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Velocity jump process with volume exclusions in a narrow channel
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This paper analyzes the impact of collisions in a system of N identical hard-core particles driven according
to a velocity jump process. The physical space is essentially a channel in R with a probability of occupants
being able to pass each other. The system mimics what nature does, where individuals pass one another in
a narrow channel while making incidental contact with those moving in the opposite direction. The passing
probability may depend on the particles’ size and the channel’s width. Starting from the particle level model,
we systematically derive a nonlinear transport equation based on an asymptotic expansion. Under low-occupied
fractions, numerical solutions of both the kinetic model and the stochastic particle system are compared well
during biased and unbiased random velocity changes. Analysis of the subpopulation motility within a large
population exhibits the consequences of volume exclusions and channel confinements on the traveling speeds.
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I. INTRODUCTION

Many physical and biological systems consist of indi-
viduals with collective behavior under confined conditions.
Examples where particles are driven in a domain confined
to a narrow channel include molecular and ion transport
through bacterial porins [1] or nuclear pore complexes [2,3],
the floating seeds spreading in vegetated open channels [4],
and polymer solutions [5,6]. The assumptions in a narrow
channel are reasonable to model even pedestrian motion [7,8].
In all these applications an additional factor comes into play if
the occupying individuals have a finite size or at least tend to
keep others at a distance. Understanding the interplay between
these constraints and particle motion is essential to explain the
systems’ global behavior.

A classical approach for modeling random dispersal due to
sudden changes in velocity, such as in a bacterial population,
animal, or robot swarm, is a velocity jump process [9]. In
a velocity jump process, stochastic changes are applied to
the velocity rather than the position. A particle may change
its current velocity v ∈ V ⊂ Rd at a small time step dt with
probability λdt , where λ is the turning frequency. Given that
a jump occurred, a turning kernel T (v, u) defines the prob-
ability of a change in velocity from u to v (in the same
velocity space V ). In light of the above information, the
evolution of the density function p(x, v, t ) for individuals in
2d-dimensional (d = 1, 2, . . .) phase space with coordinates
(x, v) is governed by the transport equation

∂ p

∂t
+ ∇x · vp(x, v, t ) = λ

∫
V

T (v, u)p(x, u, t )du

− λp(x, v, t ),

t � 0, (1)
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where x ∈ � ⊂ Rd . This model best describes the motion of
flagellated bacteria such as E. coli that possess two behavioral
modes—runs and tumbles; nevertheless, there are applications
to locust nymphs march [10], bird movement [11], and robotic
systems [12]. In one space dimension, when particles possess
random motions with a constant speed and switch directions
at an instantaneous time with an unbiased constant reversal
rate, this model recovers one of the earliest correlated random
walk models proposed by Goldstein and Kac [13,14]. The
limitation is that many of the earliest velocity-jump processes
are noninteracting; hence crowding effects are not consid-
ered. This means overlaps are permitted, which is unreal in
a dense population. More recently, though, there has been an
increasing interest in understanding crowding effects when
accounting for the finite size of particles [15,16].

The impenetrable finite-sized hard-core particles give rise
to the so-called excluded-volume effect. Unlike noninteract-
ing zero-sized particles [17], this exclusion reduces the free
space in a system and influences the transport properties of
diffusing particles, especially in crowded environments. In
the extreme case in which the particles’ diameter is equal
to the width of the channel, bypassing is forbidden [18].
When introducing a theoretically justified framework to ana-
lyze hard-core systems, one must choose the most appropriate
particle representation with interactions. A common approach
has been incorporating volume exclusion to lattice-based ran-
dom walk models restricting particles’ motion to a grid.
During on-lattice interactions, the target site is occupied by,
at most, a single particle and evolves according to a set of
rules based on the neighboring sites’ condition. The simplest
model is a random walk on the one-dimensional lattice with
jumps (left or right) to the nearest vacant site [19]. However,
these lattice-based models may not be realistic in some sce-
narios, as the mechanism allows individuals to jump across.
Also, the approximation restricts the choice of the model
parameters and the initial condition. Alternatively, one can
consider a more realistic lattice-free random walk, in which
the individual changes its position in a continuous space rather
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than restricting it to a lattice. The volume exclusion can be
introduced by assuming particles are hard spheres that can-
not overlap [20], an attempt-and-abort mechanism based on
a moving probability [21], or denying the cells to pass an
equilibrium distance [22].

Once the particles’ physical representation is determined,
the next concern would be the model’s description level,
whether particle level or population level. The former treats
each occupant as a discrete entity and describes their behavior
explicitly. This behavior may include internal processes and
interactions between individuals, which are mathematically
explained by an evolution update rule given in the form of
an algorithm or differential equation. Discrete particle-level
models may be conceptually simple but demand expensive
computer simulations when administering them to large parti-
cle systems with complex behavioral patterns. On the other
hand, continuum population-level models are responsive to
large numbers and relatively easy to analyze and solve. Since
they consider group-level quantities rather than individual
properties, they might not capture details at particle level [23].
Continuum population-level models most commonly use par-
tial differential equations (PDEs). For the derivation, one
must consider the system variables such as number den-
sity or spatial population density. Connecting the two levels
of descriptions is challenging and not evident in general,
especially when the system includes particle-particle and
particle-environmental interactions. Indeed one can either use
a particle-level or population-level model depending on the
subject of relevance and available experimental data. Never-
theless, it is essential to understand the link to get an insight
into the dispersing systems.

Reviewing previous studies on collective dynamics and
self-organization within narrow channels, we find many math-
ematical and computational efforts focused on noninteracting
velocity jump processes [24], stochastic models [4,25], or
continuum population-level models [20,26] developed for
Brownian colloidal. To this end, we propose and examine
an interacting velocity jump process confined to a narrow
channel. The approach is to tackle the common first steps
in any such problems rather than focusing on a particu-
lar question linked to studies presented earlier. The system
requires advanced mathematical frameworks to capture funda-
mental characteristics; hence this paper aims to determine the
population-level model systematically via the particle-level
description. We develop a method similar to the study [16]
and analyze the impact of collisions between individuals on
the behavior of groups of particles, driving according to a ve-
locity jump process. In particular, we too examine a hard-core
N-particle system, though we consider a domain confined to
a narrow channel and wide enough for particles to pass each
other. The occupants exclude a volume in the channel, but, in
the passing regime, the region is some sort of an interface that
is no longer excluded. We still have collisions with the par-
ticles moving in opposite directions that are successful with
probability given by a function of the particle’s size and the
width of the channel. This collision probability turns up in the
nonlinear term of the resulting hyperbolic equations extending
the work accomplished in [16] to exchangeable orderings.

The paper is structured as follows. We begin in Sec. II
by writing down the particle-based description of the system,

FIG. 1. (a) Single-file channel where the particle’s diameter is
the same as the width of the channel. (b) A narrow channel where
particles cross over and easily change order.

which consists of an N-dimensional PDE for the joint proba-
bility density function in the probability space. The following
Sec. III then derives equations for the population-level behav-
ior that arise from those particle-level dynamics. Sections IV
and V are devoted to investigating the validity of the derived
model by comparing its solutions with stochastic simulations
of the full particle system. Here we present several numerical
examples to demonstrate the behavior of both point and finite-
size particles under different external influences.

II. PARTICLE-LEVEL DESCRIPTION

In a previous paper, Ralph et al. [16] analyzed the veloc-
ity jump process in a single-file channel in which particles
preserve the initial order over time [see Fig. 1(a)]. To make
this paper self-contained, we summarize their particle-level
description in the nondimensional form and study the collec-
tive behavior in the passing regime [see Fig. 1(b)]. For ease
of reference, let us name the former a collision system and the
latter a narrow channel system.

We also consider a stochastic system in compact velocity
space with constant speed. We neglect the effect of back-
ground noise and assume that the system does not have
external forces which restrict or prevent the particles’ motion
and turn velocity back to zero. The system has N interacting
particles in a one-dimensional domain of length L that does
not change through time, meaning there is no birth or death.
The particles are identical hard disks (or spheres) of diame-
ter ε instead of being hard rods. The stochastic changes are
applied to each particle’s velocity rather than to its position
in space; therefore, a particle switches its direction based
on N independent Poisson processes with rates λ(x, v) > 0.
Collisions with another particle or with the domain wall may
also change the velocity; however, we expect fewer collisions
when the domain dimensions are larger than the particle’s
size. Furthermore, the wall-particle interactions are limited
to the domain’s left and right ends due to their unidirectional
motion.

The equivalent PDE description in terms of the joint prob-
ability density function P(�x, �v, t ) for N particles to be found
at the position �x = (x1, . . . , xN ) for xi ∈ �(= [0, L]) with
velocity �v = (v1, . . . , vN ) for vi ∈ V (= {−c, c}) at time t is
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given by

∂P

∂t
+ �v · ∇�xP +

N∑
i=1

[λ(xi, vi )P(�x, �v, t )

− λ(xi,−vi )P(�x, si�v, t )] = 0, (2)

as in [16]. The operator si switches velocity of the ith parti-
cle and the random turning rate λ(xi, vi ) = λ0 − χviDxi S(xi )
expresses the knowledge on how correlation depends on an
extracellular signal S (attractant or repellent) when the sensi-
tivity coefficient is χ . In the passing regime, the excluded area
{�x ∈ �N : |xi − x j | � ε,∀i �= j} acts as an interface where P
has jumps at xi ± ε, ∀i. We suppose all the hard-core particles
are distributed independently and identically in the domain
initially; however, they may not preserve their initial ordering.
Inside the domain, particles collide with probability δ; other-

wise, they move independently. This collision probability is
another small parameter that depends on the particle size and
the channel width (say l) in a particular modeling situation.
Here, we treat δ as an independent parameter. During a by-
pass, a particle has access to another’s excluded region from
the left and right ends; consequently, the collision boundary
condition of [16] is replaced by an interface condition. We
detail these conditions in the following section.

III. POPULATION-LEVEL MODEL

The aim is to reduce the higher-dimensional PDE for the
joint density P(�x, �v, t ) to a low-dimensional PDE for the
marginal density p(x, v, t ) of a single particle. This dimension
reduction can be executed in the same manner as in [16],
except now we evaluate P using the interface conditions. The
simplest case is when ε = 0, where the domain �N has no
holes and particles are independent. This yields an equation,

∂ p

∂t
+ v

∂ p

∂x
+ λ(x, v)p(x, v, t ) − λ(x,−v)p(x,−v, t ) = 0 in �, (3a)

p(x, v, t ) = p(x,−v, t ) on ∂�, (3b)

that does not contain any confinement parameters. In fact, it is similar to that of Goldstein and Kac [13,14], except now the
turning rate is a variable.

When ε > 0 a particle excludes a space leading to a domain �N with holes; the individuals become no longer independent.
We find configurations in which two or more particles are approaching each other; however, in the low volume fraction regime,
the volume in the integration space occupied by two particles dominates [27]. Therefore, we fix two particles at x1 with v1 and x2

with v2 to illustrate our approach. It is important to note that the immediate difference from a collision system configuration space
is that x2 ∈ (x1 − ε, x1 + ε) is not a constant illegal configuration anymore. That is, particle 2 passes the inner region of particle
1 with probability 1 − δ; otherwise, it bounces back. Hence the space available for particle 2 center is still �(x1) = [0, L] but
with discontinuities in its density function at x2 = x1 ± ε. Taking this into account, we write the following interface conditions
near interfaces:

when x2 < x1 (4a)

P(x1, x−
1 − ε, c,−c, t ) = δP(x1, x−

1 − ε,−c, c, t ) + P(x1, x+
1 − ε, c,−c, t ),

P(x1, x+
1 − ε,−c, c, t ) = (1 − δ)P(x1, x−

1 − ε,−c, c, t ), (4b)

when x2 > x1 (4c)

P(x1, x+
1 + ε,−c, c, t ) = δP(x1, x+

1 + ε, c,−c, t ) + P(x1, x−
1 + ε,−c, c, t ),

P(x1, x−
1 + ε, c,−c, t ) = (1 − δ)P(x1, x+

1 + ε, c,−c, t ), (4d)

where δ ≡ δ(ε, l ). To derive the equation for the marginal density p, we now integrate the two-particle form of Eq. (2) over
�(x1) × V , rewriting the domain over subintervals [0, x1 − ε), (x1 − ε, x1 + ε), and (x1 + ε, L] where necessary. This integration
results in an equation,

∂ p

∂t
+ v1

∂ p

∂x1
+ 2v1

(
P(x1, x2, v1,−v1, t )

∣∣x2=x+
1 +ε

x2=x−
1 +ε

+ P(x1, x2, v1,−v1, t )
∣∣x2=x+

1 −ε

x2=x−
1 −ε

)
+ λ(x1, v1)p(x1, v1, t ) − λ(x1,−v1)p(x1,−v1, t ) = 0 in �, (5)

involving the two-particle density which is confined to the interaction interfaces. The evaluation of this unknown term requires
a rational approach instead of any ad hoc closure approximations. Here we use an asymptotic expansion that allows us to find
an approximate P which does not break down in the interval (x1 − ε, x1 + ε). The outer solution P(x1, x2, v1, v2) can be simply
defined as

Pl (x1, x2, v1, v2, t ) = q(x1, v1, t )q(x2, v2, t ) + εP(1)
l (x1, x2, v1, v2, t ) + · · · , x2 ∈[0, x1 − ε), (6a)

Pr (x1, x2, v1, v2, t ) = q(x1, v1, t )q(x2, v2, t ) + εP(1)
r (x1, x2, v1, v2, t ) + · · · , x2 ∈(x1 + ε, L] (6b)

for some distribution function q. The normalization condition
on P estimates q(x1, v1, t ) = p(x1, v1, t ) + O(ε). In the cor-

related region (x1 − ε, x1 + ε), we may define P ≡ Pin as a
series in the small parameter ε. This is because the leading
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order term in the outer solutions (6) and inner solution Pin

satisfies the interface conditions (4). Moreover, using the fact
that particles are identical and indistinguishable, we find

P(x1, x2, v1,−v1, t )|x2=x+
1 +ε

x2=x−
1 +ε

+ P(x1, x2, v1,−v1, t )|x2=x+
1 −ε

x2=x−
1 −ε

= δε
∂

∂x1
[q(x1, v1, t )q(x1,−v1, t )]. (7)

Recall that we began our analysis considering pairwise in-
teractions at O(ε) which can now be easily extended to N
particles. Hence the density p(x, v, t ) satisfies the kinetic
equation

∂ p

∂t
+ v

∂ p

∂x
+ 2vδε(N − 1)

∂

∂x
pp(x,−v, t )

+ λ(x, v)p(x, v, t ) − λ(x,−v)p(x,−v, t ) = 0, (8)

with the boundary condition

p(x, v, t ) = p(x,−v, t ) at x = 0, L. (9)

The nonlinear PDE is fairly similar to the model in previous
work [16]. The additional term that depicted the effect of
pairwise interactions in the full collision system now incor-
porates a collision probability. Although we assumed it as
small, it may take any value between zero and one as far as the
model concerns; the maximum value resembles the collision
system (the derivation of δ for a particular ε and l is given in
Appendix A). A higher number of collisions, resulting from
a larger N or ε, may obstruct the motion toward favorable di-
rections. One can think of this model as an off-lattice version
examined in [19]; however, the reduced continuum model we
have obtained for the population-level behavior differs from
the corresponding continuum limit of the discrete on-lattice
counterpart model. Specifically, the nonlinear transport terms
of the coupled system of hyperbolic PDEs obtained due to
crowding effects do not agree with those derived in our model.

To assess the validity of the model (8), we compare the
numerical results of our continuum model for the narrow
channel to the results from the corresponding particle-level
model as well as the continuum models of point particles and
collision systems. The analysis will explain the conditions
under which the model can describe population-level behavior
emerging from the particle-level dynamics.

IV. TIME-DEPENDENT SOLUTIONS

We study solution strategies based on characteristics for
time-dependent hyperbolic balance laws. Rather than ad-
hering to standard numerical methods, this approach is
comprehensive and practical. Numerous works have con-
tributed to understanding nonlinear hyperbolic systems of
equations, such as the shallow water equations [28] and com-
pressible Euler equations [29]. The main ingredients in the
study of such systems are the concepts of characteristics and
Riemann invariants. We apply them for both the theoretical
and computational developments in the system we study.

By rewriting Eq. (8) for subpopulation densities p+ =
p(x, c, t ) and p− = p(x,−c, t ) yield the following hyperbolic

system:

∂ �p
∂t

+ ∂

∂x
F ( �p) = �g(x, �p), 0 � x � L, 0 � t � T, (10)

where �p = (p+
p−) and F ( �p) = ( cp+ + cξ p+ p−

−cp− − cξ p− p+), with ξ =
2δε(N − 1) and the source term �g(x, �p) = (λ

−(x)p− − λ+(x)p+
λ+(x)p+ − λ−(x)p−).

When ε = 0, the Jacobian produces linearly degenerate fields{[
c,

(
1
0

)]
,

[
−c,

(
0
1

)]}
(11)

that reduce the noninteracting system (3) into a simple system
of first-order ODEs:

d p

dt

+
= g1(x, �p) along x = ct + x0,

d p

dt

−
= g2(x, �p) along x = −ct + x0,

(12)

with the initial condition p(x,±c, 0) and the reflective bound-
ary condition p+ = p− at x = 0, L. This system can be solved
by employing a numerical integration method with a fixed
time step, which is not the case in a nonlinear system.

When ε �= 0, for every �p ∈ R2 we find two distinct real
eigenvalues paired with two linearly independent eigenvec-
tors. But the structure of these eigenvectors does not provide
much help for the latter computations; alternatively, we
consider the periodic extensions for the marginal densities:
u1(x, t ), the odd extension of p+ − p−, and u2(x, t ), the
even extension of p+ + p−, where the reflective boundary
condition (9) with the walls extends u1 and u2 as continu-
ous periodic functions with period 2L. The solution domain
changes to [−L, L] and the nonconservative system reads as

∂ �u
∂t

+ J (�u)
∂ �u
∂x

= �g(x, �u), −L � x � L,

with the periodic boundary condition

�u(−L, t ) = �u(L, t ), (13)

where �u = (u1
u2

), J (�u) = (−cξu1 c(1 + ξu2 )
c 0 ), and the source term

�g(x, �u) = (μ1u2 + μ2u1
0 ), with μ1 = λ− − λ+ and μ2 = −λ− −

λ+. We use this extended system to analyze time-dependent
solutions with and without random changes in the velocities.
Essentially we expect to get two ODEs for some algebraic
combinations of u1 and u2 along the characteristic curves.

A. No random transitions: λ± ≡ 0

When particles do not experience random changes in di-
rection, the source term vanishes; the solutions of (12) are
simply the initial distributions traveling to the right and left
at constant speed c. In an interacting system, we still find
velocity changes due to collisions, but we expect the nonlinear
model to behave like the point-particle linear model at lower
values of collision probabilities. In fact, the solution procedure
becomes more involved in the presence of nonlinear transport
terms. From the system (13), we first derive the characteristic
ODEs from the eigenvalues and their associated eigenvectors.
We then find functions that are invariant along the character-
istic directions and satisfy a set of convective equations.
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The eigenvalues

	 = c(a ±
√

b) of J, where

a = −ξu1

2
and b = 1 + ξu2 + 1

4
(ξu1)2, (14)

represent the characteristic directions at which hard particles
propagate, paired with the left eigenvectors

V = (1,−a ±
√

b). (15)

The system is strictly hyperbolic, because the eigenvalues are
all real and distinct, as long as b remains positive. Also, the
	i-characteristic field is genuinely nonlinear as

∇	1(u1, u2) · V1 = cξ 2u1

2
√

b
,

∇	2(u1, u2) · V2 = −cξ 2u1

2
√

b
for ξ �= 0.

When the hyperbolic system is multiplied by the eigenvec-
tors (15), the right-hand side of (13) condenses and collapses
down to the following two ODEs along the characteristics
Dt x = 	i(u1, u2):

Vi1
du1

dt
+ Vi2

du2

dt
= 0 for i = 1, 2. (16)

Since the asymptotic expansion is accurate up to O(ε), we
expand

√
b and avoid higher order terms. This approximation

simplifies the above ODEs into

du1

dt
+

[
1 + ξ

2
(u1 + u2)

]
du2

dt
= 0,

du1

dt
+

[
ξ

2
(u1 − u2) − 1

]
du2

dt
= 0,

which are integrable using an integrating factor. Hence it
follows that the Riemann invariants are

R1(u1, u2) = (u1 + u2)e
ξu2

2 on characteristics

x(t ) = c

[
1 + ξ

2
(u2 − u1)

]
t + x0,

R2(u1, u2) = (u1 − u2)e
ξu2

2 on characteristics

x(t ) = −c

[
1 + ξ

2
(u2 + u1)

]
t + x0. (17)

It is possible to obtain an exact solution for p+ and p− in
the nonlinear system (8) during this unbiased situation. Since
R1 and R2 are constant along their respective characteristics,
given the initial conditions, say u0

1(x0) and u0
2(x0), we write

R1(u1(x, t ), u2(x, t )) = R1
(
u0

1(x − 	1t ), u0
2(x − 	1t )

)
,

R2(u1(x, t ), u2(x, t )) = R2
(
u0

1(x − 	2t ), u0
2(x − 	2t )

)
.

Now solving the above system, we get

p± = 1

ξ
W

(
ξ

4

(
R0

1 − R0
2

)) ± 1

4
(R0

1 + R0
2)

× exp

[
−W

(
ξ

4

(
R0

1 − R0
2

))]
,

where R0
1 = R1(u0

1(x − 	1t ), u0
2(x − 	1t )), R0

2 =
R2(u0

1(x − 	2t ), u0
2(x − 	2t )), and W is the Lambert W

function [30]. We will plot the results of the nontumbling
case considering a simple step function as the initial condition
and compare the results with the corresponding full-particle
simulations. We expect the left- and right-moving waves to
be shifted with respect to the noninteracting case.

B. Biased random transitions: λ± �= 0

When the system possesses an external signal, the particles
begin their random turns due to the source term �g(x, �u) on the
right-hand side of (13); hence, following the same reasoning
as in zero turnings, the system of ODEs (16) returns:

Vi1
du1

dt
+ Vi2

du2

dt
= Vi1g1 + Vi2g2 for i = 1, 2.

We can write the above system in a more concise form with
the approximation to

√
b; the solution propagates according

to the differential equations

dR
dt

= e
ξu2

2 G(u1, u2) along the characteristics
(18)

dx
dt

= Q(u1, u2),

where R = (R1,R2) as defined in (17), G is the source
term whose entries are Vi · �g = μ1u2 + μ2u1 for i = 1, 2, and
Q(u1, u2) = (	1,	2). The equations are integrable along
the characteristics. So computing the solution of the kinetic
model (8) is equivalent to numerically generating the charac-
teristic paths in space-time.

In the following section, we discuss the methods of solving
the full-particle systems for both point and finite-size parti-
cles, followed by matching the time-dependent solutions with
those of the numerical integration.

C. Numerical examples

The task is now to assess the validity of the kinetic model
from the transient solutions. The solution procedures studied
under previous sections are illustrated through practical nu-
merical examples and the numerical results of the nonlinear
kinetic model (8) are compared with particle simulations.
However, since an analytical solution is not achievable with
varying turning rates over x, we resort to a numerical inte-
gration method along the characteristics (see Appendix B for
details). This way, we avoid problems that occur when using
standard numerical methods for solving PDEs. We have al-
ready established the equations for this numerical integration
in the previous section, where we have found a set of ODEs for
the Riemann variables R1 and R2 on the characteristic direc-
tions. Given the initial conditions, we can obtain the solutions
elsewhere by integrating along the characteristic curves and
the numerical procedure is the simple Euler’s approximation.
Each integration step requires information carried by both sets
of characteristics and they themselves depend on both u1 and
u2, which leads to a nonuniform grid.

To generate point-particle simulations, we apply a simple
time-stepping algorithm where a particle positioned at X (t )
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evolves according to

X (t + 
t ) = X (t ) + V (t )
t (19)

at a fixed time step 
t . The initial positions X (0) are drawn
from the initial density P0(�x, �v). A point particle which
undergoes a velocity jump process has only two possible
events—reflection near boundaries and random turns. The
reflective boundary conditions can be implemented as follows:

if X (t + 
t ) < 0, X (t + 
t ) = −X (t ) − V (t )
t,

if X (t + 
t ) > L, X (t + 
t ) = 2L − X (t ) − V (t )
t,

complemented with V (t + 
t ) = −V (t ).

The above conditions are used to avoid particles moving
outside the domain walls when stepping forward in time.
However, they do not generate new positions; instead, they
detect the wall, switch the velocity, and continue the random
walk (that performed outside walls) in the opposite direction.
The final step is the execution of the random velocity jumps.
During the time interval (t + 
t ) a particle will turn with
the turning probability λ
t ; otherwise, it advances with the
same velocity. For finite-size particles we use an event-based
algorithm that fits into the general class of kinetic Monte Carlo
(KMC) methods. It is an improved algorithm that counts all
the interaction times in the system to produce time steps [31].
As in a collision system, there are three events in the problem,
except now there is a chance for particles to pass each other
during an interaction. For this reason, a particle can bypass
its neighbors and interact with a distant individual or with the
walls. Therefore, it is necessary to check the interactions of
each particle with every other particle and the walls.

The numerical examples presented in this section aim to
do the following: Illustrate the behavior of the systems under
biased and unbiased conditions, investigate whether the model
and associated discrete processes support traveling wave so-
lutions, and examine the effect of changing parameters, such
as the size of the particles and collision probability, on the
solutions. Unless explicitly stated otherwise, we consider a
set of N = 100 particles with speed c = 1 and chemotactic
sensitivity coefficient χ = 1, placed inside a channel of length
one (L = 1). Given the size of the indistinguishable particles
and the width of the channel, the formula in Appendix A
calculates the collision probability δ. To bias the interactions,
we consider two forms of signal functions:

S1(x) = 1 − 2|x − 0.5| with λ0 = 2.5,

S2(x) = 2e−50 (x−0.5)2
with λ0 = 20. (20)

These signals are simple domains where attractants are oc-
cupied at a global maximum 0.5. In this way, we develop
insight into the impact of different signal gradients and base-
line frequencies on the behavior of a uniform concentration
of particles. Besides, our results can be easily compared with
those observed in the collision system.

We plot a subpopulation of right-moving p+, a subpopula-
tion of left-moving p−, and the total population ρ = p+ + p−
for a simple nontumbling case in Fig. 2, and with biases in
Figs. 3 and 4 up to time t = 0.4. The initial particle arrange-

ment is given by

p+
0 (x) = 55

100
1[0.2,0.4], p−

0 (x) = 45

100
1[0.6,0.8], (21)

where 1A denotes the characteristic function of a set A. In
the event-driven algorithm, the initial positions are generated
randomly, avoiding overlaps; the collision probability will
take care of the overlaps during subsequent iterations. The
histograms are produced by dividing the domain into 40 bins.
At each step, we check the number of particles in each bin;
after that, the cumulative average is calculated, dividing the
resulting value in each bin by the number of steps, total
particle count, and bin width. For the two signal functions
S1 and S2, we performed 5000 and 500 realizations, respec-
tively. Effectively, this implies that we are using 5 × 105 (and
5 × 104) trajectories of all N particles to compute the one-
particle distribution histogram.

We compare the numerical predictions of the narrow chan-
nel system with those corresponding to both the point particles
and the collision models. They are the reference points that
allow us to see the competition between the most favorable
signal environment and the volume exclusion of finite-size
particles. In all figures, we follow the color code: Green, the
point particle system (ε = 0); blue, the narrow channel system
(l > 2ε); red, the collision system (l = 2ε). The solid lines
and the circles represent solutions for the PDE models and
the KMC simulations, respectively. For more apparent graphs,
we only include particle simulations of the narrow channel
system. The particle size is fixed to ε = 0.002 so that Nε2

remains constant during model comparison. We then change
the width of the channel to 0.004 to form the collision system
that gives δ(0.002, 0.004) = 1. This comparison explains the
importance of excluded volume effects on the propagating
wave fronts in biased and unbiased conditions. The idea of
distinct waves for subpopulations is pursued in [32,33]. The
former referred to traveling bands of simple point particles,
while the latter suggested those when the traveling wave
speed coincides with the proliferative agent cell speed. The
wave fronts of the point particle system (3) travel at constant
speed c. Since ε = 0, overlap within the band is not a factor.
However, when ε �= 0, velocity changes due to interactions.
From Figs. 2 and 3, we find the nonlinear system (8) obeys
the noninteracting particles linear system up to t = 0.1; there-
after, two fronts collide. Specifically, in the narrow channel,
only 43.75% collisions are involved in this. The rebounded
waves at t = 0.3 are shifted outward; apparently, this shift
progresses with the increasing collision probabilities, which
the eigenvalues, to O(ε), 	+ = c + cξ p−, and 	− = −c −
cξ p+, describe. When λ �= 0, whether the particles are point
or finite in size, they undergo instantaneous velocity changes;
waves distort before collisions (see Fig. 3 and Fig. 4 at t =
0.1). The traveling bands are further disrupted due to interac-
tions between finite-size particles, and the difference between
the linear and nonlinear PDE solutions becomes more notice-
able at t = 0.2.

In general, we find higher densities around the peaks of the
signal functions since both left and right moving individuals
aggregate into favorable regions. However, the peaks are re-
duced for the narrow channel system and are further reduced
for the collision system. This is because 56.25% of overlaps
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FIG. 2. Transient marginal densities of the kinetic model (8) for λ± = 0 when ε = 0 (green line), δ(0.002, 0.01) = (blue line), and
δ(0.002, 0.004) = 1 (red line). Numerical results in the first and second columns show the band travels to the right and left, respectively,
and the third column gives the total density ρ = p+ + p−. The particle simulations (circles) are obtained by 5000 realizations. We use the
initial condition (4), N = 100 and c = 1.

raise the crowding in and around the center of the narrow
channel domain compared to the single-file channel. In other
words, the higher the collision probability the lesser the peak.
Moreover, the theoretical predictions for finite-size particles
in the narrow channel compare well with their simulation
counterparts. This is mainly because of the low occupancy
of particles (3.14%) in the domain with more overlaps. We
required significantly fewer simulations for the signal function
S2 compared to S1, as particles reorganized themselves rapidly
under higher baseline frequency. For the same reason, we do
not observe continuing kinetic waves in Fig. 4.

V. STATIONARY SOLUTION

The stationary solution of (8) with no-flux boundary con-
ditions can be obtained by solving the following ODE for pst :

c
d pst

dx
+ cξ pst

d pst

dx
+ (λ+ − λ−)pst = 0.

The ε = 0 returns the solution pst = A exp[− ∫ x
0

λ(u)
c du] for

point particles, while for finite-size particles this would be
pst = 1

ξ
W (Aξ exp[− ∫ x

0
λ(u)

c du]), where λ = λ+ − λ−, W is
the Lambert W function, and A is a constant to be determined
using the normalization condition.

The stationary solution Pst for the full particle system de-
rives from the fact that, in two dimensions (two particles),
the inner region is a diagonal of width 2ε and the inflow
towards the excluded region changes from factor (1 − δ). In
three dimensions (three particles), a slab of the same width
along the diagonals represents the inner regions. As depicted
in Fig. 5, when one particle is fixed at x1, the inflow changes
from 1 − δ when first entering from the inner slab of the
second particle and then from (1 − δ)2 further from the inner
slab of the third particle. If the system has n(< N ) interacting
particles, one particle has n − 1 inner regions.

Thus, for position index i �= j, we define

φ(xi, x j ) =
{

1, |xi − x j | � ε,

0, |xi − x j | > ε.

Then

n(φ) =
N−1∑
i=1

N∑
j=i+1

φ(xi, x j )

and we can write the stationary solution as

Pst (�x) = A[1 − δ]n(φ) exp

[
−

N∑
i=1

∫ xi

0

λ(u)

c
du

]
. (22)
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FIG. 3. Transient marginal densities of the kinetic model (8) for the signal function S1 (20) when ε = 0 (green line), δ(0.002, 0.01) =
(blue line), and δ(0.002, 0.004) = 1 (red line). Numerical results in the first and second columns show bands traveling to the right and left,
respectively, and the third column gives the total density ρ = p+ + p−. The particle simulations (circles) are obtained by 5000 realizations.
We use the initial condition (21), N = 100 and c = 1.

Note that the collision probability δ is invariant to the switch-
ing of particles and we still adhere to the low volume fraction
assumption. When δ → 0, we recover the steady state for
noninteracting particles. Integrating (22) in higher dimen-
sion and direct calculation of the arbitrary constant A may
not be feasible; instead, we move to the application of the
Metropolis-Hastings (MH) algorithm that allows us to sample
directly from the N-dimensional microscopic density [34].
Further details are given in Appendix C.

Figure 6 shows the model and simulation results for both
point and finite-size particles with unit speed. With N = 100
particles of size ε = 0.002 in a narrow channel of length L =
1, this corresponds to 0.000314/l fraction of filled volume.
The width of the channel determines the collision probabil-
ity; for l > 0.004, particles can pass each other, while l =
0.004 turns it into a full-collision system. In accordance with
the transient solutions, we choose l = 0.01, which returns
δ(0.002, 0.01) = 0.4375. The histograms for the MH algo-
rithm are produced by dividing the domain into 40 bins, and
initially the particles are evenly spaced in the domain. An
acceptance rate in the 0.1 order of magnitude and 106 steps
of the algorithm produce the desired results. We monitor the
number of particles in each bin at every step: When a proposed
move is rejected, the old configuration is added over to the
count, whereas if the move is accepted, the new configuration

is added. At the end of the process, the cumulative average
is calculated, dividing the resulting value in each bin by the
number of steps, total particle count, and bin width.

The stationary solution of the kinetic model agrees well
with the particle simulation results for both interacting and
noninteracting systems. As in time-dependent solutions, we
see a lower density around the peak of the signal functions
for finite-size particles. It is clear from the figure that the
narrow channel allows some overlaps based on the passing
probability around the maximum point of the signal, while
the colliding individuals redistribute to other accessible areas
in the domain. Even though we did not include stationary
solutions from the collision system, we expect a much lower
peak in this situation unless for considerably smaller particle
size.

VI. CONCLUSION

This paper has considered a system of N identical hard
cores of size ε with fixed speed c that undergoes a velocity-
jump process in a narrow bounded channel. These random
changes in the velocity are instantaneous and distributed ac-
cording to a Poisson process. The finite size of particles
means that the motion is correlated; the interactions in the
channel give rise to the so-called interface conditions. From
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FIG. 4. Transient marginal densities of the kinetic model (8) for the signal function S2 (20) when ε = 0 (green line), δ(0.002, 0.01) =
(blue line), and δ(0.002, 0.004) = 1 (red line). Numerical results in the first and second columns show the band travels to the right and left,
respectively, and the third column gives the total density ρ = p+ + p−. The particle simulations (circles) are obtained by 500 realizations. We
use the initial condition (21), N = 100 and c = 1.

a high-dimensional PDE system, we have obtained the kinetic
model under the small volume fraction assumption, while
considering the interactions at the particle level. The approach
was simply based on a regular perturbation problem. The
derived equations are nonlinear in the transport term and

FIG. 5. Schematic of the excluded domain for three interacting
particles when one particle is fixed at x1. The shaded areas show the
inner slabs of width 2ε.

incorporate a collision probability that resembles a collision
system at its maximum value. We have verified the model with
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FIG. 6. Stationary marginal density pst (solid lines) and the sim-
ulations from the MH algorithm (circles) for ε = 0 (green) and
ε = 0.002 (blue). (a) Solutions corresponding to the signal function
S1. (b) Solutions corresponding to S2.
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numerical simulations, comparing its solutions with the cor-
responding stochastic simulations of the underlying particle
system as well as against the interaction-free linear system.
The plots confirm that the model captures the features at
the particle level well. Besides, we have implemented both
time-dependent and stationary simulations of the system. The
time-dependent solutions are nondissipative as we have con-
sidered a systematic approach based on characteristics for
hyperbolic balance laws. Note that we have not commented
on the collision system’s outputs as they are examined already
in [16] following different conditions. In fact, one can refer to
this study for more details regarding the asymptotic analysis
and simulation algorithms. Although our method developed
here is in its simplest setting, this core model constitutes
the first step towards extensions in many directions. We will
be considering distinguishable particles in a narrow channel
in our forthcoming paper. Another interesting but compli-
cated extension is the consideration of anisotropic particles
to examine how the transport model changes with noncircular
particles [35].
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APPENDIX A: COLLISION PROBABILITY

In general, the collision probability depends on the sizes
of the species and the container. Here we consider a single
species of diameter ε inside a narrow channel of width l , such
that 2ε � l . When one particle is at y, where Y ∼ U ( ε

2 , l − ε
2 ),

the space available for the second particle to unobstructedly
move is given by the top and the bottom triangles of Fig. 7.
In other words, the probability of particle 2 passing particle

FIG. 7. Collision square illustrates the space available for the
red particle when the blue particle is fixed at y. The upper left and
the lower right triangles represent, respectively, passing below and
passing above.

FIG. 8. Two characteristics originating from x0 = (x1, x2)|0 at
time t0 = (t1, t2)|0 intersect at P(xin, tin ), then reach x1 = (x1, x2)|1
at t1 = (t1, t2)|1.

1 below (upper left triangle) is
max{0,y− 3ε

2 }
l−ε

and above (lower

right triangle) is
max{0,l−y− 3ε

2 }
l−ε

. The position density function
of particle 1 is the constant function 1/(l − ε). Hence the total
probability of particle 2 passing particle 1 is∫ (l− ε

2 )

3ε
2

P(passing below|Y = y) fY (y)dy

+
∫ (l− 3ε

2 )

ε
2

P(passing above|Y = y) fY (y)dy = (l − 2ε)2

(l − ε)2
.

Since the collision probability is (1− the passing probability),
we remark the following special case.

(1) When ε → 0, collision probability vanishes; hence we
obtain an noninteracting system,

(2) When l = 2ε, particles cannot pass each other; hence
the system becomes a collision system.

APPENDIX B: NUMERICAL INTEGRATION

Here we detail the numerical integration procedure along
the characteristics according to the system (18).

(S1) Determine the time and position of the intermediate
crossover point P(xin, tin ) of the two characteristics origi-
nating from x0 ≡ x(t0) (see Fig. 8). Here we use the two
equations xin = x0 + (h1

1, h2
1 ) ◦ Q, the output from Euler’s

step, and tin = t0 + (h1
1, h2

1 ), where hi
1′s are the time steps for

their respective characteristics.
(S2) Calculate the Riemann variables R at P using

R(xin, tin ) = R(x0, t0) + (
h1

1, h2
1

) ◦ G.

Each element in R is a combination of u1 and u2 along the
two curves, which gives us two equations to solve and find the
updated u1 and u2 at the crossover point.
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(S3) Using the updated u1 and u2 calculate the new po-
sitions x1 ≡ x(t1) beyond the intersection point. Similar to
equations in (S1), again from Euler’s step we have x1 =
xin + (h1

2, h2
2 ) ◦ Q and t1 = tin + (h1

2, h2
2 ).

(S4) Find R beyond intersections using

R(x1, t1) = R(xin, tin ) + (
h1

2, h2
2

) ◦ G.

Here hi
1 and hi

2, for i = 1, 2, are calculated from the equa-
tions given in (S1) and (S3). The total time elapsed, say h,
is the sum of hi

1 and hi
2 along each characteristic. We cannot

maintain a fixed h since hi
1 and hi

2 are constantly changing
during the process. We may start off with a uniform grid at
t = 0, but subsequently follow the characteristics. Hence the
curves will be approximate straight lines.

APPENDIX C: METROPOLIS-HASTINGS ALGORITHM

When (�x) = ∑N
i=1

∫ xi

0
λ(u)

c du is the energy associated
with the configuration �x ∈ �N , the stationary density (22)

becomes

Pst (�x) = A[1 − δ]n(φ)e[−(�x)] for �x ∈ �N . (C1)

Note that  is not defined outside the domain; therefore,
we set (�x) = ∞ for �x /∈ �N . The MH algorithm samples
configurations according to the density Pst as follows.

(S1) Select a particle i at random and calculate the close
encounters with the other x j ′s for i �= j = 1, 2, . . . , N .

(S2) Generate a candidate yi = xi + hX , where X ∼
N (0, 1) and h is a tunable parameter.

(S3) Count the close encounters with yi and x j ′s for i �=
j = 1, 2, . . . , N [the difference of above counts in steps 1 and
3 = (n − 1)].

(S4) Compute the difference 
 between the current and
modified configurations.

(S5) Accept yi with probability p = min[1, (1 −
δ)n−1exp(−
)] and set xi+1 = yi; otherwise, set xi+1 = xi.

In steps (S1)–(S3), we compare the close encounters be-
fore and after modifying each selection. In this way, we are
counting two-particle overlaps.
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