems. It also shows an interesting behavior (thus, universal)
as follows:

P(r, β ) → rβ for r → 0,

P(r, β ) → r−2−β for r → ∞. (2)

A correction ansatz δPfit(r) was given to Eq. (1) such that
P(r) + δPfit(r) fits very well for all values of N [28], where

δPfit(r) = C

(1 + r)2

[(
r + 1

r

)−β

− cβ

(
r + 1

r

)−1−β
]
. (3)

Here, C and cβ are some constants. It can be seen that despite
this correction term the universal behavior remains unchanged
in Eq. (2).

Variants of these spacings are proposed and applied to
various systems [29,46–48] which includes the generalization
to the complex eigenvalues [49–54].

In this paper, we study the nonoverlapping kth order
spacing ratios, which are defined such that no eigenvalue is
common between the spacings in the numerator and denomi-
nator. It is defined as follows:

r (k)
i = s(k)

i+k

s(k)
i

= Ei+2k − Ei+k

Ei+k − Ei
, i, k = 1, 2, 3, . . . . (4)

The case k = 1 corresponds to the earlier solved case
from Ref. [28]. Its distribution has found applications to
study higher-order fluctuation statistics in the Gaussian [55],
Wishart [56], and circular ensembles [55]. An important scal-
ing relation in these cases, in the asymptotic limit of N → ∞
and in bulk of the spectra, by extensive numerical computa-
tions is given as follows [55,56]:

Pk (r, β ) = P(r, β ′), β � 1,

β ′ = k(k + 1)

2
β + (k − 1), k � 1. (5)

It means the distribution of the kth order spacing ratio for a
given β ensemble is the same as that of NN spacing ratios of
some other ensemble with a Dyson index β ′(> β ). It should
be noted that the exact analytical expression for any k � 2
and any N is not known yet but the numerics suggest that
Eq. (5) works very well for large enough N and in the bulk of
the spectra. For given k, the effect of increasing N is studied
numerically in Ref. [55]. There it is shown that for given k,
however large, the fitted β ′ converges to the value given in
Eq. (5) as N is increased. For smaller N , we expect the same
expression in Eq. (3) can be used as the correction term but
with a modified index β ′. For this, we have assumed that for
large N the asymptotic behavior for small and large r is the
same for both P(r, β ′) and δPfit(r, β ′) for k � 2 [28]. It should
be noted that Eqs. (1) and (3) taken together still represent an
approximation. Thus, it is more likely that the exact (currently

unknown) expression for the kth spacing distribution also
shares the same asymptotics of Eq. (5).

This relation has been employed successfully to various
physical systems such as chaotic billiards, Floquet systems,
circular ensembles, spin chains, observed stock market, etc.
[9,30,55–59], to estimate the number of symmetries in com-
plex physical systems [44,45]. It should be noted that a similar
scaling relation between the higher-order and NN spacing
distributions has been proposed earlier in Refs. [60,61], and
later proved partly in Ref. [56] and completely in Ref. [9]
using a Wigner-like surmise for the Gaussian ensembles. It
is shown numerically in Ref. [9] using random spin systems,
nontrivial zeros of the Riemann ζ function, and a Gaus-
sian ensemble, that as N is increased, the deviations from
the surmise become smaller and smaller. Although the bulk
statistics, for given β, is the same in these three ensembles
(Gaussian+Wishart+circular) in the large-N limit, the phys-
ical systems described by them are very different from each
other [2].

It should be noted that the result in Eq. (5) for the spac-
ing ratios is a purely numerical one except for few special
cases [62–64]. Thus, a complete analytical understanding of
this result is lacking. In this paper, we give partial analytical
support to it since proving the entire result is mathemati-
cally challenging. If this result is correct, then by using the
universality aspect as per Eq. (2) one can conclude that,
for the higher-order spacing ratios, the following must be
true,

Pk (r, β ) = P(r, β ′) → rβ ′
for r → 0,

Pk (r, β ) = P(r, β ′) → r−2−β ′
for r → ∞, (6)

with β ′ as per Eq. (5). In this paper, we derive analytically
Eq. (6) using a Wigner-like surmise for the Gaussian ensem-
bles.

The structure of the paper is as follows: In Sec. II we
present the results for the case k = 2. In Sec. III (Sec. IV)
the general result for any k is provided in the limit r → 0
(r → ∞). In Sec. V the case of uncorrelated spectra is studied
in the asymptotic limits and related to the results from the
Gaussian ensembles. Finally, in Sec. VI a summary of the
results and conclusions are presented.

II. RESULTS: k = 2 CASE

Before entering into the main results we would like to men-
tion that throughout the paper our calculations are restricted
to the simplest and lowest matrix dimensions N such that
for a given order k, N = 2k + 1 (which is our Wigner-like
surmise). One should note that, in order to study k-order
spacing ratios one should have at least 2k + 1 levels to be
in the RMT regime. In a Hamiltonian system these levels
Ei become eigenenergies. Earlier studies from Ref. [65] in-
dicate that the difference E2k+1 − E1 should be less than the
system’s Thouless energy (Ec) for RMT to hold true. This is
an important point to be noted when applying our results to
various physical systems [2]. Let us first start with the joint
probability distribution function (joint pdf) of the Gaussian
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ensemble which is given as follows,

f ({El}) ∝
∏

1�i< j�N

|Ei − Ej |β exp

(
−A

N∑
i=1

E2
i

)
, (7)

where β = 1, 2, and 4 for GOE, GUE, and GSE, respectively
[1,3]. Without loss of generalities, we will be assuming E1 �
E2 � · · · � EN throughout this paper. First, consider the case
of k = 2 and general β. Here, for a Wigner-like surmise, we
need to have five eigenvalues [9]. Then we get

r (2) = E5 − E3

E3 − E1
. (8)

Then the distribution P(r (2) ) becomes [9]

P(r (2) ) ∝
∫ ∞

−∞
· · ·

∫ ∞

−∞

∏
1�i< j�5

|Ei − Ej |β

× exp

(
−A

5∑
i=1

E2
i

)
δ

(
r (2) − E5 − E3

E3 − E1

) 5∏
i=1

dEi.

(9)

We first change the variables to xi = Ei+1 − Ei for i = 1–4
and x5 = ∑5

i=1 Ei [9]. Then P(r (2) ) simplifies to [9]

P(r (2) ) ∝
∫ ∞

0
· · ·

∫ ∞

0

∂ (E1, . . . , E5)

∂ (x1, . . . , x5)

⎛
⎜⎝ 4∏

i=1

4∏
j=i

∣∣∣∣∣∣
j∑

l=i

xl

∣∣∣∣∣∣
β
⎞
⎟⎠ exp

⎧⎪⎨
⎪⎩−A

5

⎡
⎢⎣ 4∑

i=1

4∑
j=i

⎛
⎝ j∑

l=i

xl

⎞
⎠

2

+ x2
5

⎤
⎥⎦
⎫⎪⎬
⎪⎭δ

(
r (2) − x3 + x4

x1 + x2

) 5∏
i=1

dxi.

Here, the Jacobian ∂ (E1,...,E5 )
∂ (x1,...,x5 ) and integral for x5 are constants that can be absorbed into the normalization factor, and using the

property of the delta function we obtain

P(r (2) ) ∝
∫ ∞

0
· · ·

∫ ∞

0
(x1 + x2)

⎛
⎜⎝ 4∏

i=1

4∏
j=i

∣∣∣∣∣∣
j∑

l=i

xl

∣∣∣∣∣∣
β
⎞
⎟⎠ exp

⎧⎪⎨
⎪⎩−A

5

⎡
⎢⎣ 4∑

i=1

4∑
j=i

⎛
⎝ j∑

l=i

xl

⎞
⎠

2
⎤
⎥⎦
⎫⎪⎬
⎪⎭δ(r (2)(x1 + x2) − (x3 + x4))

4∏
i=1

dxi.

(10)

First, the integral over x4 in Eq. (10) is carried out. Then, x4

will be replaced by r(x1 + x2) − x3 due to the delta function in
Eq. (10) (here, we define r (2) = r for simplicity of notation).
Then the limits of integration of x3 will be from 0 to r(x1 +
x2). Thus, our strategy is first to find the lowest degree poly-
nomial in x3 and x4, since in the limit r → 0 the integration
over both x3 and x4 will give us the leading-order term in r.

Thus, first consider the following term from the integrand
of Eq. (10),

4∏
i=1

4∏
j=i

∣∣∣∣∣∣
j∑

l=i

xl

∣∣∣∣∣∣
β

, (11)

which can be expanded to

{x1x2x3x4(x1 + x2)(x1 + x2 + x3)(x1 + x2 + x3 + x4)

× (x2 + x3)(x2 + x3 + x4)(x3 + x4)}β (12)

= {x3x4(x3 + x4) × x1x2(x1 + x2)(x1 + x2 + x3)

× (x1 + x2 + x3 + x4)(x2 + x3)(x2 + x3 + x4)}β. (13)

This can be written as

{x3x4(x3 + x4)[ f1(x1, x2) + f2(x1, x2, x3, x4)]}β, (14)

where f1 and f2 are polynomial functions of the respective ar-
guments. This kind of split is possible because apart from the
term x3x4(x3 + x4) all the terms contain at least one variable
from x1 and x2. The exact forms of fi’s can be found easily but
are not required for our purpose here. That is because if we see
Eq. (14) carefully, after expanding it, the lowest-order polyno-
mial in x3 and x4 turns out to be {x3x4(x3 + x4)}β f β

1 (x1, x2)
with order 3β in r. It is this term which will give us the
required lowest power of r in the limit r → 0. This will be
clear in the subsequent calculations. Thus, Eq. (10) becomes

P(r (2) ) ∝
∫ ∞

0
· · ·

∫ ∞

0
(x1 + x2){x3x4(x3 + x4)[ f1(x1, x2) + f2(x1, x2, x3, x4)]}β

× exp

⎧⎪⎨
⎪⎩−A

5

⎡
⎢⎣ 4∑

i=1

4∑
j=i

⎛
⎝ j∑

l=i

xl

⎞
⎠

2
⎤
⎥⎦
⎫⎪⎬
⎪⎭δ(r (2)(x1 + x2) − (x3 + x4))

4∏
i=1

dxi. (15)
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Integrating over x4 and simplifying further we get

P(r (2) ) ∝
∫∫ ∞

x1,x2=0

∫ r(x1+x2 )

x3=0
(x1 + x2){x3(rx1 + rx2 − x3)r(x1 + x2)[ f1(x1, x2) + f2(x1, x2, x3, rx1 + rx2 − x3)]}β

× exp

{
−A

5

[
2(2 + r + 2r2)x1

2 + (6 + 4r + 4r2)x2
2 + 2x1x2(3 + 3r + 4r2)

]}

× exp

{
−A

5

[
4x3

2 + x3((4 − 2r)x2 + (2 − 2r)x1)
]} 3∏

i=1

dxi. (16)

This we write as follows,

P(r (2) ) ∝
∫∫ ∞

x1,x2=0
Ix3 (x1, x2, r) exp

{
−A

5
[2(2 + r + 2r2)x1

2 + (6 + 4r + 4r2)x2
2 + 2x1x2(3 + 3r + 4r2)]

}
(x1 + x2)1+β

2∏
i=1

dxi,

(17)

where the x3 integral is given as follows:

Ix3 (x1, x2, r) =
∫ r(x1+x2 )

x3=0
{x3(rx1 + rx2 − x3)r[ f1(x1, x2) + f2(x1, x2, x3, rx1 + rx2 − x3)]}β

× exp

{
−A

5

[
4x3

2 + x3((4 − 2r)x2 + (2 − 2r)x1)
]}

dx3. (18)

Here, we are interested only to find the leading-order term in r in the limit r → 0 of P(r (2) ) and thus to find the dominant term
in r. It can be seen from Eq. (17) that the leading order will come only from that of Ix3 (x1, x2, r), whereas integration over x1 and
x2 are converging and will give another constant, keeping the exponent of r unchanged. Thus, we need to find only the lowest
power of r. Using the fact that the limit and the integral can be interchanged [66], and the limit of the product is the product of
the limits, let us first consider the term Ix3 (x1, x2, r), and then the term (rx1 + rx2 − x3)β . It can be simplified as follows:

(rx1 + rx2 − x3)β =
β∑

q=0

(
β

q

)
rq(x1 + x2)q(−x3)β−q. (19)

Thus,

Ix3 (x1, x2, r) =
∫ r(x1+x2 )

x3=0
[x3]β

⎡
⎣ β∑

q=0

(
β

q

)
rq(x1 + x2)q(−x3)β−q

⎤
⎦

β

[r][ f1(x1, x2) + f2(x1, x2, x3, rx1 + rx2 − x3)]β

× exp

{
−A

5

[
4x3

2 + x3((4 − 2r)x2 + (2 − 2r)x1)
]}

dx3. (20)

The square brackets around various terms are put in order to
address them individually. Now, our strategy is to find the
lowest order of the polynomial in x3 and r. Then we will use
Eq. (21) given as follows,∫ a

y=0
ypdy ∝ ap+1, (21)

and evaluate the integral. The first square bracket will give
an exponent of β in r for x3, the second square bracket will
give β − q, and the fourth square bracket and the exponential
term will give 0 as the lowest exponent of x3. The second and
third square brackets together will give q + β as an exponent
of r. Thus, using Eq. (21) in Eq. (20), the leading term in
r in the Ix3 (x1, x2, r) and eventually in P(r (2) ) is r3β+1. The

extra “+1” factor in the exponent comes from the integration
measure dx3. Thus, we obtain that P(r (2) ) → r3β+1 as r → 0
supporting Eqs. (5) and (6).

III. RESULTS: GENERAL K CASE

In the case of general k, for the Wigner-like surmise, we
need to have 2k + 1 eigenvalues [9]. Then the kth order spac-
ing ratio is defined as

r (k) = E2k+1 − Ek+1

Ek+1 − E1
. (22)
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Considering the Gaussian ensemble with N = 2k + 1 eigenvalues, the distribution of r (k) is given by

P(r (k) ) ∝
∫ ∞

−∞
· · ·

∫ ∞

−∞

∏
1�i< j�2k+1

|Ei − Ej |β exp

(
−A

2k+1∑
i=1

E2
i

)
δ

(
r (k) − E2k+1 − Ek+1

Ek+1 − E1

) 2k+1∏
i=1

dEi. (23)

After changing the variables as xi = Ei+1 − Ei for i = 1 to 2k and x2k+1 = ∑2k+1
i=1 Ei, we get [9]

P(r (k) ) ∝
∫ ∞

0
· · ·

∫ ∞

0

∂ (E1, . . . , E2k+1)

∂ (x1, . . . , x2k+1)

⎛
⎜⎝ 2k∏

i=1

2k∏
j=i

∣∣∣∣∣∣
j∑

l=i

xl

∣∣∣∣∣∣
β
⎞
⎟⎠ exp

⎧⎪⎨
⎪⎩− A

2k + 1

⎡
⎢⎣ 2k∑

i=1

2k∑
j=i

⎛
⎝ j∑

l=i

xl

⎞
⎠

2

+ x2
2k+1

⎤
⎥⎦
⎫⎪⎬
⎪⎭

× δ

(
r (k) −

∑2k
i=k+1 xi∑k

i=1 xi

)
2k+1∏
i=1

dxi. (24)

Here, the Jacobian ∂ (E1,...,E2k+1 )
∂ (x1,...,x2k+1 ) and the integral for x2k+1 are constants that can be absorbed into the normalization factor. Using

the property of the delta function we obtain

P(r (k) ) ∝
∫ ∞

0
· · ·

∫ ∞

0

(
k∑

i=1

xi

)⎛⎜⎝ 2k∏
i=1

2k∏
j=i

∣∣∣∣∣∣
j∑

l=i

xl

∣∣∣∣∣∣
β
⎞
⎟⎠ exp

⎧⎪⎨
⎪⎩− A

2k + 1

⎡
⎢⎣ 2k∑

i=1

2k∑
j=i

⎛
⎝ j∑

l=i

xl

⎞
⎠

2
⎤
⎥⎦
⎫⎪⎬
⎪⎭δ

⎛
⎝r (k)

k∑
i=1

xi −
2k∑

i=k+1

xi

⎞
⎠ 2k∏

i=1

dxi.

(25)

Here, the integration is over 2k variables. First, the integration over x2k is carried out. In that case the delta function goes away,
replacing x2k by the following:

r (k) =
∑2k

i=k+1 xi∑k
i=1 xi

⇒ x2k = r (k)
k∑

i=1

xi −
2k−1∑

i=k+1

xi. (26)

This will put a constraint on the other variables xi for i = k + 1 to 2k − 1, such that 0 �∑2k−1
i=k+1 xi � r (k) ∑k

i=1 xi. Thus, we
need to find the polynomial that depends only on xi for all i = k + 1 to 2k. Following on the lines of previous sections we can
write

2k∏
i=1

2k∏
j=i

∣∣∣∣∣∣
j∑

l=i

xl

∣∣∣∣∣∣
β

=
k∏

i=1

2k∏
j=i

∣∣∣∣∣∣
j∑

l=i

xl

∣∣∣∣∣∣
β

×
2k∏

i=k+1

2k∏
j=i

∣∣∣∣∣∣
j∑

l=i

xl

∣∣∣∣∣∣
β

(27)

=
∣∣∣∣∣∣

k∏
i=1

2k∏
j=i

⎛
⎝ j∑

l=i

xl

⎞
⎠
∣∣∣∣∣∣
β

×
2k∏

i=k+1

2k∏
j=i

∣∣∣∣∣∣
j∑

l=i

xl

∣∣∣∣∣∣
β

(28)

= [
f̃1(x1, . . . , xk ) + f̃2(x1, . . . , x2k )

]β ×
2k∏

i=k+1

2k∏
j=i

∣∣∣∣∣∣
j∑

l=i

xl

∣∣∣∣∣∣
β

. (29)

In the first step we have split the product from i = 1 to 2k in two terms such that the first one has the range of i = 1 to k while
second has i = k + 1 to 2k. This gives the right-hand side of Eq. (27). The first multinomial term in Eq. (28) is fully expanded
such that it is a sum of f̃1 and f̃2, where f̃1 and f̃2 are polynomial functions of the respective arguments only. The whole purpose
of this split is to separate out terms containing the variables x1, . . . , xk only. This is possible because every product term in
|∏k

i=1

∏2k
j=i (

∑ j
l=ixl )|β contains at least one variable from the set {x1, . . . , xk}. This will show that when ( f̃1 + f̃2)β is fully expanded

using the binomial theorem, will imply that the lowest degree of polynomial terms containing xk+1, . . . , x2k is zero. Thus, we get
the following:

P(r (k) ) ∝
∫ ∞

0
· · ·

∫ ∞

0

(
k∑

i=1

xi

)
×

2k∏
i=k+1

2k∏
j=i

∣∣∣∣∣∣
j∑

l=i

xl

∣∣∣∣∣∣
β

× [ f̃1(x1, . . . , xk ) + f̃2(x1, . . . , x2k )]β

× exp

⎧⎪⎨
⎪⎩− A

2k + 1

⎡
⎢⎣ 2k∑

i=1

2k∑
j=i

⎛
⎝ j∑

l=i

xl

⎞
⎠

2
⎤
⎥⎦
⎫⎪⎬
⎪⎭δ

⎛
⎝r (k)

k∑
l=1

xl −
2k∑

l=k+1

xl

⎞
⎠ 2k∏

i=1

dxi. (30)
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We will now further split the term ∏2k
i=k+1

∏2k
j=i |

∑ j
l=ixl |β such that the terms containing x2k are separated out as follows:

2k∏
i=k+1

2k∏
j=i

∣∣∣∣∣∣
j∑

l=i

xl

∣∣∣∣∣∣
β

=

⎛
⎜⎝ 2k−1∏

i=k+1

2k−1∏
j=i

∣∣∣∣∣∣
j∑

l=i

xl

∣∣∣∣∣∣
β
⎞
⎟⎠
⎛
⎝ 2k∏

i=k+1

∣∣∣∣∣
2k∑
l=i

xl

∣∣∣∣∣
β
⎞
⎠. (31)

This is done because we will be first integrating over the variable x2k . Thus, combining Eqs. (30) and (31) we get

P(r (k) ) ∝
∫ ∞

0
· · ·

∫ ∞

0

(
k∑

i=1

xi

)⎛⎜⎝ 2k−1∏
i=k+1

2k−1∏
j=i

∣∣∣∣∣∣
j∑

l=i

xl

∣∣∣∣∣∣
β
⎞
⎟⎠
⎛
⎝ 2k∏

i=k+1

∣∣∣∣∣
2k∑
l=i

xl

∣∣∣∣∣
β
⎞
⎠[ f̃1(x1, . . . , xk ) + f̃2(x1, . . . , x2k )]β

× exp

⎧⎪⎨
⎪⎩− A

2k + 1

⎡
⎢⎣ 2k∑

i=1

2k∑
j=i

⎛
⎝ j∑

l=i

xl

⎞
⎠

2
⎤
⎥⎦
⎫⎪⎬
⎪⎭δ

⎛
⎝r (k)

k∑
l=1

xl −
2k∑

l=k+1

xl

⎞
⎠ 2k∏

i=1

dxi. (32)

Now, solving for the x2k integral will remove the delta function and replace x2k by r (k) ∑k
l=1 xi −∑2k−1

l=k+1 xi at all the places

in the integral as discussed in Eq. (26). First, consider the term
∏2k

i=k+1 |∑2k
l=i xl |β from Eq. (32). It can be written and simplified

further using x2k = r
∑k

l=1 xl −∑2k−1
l=k+1 xl as follows (here, r (k) = r is defined for simplicity of notation):

2k∏
i=k+1

∣∣∣∣∣
2k∑
l=i

xl

∣∣∣∣∣
β

=
∣∣∣∣∣∣

2k∑
l=k+1

xl

∣∣∣∣∣∣
β

×
2k∏

i=k+2

∣∣∣∣∣
2k∑
l=i

xl

∣∣∣∣∣
β

(33)

=
(

r
k∑

l=1

xl

)β

×
⎡
⎣ 2k∏

i=k+2

⎛
⎝r

k∑
l=1

xl −
i−1∑

l=k+1

xl

⎞
⎠
⎤
⎦

β

. (34)

Similarly, using the constraint in Eq. (26), one obtains

[ f̃1(x1, . . . , xk ) + f̃2(x1, . . . , x2k )]β →
⎡
⎣ f̃1(x1, . . . , xk ) + f̃2

⎛
⎝x1, . . . , r (k)

k∑
l=1

xi −
2k−1∑

l=k+1

xi

⎞
⎠
⎤
⎦

β

(35)

and
2k∑

i=1

2k∑
j=i

⎛
⎝ j∑

l=i

xl

⎞
⎠

2

→
2k−1∑
j>i=1

xix jh
′
i j (r),

where h′
i j are polynomials in r. Since xi � 0 for all i, in order to have all integrals converging it is sufficient to show that h′

ii > 0
for all i. This will be shown now. Considering the following term from the exponent of Eq. (32) and simplifying it, we get (see
the text following for the steps on the simplifications done at each stage)

2k∑
i=1

2k∑
j=i

⎛
⎝ j∑

l=i

xl

⎞
⎠

2

=
2k−1∑
i=1

2k−1∑
j=i

⎛
⎝ j∑

l=i

xl

⎞
⎠

2

+
2k−1∑
i=1

(
2k∑
l=i

xl

)2

+ (xk )2 (36)

=
2k−1∑
i=1

2k−1∑
j=i

⎛
⎝ j∑

l=i

xl

⎞
⎠

2

+
k∑

i=1

(
2k∑
l=i

xl

)2

+
⎛
⎝ 2k∑

l=k+1

xl

⎞
⎠

2

+
2k−1∑

i=k+2

(
2k∑
l=i

xl

)2

+ (xk )2 (37)

=
2k−1∑
i=1

2k−1∑
j=i

⎛
⎝ j∑

l=i

xl

⎞
⎠

2

+
k∑

i=1

⎛
⎝ k∑

l=i

xl +
2k∑

l=k+1

xl

⎞
⎠

2

+
⎛
⎝ 2k∑

l=k+1

xl

⎞
⎠

2

+
2k−1∑

i=k+2

⎛
⎝ 2k∑

l=k+1

xl −
i−1∑

l=k+1

xl

⎞
⎠

2

+ (xk )2

(38)

=
2k−1∑
i=1

2k−1∑
j=i

⎛
⎝ j∑

l=i

xl

⎞
⎠

2

+
k∑

i=1

(
k∑

l=i

xl + r
k∑

l=1

xl

)2

+
(

r
k∑

l=1

xl

)2

+
2k−1∑

i=k+2

⎛
⎝r

k∑
l=1

xl −
i−1∑

l=k+1

xl

⎞
⎠

2

+ (xk )2.

(39)

Here, Eq. (36) is obtained by splitting the summation such that the term x2k is separated out. The summation i = 1 to 2k − 1 in
the second term of Eq. (36) is further split into three parts: summation i = 1 to k, single term i = k + 1, and summation i = k + 2
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to 2k − 1 to get Eq. (37). The summation l = i to 2k in the second and fourth term in Eq. (37) is further split depending on the
range of i, so that we can use the constraint from Eq. (26). This will give us Eq. (38). Equation (39) is obtained by using the
same constraint in Eq. (38). We can see from Eq. (39) that after expansion each term in the coefficient of x2

i (for all i) is either a
positive number [at least one such number exists and is ensured by the first term in Eq. (39)] or a function of r and can be seen to
be always non-negative. The only terms with a negative sign come from the second to last term in Eq. (39), which only contains
mixed terms such as xix j with i �= j. Denoting the coefficient of xix j by h′

i j we have h′
ii > 0 for all i, thus proving our claim. The

exact expressions for h′
i j is not required for our purpose here. Thus, the h′

ii are polynomials in r such that in the limit r → 0 they
are all nonzero, which makes the integral converging. Thus, combining Eqs. (26) and (32)–(35) we get

P(r (k) ) ∝
∫

· · ·
∫ ∞

x1,...,xk=0

∫
· · ·

∫
0�∑2k−1

i=k+1 xi�r(
∑k

i=1 xi )

(
k∑

i=1

xi

)⎛⎜⎝ 2k−1∏
i=k+1

2k−1∏
j=i

∣∣∣∣∣∣
j∑

l=i

xl

∣∣∣∣∣∣
β
⎞
⎟⎠
(

r
k∑

l=1

xl

)β

×
⎡
⎣ 2k∏

i=k+2

⎛
⎝r

k∑
l=1

xl −
i−1∑

l=k+1

xl

⎞
⎠
⎤
⎦

β⎡
⎣ f̃1(x1, . . . , xk ) + f̃2

⎛
⎝x1, . . . , x2k−1, r

k∑
l=1

xl −
2k−1∑

l=k+1

xl

⎞
⎠
⎤
⎦

β

× exp

⎧⎨
⎩− A

2k + 1

⎡
⎣ 2k−1∑

j>i=1

xix jh
′
i j (r)

⎤
⎦
⎫⎬
⎭

2k−1∏
i=1

dxi. (40)

Next, we rewrite the integral such that the summation term in the exponential term gets divided into parts. One part contains
variables only from x1 to xk and the other term containing all of them, i.e., from x1 to x2k−1. Thus, we get

P(r (k) ) ∝
∫

· · ·
∫ ∞

x1,...,xk=0
Ixk+1···x2k−1

(
k∑

l=1

xl

)1+β

exp

⎧⎨
⎩− A

2k + 1

⎡
⎣ k∑

j>i=1

xix jh
′
i j (r)

⎤
⎦
⎫⎬
⎭

k∏
i=1

dxi, (41)

where

Ixk+1···x2k−1 =
∫

· · ·
∫

0�∑2k−1
i=k+1 xi�r(

∑k
i=1 xi )

rβ

⎛
⎜⎝ 2k−1∏

i=k+1

2k−1∏
j=i

∣∣∣∣∣∣
j∑

l=i

xl

∣∣∣∣∣∣
β
⎞
⎟⎠
⎡
⎢⎣ 2k∏

i=k+2

⎛
⎝r

k∑
l=1

xl −
i−1∑

l=k+1

xl

⎞
⎠

β
⎤
⎥⎦

×
⎡
⎣ f̃1(x1, . . . , xk ) + f̃2

⎛
⎝x1, . . . , x2k−1, r

k∑
l=1

xl −
2k−1∑

l=k+1

xl

⎞
⎠
⎤
⎦

β

exp

⎧⎨
⎩− A

2k + 1

⎡
⎣ 2k−1∑

i=1, j=k+1

xix jh
′
i j (r)

⎤
⎦
⎫⎬
⎭

2k−1∏
i=k+1

dxi.

(42)

It can be seen from Eq. (41) that in the limit r → 0 the leading order of r will only come from evaluating that for Ixk+1···x2k−1 . In
the subsequent part of the paper we will derive the latter. Now, consider the term

∏2k
i=k+2(r

∑k
l=1 xl −∑i−1

l=k+1 xl )β from Eq. (42).
This can be simplified as follows (assuming that β is a natural number):

2k∏
i=k+2

⎛
⎝r

k∑
l=1

xl −
i−1∑

l=k+1

xl

⎞
⎠

β

=
2k∏

i=k+2

β∑
q=0

(
β

q

)(
r

k∑
l=1

xl

)q
⎛
⎝−

i−1∑
l=k+1

xl

⎞
⎠

β−q

=
2k∏

i=k+2

β∑
q=0

(
β

q

)( k∑
l=1

xl

)q

rq

⎛
⎝−

i−1∑
l=k+1

xl

⎞
⎠

β−q

. (43)

Thus, Eq. (42) simplifies to

Ixk+1···x2k−1 =
∫

· · ·
∫

0�∑2k−1
i=k+1 xi�r(

∑k
i=1 xi )

[rβ] ×

⎡
⎢⎣ 2k−1∏

i=k+1

2k−1∏
j=i

∣∣∣∣∣∣
j∑

l=i

xl

∣∣∣∣∣∣
β
⎤
⎥⎦
⎡
⎢⎣ 2k∏

i=k+2

β∑
q=0

(
β

q

)( k∑
l=1

xl

)q

rq

⎛
⎝−

i−1∑
l=k+1

xl

⎞
⎠

β−q
⎤
⎥⎦

×
⎡
⎣f̃1(x1, . . . , xk ) + f̃2

⎛
⎝x1, . . . , x2k−1, r

k∑
l=1

xl −
2k−1∑

l=k+1

xl

⎞
⎠
⎤
⎦

β

exp

⎧⎨
⎩− A

2k + 1

⎡
⎣ 2k−1∑

i=1, j=k+1

xix jh
′
i j (r)

⎤
⎦
⎫⎬
⎭

2k−1∏
i=k+1

dxi.

(44)
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The square brackets around various terms are put in order to
address them individually. Here, we will be using the follow-
ing integral identity [the generalization of Eq. (21)]:∫

· · ·
∫

0�y1,...,yN ,
∑N

i=1 yi�a

N∏
i=1

ypi
i dyi ∝ a

∑N
i=1 pi+N . (45)

In Eq. (45), it should be noted that the exponent on the right-
hand side is a function only of the order of the integrand
polynomial (

∑N
i=1 pi ) and the number of variables (N) on the

left-hand side. Here, we are interested only in the limit r → 0.
Thus, we need to find the lowest order of r in Ixk+1···x2k−1 . For
that we need to first find the lowest order of the polynomial
in xk+1 to x2k−1 in Eq. (44) and then use Eq. (45). This can
be achieved by doing the same for each term in the Eq. (44),
multiplying them together, and then use Eq. (45). This is now
explained below.

The first square bracket in Eq. (44) will give us an expo-
nent of β for r. The term ∏2k−1

i=k+1

∏2k−1
j=i |∑ j

l=ixl |β from the second
bracket is a multinomial term and can be expanded fully.
It will lead to a homogeneous polynomial of degree (k −
1)kβ/2. In the third square bracket, the term (

∑k
l=1xl )q does not

have any of the variables from the set {xk+1, . . . , x2k}. Thus, it
is not going to give any r-dependent factor in the limit r → 0.
Thus, we are left with two terms, namely rq and (−∑i−1

l=k+1xl )β−q.
Here, it can be seen that the term (−∑i−1

l=k+1xl )β−q when expanded
will give a homogeneous polynomial of order β − q. Both
of them appear (k − 1) times due to the operation ∏2k

i=k+2

on them. The range of the summation in (−∑i−1
l=k+1xl )β−q does

change with i but the order of the homogeneous polynomial
remains the same. Thus, using Eq. (45) and r → 0 we can
say that the third square bracket will result in an exponent of
(k − 1)q + (k − 1)(β − q). The exponent of the lowest-order
polynomial in xk+1, . . . , x2k−1 which can be obtained from the
term in the fourth square bracket, namely ( f̃1 + f̃2)β is 0. This
is because f̃1 is a function of x1 · · · xk only and use of the bino-
mial theorem (assuming β is natural number) we get at least
one term with variables x1 · · · xk only. It means that the lowest
order of the polynomial containing xk+1 · · · x2k variables will
be zero, while that from the exponential term (fifth term),
using its Taylor expansion, is also 0. Finally, the integration
measure ∏2k−1

i=k+1dxi has k − 1 variables. Thus, the exponent of
r = β ′ where β ′ = [β] + [k(k − 1)β/2] + [(k − 1)q + (k −
1)(β − q)] + [0] + [0] + [(k − 1)] = βk(k + 1)/2 + k − 1.

Now, using the identity from Eq. (45) it can be seen
that in the limit r → 0 the dominant term will be pro-
portional to rβ ′

where β ′ = β + k(k − 1)β/2 + (k − 1)[q +
(β − q)] + (k − 1) = βk(k + 1)/2 + k − 1. Thus, the lead-
ing term in Ixk+1···x2k−1 in the limit r → 0 is rβ ′

which will also
be the same for P(r (k) ) as discussed earlier. Thus, we can write

P(r (k) ) → (r (k) )β
′

for r (k) → 0. (46)

With this, we have proved the first part of the most general
and main result in Eq. (6) supporting Eq. (5).

IV. CASE OF r → ∞
In order to find the limiting behavior in this case we use

the property of the joint pdf in Eq. (7). For this we show that
P(s1, s2) = P(s2, s1), i.e., P(s1, s2) is a symmetric function,

where s1 = Ek+1 − E1, s2 = E2k+1 − Ek+1, P(s1, s2) is a joint
pdf of s1 and s2. We will show this for the Wigner-surmise
setting, as per Eq. (23), i.e., for a given k we have N = 2k + 1.
Using the change of variables as per Sec. III we get s1 =∑k

i=1xi

and s2 =∑2k
i=k+1xi [9]. Now, using a property of the joint pdf

in Eq. (7) it can be seen that it is invariant under the trans-
formation xi ↔ x2k+1−i, where i = 1 to k. This corresponds
to a reflection symmetry about the eigenvalue Ek+1. It results
in s1 ↔ s2. Thus, the joint pdf is invariant, as is the P(s1, s2)
under the said transformation, i.e., P(s1, s2) = P(s2, s1). Due
to this left-right symmetry the distribution of r (k) = s1/s2 is
the same as that of 1/r (k) so that the following duality relation
holds true,

P(r (k) ) = 1

(r (k) )2
P

(
1

r (k)

)
, (47)

where P(x) is the probability distribution of x. The same rela-
tion corresponding to k = 1 was presented earlier in Ref. [28].
Thus, we can find the asymptotic behavior of r → ∞ using
the solved case of r → 0 in Eq. (46). Thus,

lim
r(k)→∞

P(r) = lim
r(k)→∞

1

(r (k) )2
P

(
1

r (k)

)

= lim
t→0

t2P(t ) where t = 1

r (k)

= t2+β ′

= (r (k) )−2−β ′
. (48)

Thus, we get the following result:

P(r (k) ) → (r (k) )−2−β ′
for r (k) → ∞. (49)

With this, the second part of Eq. (6) is proved. It must be noted
that we have shown the r → ∞ behavior using the Wigner-
like surmise, i.e., for given order k matrix dimension is 2k + 1.
For cases otherwise, the symmetry of P(s1, s2) holds only
in the bulk of the spectrum and in the limit N → ∞. This
symmetry will break down at the soft or hard edge of the
spectrum, and deviations can be expected.

V. CASE OF UNCORRELATED SPECTRA

Let us now consider the case of uncorrelated spectra. The
NN spacing ratio of such spectra shows Poissonian behavior
which is shown by integrable systems [16,28]. Higher-order
spacing ratios, in this case, are known as follows [44]:

Pk
P (r) = (2k − 1)!

[(k − 1)!]2

rk−1

(1 + r)2k
. (50)

It is important to note that this is an exact result in the limit
of N → ∞ only, in contrast to many other equations in this
paper. It can be shown easily that

Pk
P (r) → rk−1 for r → 0 (51)

and

Pk
P (r) → r−k−1 for r → ∞. (52)

This is a special case of our result above for β ′ evaluated at
β = 0.
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VI. SUMMARY AND CONCLUSIONS

In recent times, higher-order spacing ratios have become
a popular and important measure to study fluctuations in
random matrices and complex physical systems. This is due
to their computationally simple nature as no unfolding is
required, compared to that of the spacings alone. Very few
analytical results for the spacing ratios are available. This
paper has analytically studied the asymptotic behavior of
higher-order spacing ratios (r (k)) in the Gaussian ensembles
with a Dyson index β. Most of the results on it were nu-
merical [9,11,55,56,67,68]. We have now proved a universal
behavior of its distribution i.e., Pk (r, β ) → rβ ′

(r−2−β ′
) in the

limit r → 0 (∞), where β ′ = βk(k + 1)/2 + (k − 1) based
on the very good approximation Eq. (5). We also expect the
same behavior by the exact expression (currently unknown)
for Pk (r, β ). We have used the Wigner-like surmise [Eq. (5)]
which becomes a good fit for the large-N scenario. Here,
universality is referred to in the sense that the ratios can be
studied without the procedure of unfolding or renormalization
of the eigenvalues which is very much required in the case
of the spacings [1,3]. In fact, from our study of uncorrelated
eigenvalues, our results hold true for any β � 0. These re-
sults have given analytical support to the numerical results
from various random matrix ensembles and complex phys-
ical systems, which was absent earlier [9,11,55,56,67,68].

Moreover, our analytical approach can be extended to other
ensembles, for example, Laguerre ensemble [2,3,56,69–71],
chiral ensembles [72–81], etc. Though Laguerre and chiral
ensembles are related to each other mathematically they have
different applications. Wishart ensembles are used in the study
of entanglement [2], and wireless communication systems [3],
whereas chiral ensembles are used to model Dirac operators in
quantum chromodynamics [72–74]. Recently, it is shown that
the NN level spacing distribution is insensitive to the position
in RMT spectra at the edges or in the bulk despite the fact that
fluctuations there are described by different limiting kernels
[82]. We would like to investigate the same with the spacing
ratios numerically as well as analytically.

It should be noted that we have given the asymptotic
behavior of higher-order spacing ratios but finding an exact
expression for the corresponding Wigner-like surmise still
remains open. This is left for a future study.

ACKNOWLEDGMENT

The author is thankful to M. S. Santhanam, H. Tekur, R.
Prakash, and H. Sharma for valuable comments and discus-
sions at various levels of this paper. I would like to thank
the anonymous referees for their valuable comments that im-
proved the quality of the paper.

[1] M. L. Mehta, Random Matrices, 3rd ed. (Elsevier Academic,
London, 2004).

[2] G. Akemann, J. Baik, and P. Di Francesco, The Oxford Hand-
book of Random Matrix Theory (Oxford University Press,
Oxford, UK, 2011).

[3] P. J. Forrester, Log-Gases and Random Matrices (Princeton
University Press, Princeton, NJ, 2010).

[4] C. E. Porter, Statistical Theories of Spectra: Fluctuations (Aca-
demic, New York, 1965).

[5] S. Jalan and J. N. Bandyopadhyay, Phys. Rev. E 76, 046107
(2007).

[6] A. Rai and S. Jalan, in Applications of Chaos and Nonlinear
Dynamics in Science and Engineering (Springer, Berlin, 2015),
Vol. 4, pp. 195–212.

[7] J. Hutchinson, J. P. Keating, and F. Mezzadri, Phys. Rev. E 92,
032106 (2015).

[8] H. J. Wells, arXiv:1410.1666.
[9] W.-J. Rao, Phys. Rev. B 102, 054202 (2020).

[10] W.-J. Rao, J. Phys. A: Math. Theor. 54, 105001 (2021).
[11] W.-J. Rao, Physica A: Stat. Mech. Appl. 590, 126689 (2022).
[12] A. M. Tulino and S. Verdú, Found. Trends Commun. Inf.

Theory 1, 1 (2004).
[13] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52,

1 (1984).
[14] F. Haake, M. Kus, and R. Scharf, Z. Phys. B 65, 381 (1987).
[15] L. E. Reichl, The Transition to Chaos, 2nd ed. (Springer, New

York, 2004).
[16] V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111

(2007).
[17] B. Dietz and F. Haake, Z. Phys. B 80, 153 (1990).
[18] I. Dumitriu and A. Edelman, J. Math. Phys. 43, 5830 (2002).

[19] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad,
S. H. Shenker, D. Stanford, A. Streicher, and M. Tezuka, J. High
Energy Phys. 05 (2017) 118.

[20] F. Haake, Quantum Signatures of Chaos, 3rd ed. (Springer,
Berlin, 2010).

[21] H. Bruus and J.-C. Angl‘es d’Auriac, Phys. Rev. B 55, 9142
(1997).

[22] M. V. Berry and M. Tabor, Proc. R. Soc. London, Ser. A 356,
375 (1977).

[23] T. Prosen and M. Robnik, J. Phys. A: Math. Gen. 26, 2371
(1993).

[24] T. Guhr, A. Müeller-Groeling, and H. A. Weidenmüeller, Phys.
Rep. 299, 189 (1998).

[25] V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. Nunes Amaral,
T. Guhr, and H. E. Stanley, Phys. Rev. E 65, 066126
(2002).

[26] V. Oganesyan, A. Pal, and D. A. Huse, Phys. Rev. B 80, 115104
(2009).

[27] J. M. G. Gómez, R. A. Molina, A. Relaño, and J. Retamosa,
Phys. Rev. E 66, 036209 (2002).

[28] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, Phys. Rev.
Lett. 110, 084101 (2013).

[29] Y. Atas, E. Bogomolny, O. Giraud, P. Vivo, and E. Vivo, J. Phys.
A: Math. Theor. 46, 355204 (2013).

[30] W. Buijsman, V. Cheianov, and V. Gritsev, Phys. Rev. Lett. 122,
180601 (2019).

[31] A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).
[32] S. Iyer, V. Oganesyan, G. Refael, and D. A. Huse, Phys. Rev. B

87, 134202 (2013).
[33] E. Cuevas, M. Feigel’Man, L. Ioffe, and M. Mezard, Nat.

Commun. 3, 1128 (2012).

024132-9

https://doi.org/10.1103/PhysRevE.76.046107
https://doi.org/10.1103/PhysRevE.92.032106
http://arxiv.org/abs/arXiv:1410.1666
https://doi.org/10.1103/PhysRevB.102.054202
https://doi.org/10.1088/1751-8121/abe0d5
https://doi.org/10.1016/j.physa.2021.126689
https://doi.org/10.1561/0100000001
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1007/BF01303727
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1007/BF01390663
https://doi.org/10.1063/1.1507823
https://doi.org/10.1007/JHEP05(2017)118
https://doi.org/10.1103/PhysRevB.55.9142
https://doi.org/10.1098/rspa.1977.0140
https://doi.org/10.1088/0305-4470/26/10/010
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1103/PhysRevE.65.066126
https://doi.org/10.1103/PhysRevB.80.115104
https://doi.org/10.1103/PhysRevE.66.036209
https://doi.org/10.1103/PhysRevLett.110.084101
https://doi.org/10.1088/1751-8113/46/35/355204
https://doi.org/10.1103/PhysRevLett.122.180601
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevB.87.134202
https://doi.org/10.1038/ncomms2115


UDAYSINH T. BHOSALE PHYSICAL REVIEW E 107, 024132 (2023)

[34] G. Biroli, A. Ribeiro-Teixeira, and M. Tarzia, arXiv:1211.7334.
[35] D. Kundu, S. Kumar, and S. Sen Gupta, Phys. Rev. B 105,

014205 (2022).
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