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Effects of correlation in an information ratchet with finite tape

Lianjie He , Jian Wei Cheong , Andri Pradana , and Lock Yue Chew *

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences,
Nanyang Technological University, 21 Nanyang Link, Singapore 637371

(Received 23 September 2022; revised 12 January 2023; accepted 13 January 2023; published 17 February 2023)

With the finite-tape autonomous information ratchet modeled by He et al. [Phys. Rev. E 105, 054131 (2022)],
we recast the information processing second law, giving a tighter bound on the work extracted, in terms of the
marginal bit-ratchet distribution defined from the joint tape-ratchet distribution. The marginal distribution is
further utilized to probe and elucidate the conditions that lead to the presence of equilibrium and nonequilibrium
stationary states in general, which are related to the effects of correlation. Applying our analysis to two designs of
this information ratchet, where correlations within manifest differently, we uncover the mathematical condition
for equilibrium stationary states for information ratchets that harness correlation, to identify them for engine
operation during the transient phase.
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I. INTRODUCTION

It is well known that correlation has a subtle effect on the
ratchet mechanism. The ratchet mechanism was introduced by
Feynman through the metaphor of a ratchet and pawl where he
demonstrated how the condition of nonequilibrium is neces-
sary to drive directed motion [1]. It is a facet of a Maxwell
demon which derives order out of a thermal environment
[2,3]. It was exhibited in a class of system known as Brownian
motors which undergoes dissipative dynamics in the presence
of thermal noise with the system driven out of equilibrium
[4]. The systems in this category appear in the form of various
ratchet configurations which have been applied to depict the
underlying mechanism of molecular motors and pumps [5].
One notable ingredient in these ratchet systems is the temporal
correlation (within the environment), which acts through the
nonequilibrium effect of symmetry breaking to convert ther-
mal energy to useful work [6–8].

Recently, there is a new class of ratchet system whose oper-
ation is driven through information. One approach in this new
class which is inspired by the Szilard’s engine [9], executes
a measurement-feedback formalism where work is extracted
from heat in a thermal bath according to information acquired
from the previous measurement [10–14]. However, another
approach considers an autonomous information ratchet in-
teracting with symbols or bits in an infinite tape, with no
external agent manipulating it or thermodynamic force driving
it [15–17]. In both approaches, correlation is found to enhance
the efficiency of the ratchet systems. For the former approach,
correlation leads to better flux performance [18] while the lat-
ter approach leverages correlations in the input bits to perform
additional work [19,20].

In an earlier paper [21], we have considered an autonomous
information ratchet that interacts with a finite tape (sequence)
of bits in discrete time. We have shown in Ref. [21] that
such a ratchet with memory is able to harness correlation
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to facilitate the work-energy transfer (amassing mechanical
energy for future work) by taking a longer time to reach
the stationary state. Moreover, we have uncovered a phe-
nomenon of a possible negative asymptotic work from this
ratchet with memory in its stationary behavior. We will show
in this paper that this negative work is a consequence of the
effect of correlation when the ratchet is being driven to a
nonequilibrium stationary state where it manifests irreversible
behavior with work expended as heat to the thermal reservoir.
While there is an increase in order in the ratchet system, the
entropy of the thermal environment increases such that the
second law of thermodynamics is obeyed. However, a ratchet
with memory can also exhibit equilibrium stationary behavior
whose dynamics is reversible. It is at the transient phase of
such a ratchet that the work-energy conversion confers it the
potential to do the maximum mechanical work [21]. It is the
purpose of this paper to illuminate the effects of correlation
on these nonequilibrium and equilibrium stationary states and
their associated work done. To delve into the effects of cor-
relation in these cases, we shall perform our mathematical
analysis using the marginal bit-ratchet distribution instead of
the joint tape-ratchet distribution as was done in Ref. [21]
previously.

The organization of our paper is as follows. We first intro-
duce our finite-tape information ratchet system and its nec-
essary preliminaries in Sec. II. The subsequent Secs. III and
IV demonstrate the validity of the finite-tape information pro-
cessing second law (IPSL) in terms of the marginal bit-ratchet
distribution and show that it gives a tighter bound on the
work extracted compared to the original version in Ref. [21]
which used the joint tape-ratchet distribution. Through the
marginal bit-ratchet distribution and the tightened IPSL, we
then decipher the presence of nonequilibrium stationary states
in our finite-tape information ratchet system (in addition
to the equilibrium stationary states) and elucidate on the
possibility of negative work in this nonequilibrium steady-
state behavior in Sec. V. An account of the tape-ratchet
dynamics in the transient phase, where the information ratchet
is able to fulfill a variety of thermodynamic roles, is also
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FIG. 1. Schematic representation of an information ratchet with
a finite tape moving unidirectionally (indicated by arrow below the
bit highlighted in yellow) as it sequentially interacts with each bit
successively; the bit highlighted in yellow is the current bit B inter-
acting with the ratchet. This bit and the ratchet constitute the present
interacting subsystem B ⊗ R. The circular tape here corresponds
to the linear tape in Fig. 2 which is presented in a different but
physically equivalent manner there; the interacting bit B highlighted
in yellow in Figs. 1 and 2 is the same bit.

provided in Sec. VI. These results are the outcome when
correlation is accounted for in our system, whose effects we
then further illustrate through two designs of the finite-tape
information ratchet with one unable to leverage on correlation
(Sec. VII A) while the other can (Sec. VII B). Lastly, we
work out the mathematical condition for equilibrium station-
ary states (with zero asymptotic work) of information ratchets
that harness correlation in Sec. VII C. In such a state, the
ratchet operates as an engine (in the transient phase) with the
accumulated mechanical energy (and equivalently its capacity
to do future work) maximized and are thus of practical in-
terest in the realization of our finite-tape information ratchet
system [21].

II. FINITE-TAPE INFORMATION RATCHET

We first provide an overview of the finite-tape information
ratchet to give physical intuition of its inner workings before
proceeding to the essential details of the ratchet mechanism
and its mathematical formalism, with a focus on the subtleties
involved. The IPSL (in terms of either the joint tape-ratchet
distribution or marginal bit-ratchet distribution) obeyed by
our information ratchet system will lastly be introduced at the
end of this section.

A schematic illustrating a minimal representation of our
information ratchet system is given in Fig. 1, with the finite
tape presented in a circular manner. The motivation is the
output bits will eventually recirculate back as the input bits
in the next tape scan. One tape scan is completed when the
ratchet has scanned all bits (of the L-bit tape) before the
recirculation occurs, i.e., after L successive bit scans. We will
denote a single bit scan operation O as in Ref. [21]. The phys-
ical attributes of the finite-tape information ratchet, i.e., its
interactions with the heat and work reservoirs, are displayed
abstractly in Fig. 1 to highlight its role as a channel mediating
exchanges between these reservoirs and the finite tape. The
heat and work reservoirs have their usual interpretations from
classical thermodynamics, with the latter arbitrarily perceived
as a mass-pulley system which stores (expends) mechanical
energy (specifically gravitational potential energy) for future

FIG. 2. Schematic representation of the information ratchet in-
teracting with the finite tape (represented in a linear manner) of L
bits. The (present) leftmost bit B = BN ∈ {0, 1} with the ratchet R ∈
{1, 2, . . . , NR} form the interacting bit-ratchet state space B ⊗ R,
whose respective state probabilities are captured by the marginal
bit-ratchet distribution pB⊗R. In a single bit scan operation O, the in-
termediate stages of the coupling between this interacting bit B = BN

and the ratchet R are detailed with the interacting subsystem B ⊗ R
highlighted with a red dashed box at each stage, taking into account
the position of BN (and subsequently B′

N ) relative to the other bits
in the finite tape (of length L). The joint tape-ratchet distribution p
accounts for the joint tape-ratchet states (blue dashed box), which
was used in Ref. [21] to describe the same ratchet mechanism.

work production (expenditure) as the mass is raised (low-
ered). We note the finite tape here differs from the original
discrete-time information ratchet with an infinite bit sequence
in Ref. [17], and the consequences had been explored in
Ref. [21].

We now introduce the notation used to describe the ratchet
operation, with reference to Fig. 2 detailing the interme-
diate stages in a single bit scan O. Figure 2 reveals the
bare essentials of the ratchet mechanism, with the finite tape
(equivalently) presented in a linear fashion, and the heat and
work reservoirs omitted to center the discussion on the tape-
ratchet interaction. Each bit in this finite tape is indexed as
BN ∈ {0, 1} with N ∈ {1, 2, . . . , L}, typical of a classical bit.
The random variable B is used to denote the input (leftmost)
bit, and we arbitrarily take the forward direction spatially in
which the linear tape is scanned as the left-to-right direction
hereafter. The ratchet R ∈ {1, 2, . . . , NR} is in either one of
the NR ratchet states. In Ref. [21], the (total of 2LNR) joint
tape-ratchet states with their joint probability distribution p
was used to mathematically describe the ratchet mechanism
as the consideration of these joint states would capture the
statistical behavior of all the microstates of the (finite tape-
ratchet) system. We now proceed to illuminate the different
stages in a single bit scan O and the evolution of the joint
distribution p by the corresponding operator matrix O, i.e.,

p′(τ ) = O p(0), (1)
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with the ratchet interacting sequentially with each bit for a
fixed period τ .

At the start of each bit scan O (stage 1), the ratchet (in state
R) is initially not attached to any bit before the incoming input
bit B = BN attaches to it (stage 2). The interacting bit-ratchet
subsystem B ⊗ R (formed by both random variables together)
now undergoes a stochastic thermal transition M (driven by
thermal fluctuations from the heat reservoir) to B′ ⊗ R′ (stage
3), with the joint (tape-ratchet) distribution p transformed to
an intermediate distribution p̃ = Mp. The output bit B′ = B′

N
subsequently detaches from the ratchet (stage 4) and shifts
to the right end of the tape via switching S, completing this
bit scan O (stage 5) with the new joint distribution p′ = Sp̃.
The ratchet retains its state R′ from this interaction and is now
ready to attach to the next input bit B = BN+1 [the bit index
is more accurately (N mod L) + 1], repeating the cycle. The
sequential interaction of each bit with the information ratchet
thus proceeds in this manner.

The bit scan matrix O accounts for the thermal transition
M involving the interacting subsystem comprising the ratchet
and the attached leftmost bit of the finite tape (from stage 2
to 3), and switching S required to shift the output bit from
the leftmost end of tape to the right end (from stage 4 to
5) as modeled by the linear tape in Fig. 2. Each bit scan
thus effectively constitutes a two-step composite operation
O = SM. For an L-bit tape scanned by an information ratchet
with NR ratchet states, the size of O = SM (determined by the
joint tape-ratchet states) is 2LNR × 2LNR, with substeps M and
S necessarily having the same dimensions as O. The details of
the explicit construction of these matrices, which act on the
joint distribution p, can be gleaned from Ref. [21], although
the joint (tape-ratchet) states in p will be ordered differently
in this paper and discussed subsequently.

The thermodynamics involved in a bit scan O between the
information ratchet and the respective reservoirs in Fig. 1 is as
follows. Unlike a piston, our (finite) tape-ratchet system does
not perform work (in the absence of external perturbation).
It basically mediates a transfer of energy between the heat
reservoir and the work reservoir. The energy that is being
transferred is heat as the tape-ratchet system interacts with the
heat reservoir during the thermal transition substep M (from
stage 2 to 3 in Fig. 2). The heat energy is then converted to
gravitational potential energy capable of doing work in the
work reservoir, analogous to Refs. [17,19]. It is in this context
that Q = −W over every bit scan O, where Q is the heat
dissipated by the ratchet into the heat reservoir and W is the
mechanical energy stored (which manifests as work) in the
work reservoir by the ratchet, since the ratchet does not retain
energy. The interaction with the work reservoir to accumulate
(or expend) this mechanical energy from the work conversion
occurs during the attachment of input bit B (from stage 1 to
2) to and detachment of output bit B′ (from stage 3 to 4) from
the ratchet, with the joint distribution unchanged. Thus, this
attachment and detachment mechanism does not feature in
the mathematical modeling of the bit scan operation (matrix)
O = SM, which governs the evolution of the joint p in Eq. (1).
Note that the switching substep S does not involve either the
heat or work reservoir nor play a role in the energetics or
informational change within the cycle O; see Appendix A
(energetics) and Sec. V (informational change) for further de-

tails. Nonetheless, this switching S is an intrinsic attribute of
this information ratchet necessary for its sequential interaction
with each bit (of the finite tape).

In our earlier paper [21], we have established (and proven)
the joint IPSL which states that the expected work extracted
from the information ratchet is bounded above by the change
in Shannon entropy of the joint tape-ratchet distribution p
over a single bit scan O, i.e., 〈W 〉 � �H[p] with �H[p] =
H[p′] − H[p] from Eq. (1). It is the aim of this paper to alter-
natively consider the dynamics within the information ratchet
system from the perspective of the interacting bit-ratchet
subsystem B ⊗ R with the marginal bit-ratchet distribution
pB⊗R.1 This is motivated by the sequential interaction of
the ratchet with each bit (in the finite tape), implying that
there will instantaneously only be one interacting bit B which
the ratchet (in state R) can be attached to in its operation.
Intuitively we expect the marginal distribution pB⊗R to be
sufficient to capture the corresponding free energy differ-
ence, which arises solely from the B ⊗ R subsystem. Refer to
Fig. 2 for a schematic illustrating the difference between this
marginal pB⊗R (a 2NR × 1 vector) and the joint p (a 2LNR × 1
vector).

Note that the leftmost bit of the finite tape in Fig. 2 is
always either the input bit B or output bit B′. We will thus
simply use pB⊗R to denote the marginal leftmost bit-ratchet
distribution, irrespective of whether this leftmost bit is an
input or output bit.

Our next task now is to demonstrate the validity of the
marginal IPSL in terms of the marginal distribution, stating
the expected work is bounded above by the change in Shannon
entropy of the marginal pB⊗R over the stochastic thermal tran-
sition substep M in a single bit scan O, i.e., 〈W 〉 � �H[pB⊗R]
with �H[pB⊗R] = H[p̃B⊗R] − H[pB⊗R]. This is essentially a
recast of our original IPSL using the joint distribution p in
Ref. [21]. To this end, the marginal pB⊗R will be defined from
its joint p [Eq. (11)].

III. IPSL WITH MARGINAL DISTRIBUTION

To establish the required relation [Eq. (18)] which the
marginal IPSL is premised on (Sec. III C), we first need to
show the work 〈W 〉 [Eq. (2)], previously in terms of the
joint (tape-ratchet) distribution p in Ref. [21], can be equiva-
lently formulated using the marginal (bit-ratchet) distribution
pB⊗R [Eq. (10)]. This will support the physical intuition that
the interacting bit-ratchet subsystem B ⊗ R is sufficient to
describe the dynamics of the tape-ratchet system with just
the marginal pB⊗R. We will start with the simplest case for

1We mention that our use of the ⊗ symbol here is for the purpose
of labeling the interacting bit-ratchet space B ⊗ R with distribution
pB⊗R, and also for the labels of the respective interacting bit-ratchet
states (see subsequent Figs. 3 and 5). It is not to be implied that there
is no correlation between the interacting bit and ratchet such that
pB⊗R can be decomposed into its respective marginals. However, we
note an exception in Eqs. (57)–(59) where we invoked the mathemat-
ical interpretation of the ⊗ symbol when discussing a specific ratchet
design without correlation. Nonetheless, it will be apparent from the
context on the intended meaning of the ⊗ symbol.
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a 1-bit tape (L = 1) with its joint and marginal distributions
coinciding, i.e., p = pB⊗R, before proceeding to L > 1 to
show the equivalent formulations for 〈W 〉 with either p or
pB⊗R. This motivates the marginal IPSL which considers the
evolution of the marginal pB⊗R over one thermal transition
substep M, in a similar manner to the joint IPSL in Ref. [21].
A proof for the marginal IPSL is furnished separately in
Appendix A.

We had shown in Ref. [21] that the expected or ensemble-
averaged work, in units of kBT (i.e., setting kBT = 1), reads

〈W 〉 =
∑
i, j

Mji pi ln

(
Mi j

Mji

)
, (2)

using the joint tape-ratchet distribution p and thermal transi-
tion (square) matrix M (of dimension 2LNR). The formulation
for this 〈W 〉 in Eq. (2) is detailed in Appendix A, to-
gether with the necessary assumptions behind this work
expression.

We now proceed to show explicitly the calculation of 〈W 〉
for L = 1 and L > 1 using Eq. (2) before proving that the
work 〈W 〉 for an arbitrary L-bit tape can also be equivalently
expressed in terms of the marginal bit-ratchet distribution
pB⊗R.

A. 〈W 〉 for 1-bit tape

We first calculate the work 〈W 〉 for L = 1 with the joint
(tape-ratchet) distribution p with the corresponding L-bit ther-
mal transition matrix M (L), i.e., M (1) here. The indexing
notation employed in this calculation takes into account both
the dimensions of M (1) and the corresponding p (for consis-
tency) to obtain the subsequent expression in Eq. (6), with the
explicit details as follows.

The thermal transition operator (matrix) for the 1-bit tape
is given by

M1-bit =
(

E F
G H

)
, (3)

where E , F , G, and H are submatrices of M1-bit with size
NR × NR. To ease the subsequent notation from what we had
used in our previous paper [21], we will use the shorthand
M (1) for M1-bit and denote the entry or element of M (1) as
M (1)

i, j . We mention at the outset that our design of M (1) will
be tridiagonal, a requirement of our ratchet mechanism which
we will return to address its necessity in Sec. V.

Let us now define new variables r, s, u, and v where r, s ∈
{0, 1} and u, v ∈ {1, 2, . . . , NR}. The indices i and j can then
be defined as

i(r, u) = rNR + u, (4a)

j(s, v) = sNR + v. (4b)

The variables r and s determine which submatrix the indices
are referring to, i.e.,

E → r = 0, s = 0

F → r = 0, s = 1
(5)

G → r = 1, s = 0

H → r = 1, s = 1

TABLE I. Relationship among the variables r and u, index i, and
the tape-ratchet configuration for L = 1 and NR = 2.

r u i Tape-ratchet configuration

0 1 1 0 ⊗ A
0 2 2 0 ⊗ B
1 1 3 1 ⊗ A
1 2 4 1 ⊗ B

and the variables u and v refer to the row and column of the
particular submatrix, respectively.

From Eq. (2), the work can now be written in terms of r, s,
u, and v as

〈W 〉 =
∑
i, j

M (1)
j,i pi ln

(
M (1)

i, j

M (1)
j,i

)

=
1∑

r=0

1∑
s=0

NR∑
u=1

NR∑
v=1

M (1)
(sNR+v, rNR+u) p(rNR+u)

× ln

[
M (1)

(rNR+u, sNR+v)

M (1)
(sNR+v, rNR+u)

]
. (6)

As for the probability distribution pi = p(rNR+u), Table I gives
the relationship among the variables r and u, index i, and the
corresponding tape-ratchet configurations for L = 1 and NR =
2 (with A, B labeling the ratchet states).

B. 〈W 〉 for L-bit tape

We now proceed to generalise the 〈W 〉 expression in Eq. (6)
for arbitrary L to obtain Eq. (9), by recognizing the repetition
of elements of M (1) in M (L) [see Eq. (7)] and thus we can
utilize a similar indexing notation for the calculation here. The
definition of the marginal (interacting bit-ratchet) distribution
pB⊗R in Eq. (11) then follows from Eq. (10) and we will have
shown the work equivalence with either the joint distribution
p or marginal distribution pB⊗R, i.e., Eq. (13).

The thermal transition operator for the L-bit tape M (L) is
given by

ML-bit = 12L−1 ⊗ M1-bit = 12L−1 ⊗
(

E F
G H

)
, (7)

on the basis of the ratchet interacting with only the leftmost
bit at any instant (and the values of the remaining bits are
unchanged). The transition probabilities between the B ⊗ R
states are thus given by the respective elements in M (1), which
explains the relation between M (1) and M (L) above. Notice that
M (L) will also be tridiagonal as a consequence of the tridiag-
onality of M (1) which we alluded to earlier; see subsequent
Eq. (72) for an explicit expression for M (L) constructed from
Eq. (7) here. Each of the submatrices E , F , G, and H in M (L)

is repeated 2L−1 times. Outside of these submatrices, all other
elements of M (L) are zero.

Since there are repeating elements of submatrices E , F , G,
and H in M (L), variables r, s, u, and v introduced earlier can be
used again here to refer to the elements of these submatrices.
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Let us now define new variables k, α, and β, where k ∈
{0, 1, . . . , 2L−1 − 1} and

α(r, u, k) = 2kNR + rNR + u, (8a)

β(s, v, k) = 2kNR + sNR + v. (8b)

It can be checked that M (L)
α,β = M (1)

i, j (and M (L)
β,α = M (1)

j,i ) for
any k. The variables r and s determine which submatrix the
indices are referring to, as given in Eq. (5). Variable k points
to the (k + 1)th copy of the submatrix, counting from top
to bottom (or left to right). Since k can take 2L−1 different
values, it indicates that the repetition of the elements occurs
2L−1 times. The variables u and v refer to the row and column
of the particular submatrix, respectively.

The elements of M (L) outside of indices α and β defined
above are all zero. Thus, the work in Eq. (2) can be calculated
by summing over the indices α and β, i.e.,

〈W 〉 =
∑
α, β

M (L)
β,α pα ln

(
M (L)

α,β

M (L)
β,α

)

=
1∑

r=0

1∑
s=0

NR∑
u=1

NR∑
v=1

2L−1−1∑
k=0

M (L)
(2kNR+sNR+v, 2kNR+rNR+u)

× p(2kNR+rNR+u)

× ln

[
M (L)

(2kNR+rNR+u, 2kNR+sNR+v)

M (L)
(2kNR+sNR+v, 2kNR+rNR+u)

]
. (9)

Since M (L)
α,β = M (1)

i, j and M (L)
β,α = M (1)

j,i , then

M (L)
(2kNR+rNR+u, 2kNR+sNR+v) = M (1)

(rNR+u, sNR+v) and similarly

M (L)
(2kNR+sNR+v, 2kNR+rNR+u) = M (1)

(sNR+v, rNR+u). Subsequently,

〈W 〉 =
1∑

r=0

1∑
s=0

NR∑
u=1

NR∑
v=1

M (1)
(sNR+v, rNR+u)

×
⎡
⎣2L−1−1∑

k=0

p(2kNR+rNR+u)

⎤
⎦

× ln

[
M (1)

(rNR+u, sNR+v)

M (1)
(sNR+v, rNR+u)

]

=
∑
i, j

M (1)
j,i p(B⊗R)

i(r,u) ln

(
M (1)

i, j

M (1)
j,i

)
, (10)

where p(B⊗R)
i(r,u) is the marginal probability defined as

p(B⊗R)
i(r,u) =

2L−1−1∑
k=0

p(2kNR+rNR+u). (11)

This shows that the work can be calculated from the marginals
in Eq. (10) following the exact same formulation as the work
for 1-bit tape in Eq. (6), where the marginal and joint distribu-
tions are the same, i.e., pB⊗R = p for L = 1 from Eq. (11).

Table II gives the relationship among the variables r, u,
k, the indices i and α, and the corresponding tape-ratchet
configurations for L = 2 and NR = 2. The list of the marginals

TABLE II. Relationship among the variables r, u, k, the indices i
and α, and the tape-ratchet configuration for L = 2 and NR = 2.

k r u α Tape-ratchet configuration i

0 0 1 1 00 ⊗ A 1
0 0 2 2 00 ⊗ B 2
0 1 1 3 10 ⊗ A 3
0 1 2 4 10 ⊗ B 4
1 0 1 5 01 ⊗ A 1
1 0 2 6 01 ⊗ B 2
1 1 1 7 11 ⊗ A 3
1 1 2 8 11 ⊗ B 4

in this example is given by

p(B⊗R)
0⊗A = p1 + p5 = p00⊗A + p01⊗A,

p(B⊗R)
0⊗B = p2 + p6 = p00⊗B + p01⊗B,

(12)
p(B⊗R)

1⊗A = p3 + p7 = p10⊗A + p11⊗A,

p(B⊗R)
1⊗B = p4 + p8 = p10⊗B + p11⊗B.

We have thus shown that for all L, the work 〈W 〉 can be
expressed in terms of the marginal bit-ratchet distribution
pB⊗R with the 1-bit thermal transition matrix M (1), which is
equivalent to the original formulation in Ref. [21] with the
joint tape-ratchet distribution p and L-bit thermal transition
matrix M (L), i.e.,

〈W 〉(p, M (L) ) = 〈W 〉(pB⊗R, M (1) ) ∀ L. (13)

Note that the matrix for M (L) in Eq. (7) is different from
its previous construction in Eq. (4) of Ref. [21] as the joint
(tape-ratchet) states in p here have their bit sequences ordered
such that the leftmost bit is iterated first (after enumerating
the ratchet states) for the same remaining bit sequence, as
exemplified in Table II. Nonetheless, the physical operation of
M (L) is the same in both cases with the sequential interaction
of our information ratchet with each bit governed by the same
transition probabilities.

With this reordering of joint states here from Ref. [21], we
are led to Eq. (71) subsequently in this paper from Eq. (42) of
Ref. [21] for consistency. Interestingly, however, the switch-
ing matrix S(L) remains the same as Eq. (8) in Ref. [21]
even after the (joint) state reordering. We can understand
this intuitively by observing that the ordering of joint states
applies to both the rows and columns of S(L), and thus S(L) is
independent of this (arbitrarily chosen) order adopted for the
joint states.

C. Marginal distribution before and after one thermal transition

We next address how the marginal distribution pB⊗R

evolves over a thermal transition substep M and seek its re-
lation [Eq. (18)]. This will provide the premise for which the
marginal IPSL is based on, with the proof and its mathemati-
cal details (similar to the proof for the joint IPSL in Ref. [21])
followed through in Appendix A.

The indices of M (L) outside of α and β have previously
been excluded in Eq. (9) because the elements outside of
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these indices are all zero due to the structure of M (L) given
in Eq. (7). However, to provide further clarity, we redefine
indices α and β here to include these elements as well, i.e.,

α(r, u, kα ) = 2kαNR + rNR + u, (14a)

β(s, v, kβ ) = 2kβNR + sNR + v, (14b)

with kα, kβ ∈ {0, 1, . . . , 2L−1 − 1}. Note that if kα 	= kβ , then
the element is definitely zero. If kα = kβ = k, then the indices
refer to the elements of one of the submatrices.

The relation between joint probabilities before and after
one thermal transition M is given by

p̃α =
∑

β

M (L)
α,β pβ

p̃(2kαNR+rNR+u) =
1∑

s=0

NR∑
v=1

2L−1−1∑
kβ=0

M (L)
(2kαNR+rNR+u, 2kβNR+sNR+v) p(2kβ NR+sNR+v)

p̃(2kNR+rNR+u) =
1∑

s=0

NR∑
v=1

M (L)
(2kNR+rNR+u, 2kNR+sNR+v) p(2kNR+sNR+v), (15)

where the summation is performed only for kβ = kα = k in
the last line, since the terms with kβ 	= kα are all zero. Note
that Eq. (15) is considered over substep M and not a com-
plete bit scan O, thus we have used a tilde symbol to denote
the intermediate probabilities (distribution) in contrast with
the prime symbol in Eq. (1).

We are now ready to relate the marginal probabilities be-
fore and after a thermal transition. Using the definition of
marginal probability in Eq. (11), the marginal probability after
one thermal transition is given by

p̃(B⊗R)
i(r,u) =

2L−1−1∑
k=0

p̃(2kNR+rNR+u). (16)

Next, inserting Eq. (15), we have

p̃(B⊗R)
i(r,u) =

2L−1−1∑
k=0

1∑
s=0

NR∑
v=1

M (L)
(2kNR+rNR+u, 2kNR+sNR+v)

× p(2kNR+sNR+v). (17)

M (L)
(2kNR+rNR+u, 2kNR+sNR+v) = M (1)

(rNR+u, sNR+v) follows from

M (L)
α,β = M (1)

i, j earlier. Continuing,

p̃(B⊗R)
i(r,u) =

1∑
s=0

NR∑
v=1

M (1)
(rNR+u, sNR+v)

⎡
⎣2L−1−1∑

k=0

p(2kNR+sNR+v)

⎤
⎦

=
∑

j

M (1)
i, j p(B⊗R)

j(s,v) , (18)

where the marginal probabilities in pB⊗R from Eq. (11) is
invoked again. This shows that the marginal pB⊗R is evolved
by M (1) over a thermal transition, which is the same relation
as Eq. (1) for the joint p with a 1-bit tape (over a bit scan O).

Unlike analysis through the joint p, our analysis with
the marginal pB⊗R giving the thermal transition substep in
Eq. (18) cannot similarly be followed through with a switch-
ing substep to yield a complete bit scan (composite) operation.
The exception, however, applies only to a 1-bit tape L = 1
(independent of NR), since the (leftmost) input bit is always

the same bit so that switching S(1) is the identity operation
and O(1) = M (1); see Ref. [21].

With the formulation of the work and probability evolu-
tion in terms of the marginal distribution pB⊗R and the 1-bit
thermal transition matrix M (1) [i.e., Eqs. (10) and (18), respec-
tively], we can prove the IPSL (for any L) recasted in terms
of marginal distribution in the same manner as the IPSL proof
for 1-bit tape in Sec. IV A of Ref. [21]; see Appendix A for
the mathematical details. Thus, the original IPSL established
in Ref. [21] (with the joint tape-ratchet distribution p)

〈W 〉(p, M (L) ) � �H[p], (19)

now also has a marginal formulation

〈W 〉(pB⊗R, M (1) ) � �H[pB⊗R], (20)

where the right-hand side (RHS) is the change in Shannon
entropy of the marginal bit-ratchet distribution pB⊗R instead.
We will proceed to discuss the implications of Eq. (20) and
continue to utilize the marginal pB⊗R to probe the effects
of correlation responsible for the different behaviors of the
information ratchet (tape-ratchet) system in steady state.

IV. TIGHTER IPSL BOUND ON 〈W 〉 WITH MARGINAL
DISTRIBUTION

The IPSL had been formulated with both the joint distri-
bution p and marginal distribution pB⊗R in Sec. III earlier.
We saw that the joint IPSL in Eq. (19) upper bounds the bit
scan work 〈W 〉k by the change in Shannon entropy of the
joint (tape-ratchet) distribution �Hk[p] in a single bit scan
operation k. We show here that we can replace the RHS of
Eq. (19) with a tighter bound on 〈W 〉k using the marginal dis-
tribution pB⊗R, thus recovering the marginal IPSL in Eq. (20)
established in the preceding section.

First, we seek to establish a relation between the informa-
tional bounds in Eqs. (19) and (20). Here we consider the
change over the thermal transition substep Mk in bit scan k
where the leftmost bit remains attached to the ratchet (Fig. 2).
Explicitly, the input bit B = BN (before Mk) and the output
bit B′ = B′

N (after Mk) refers to the same bit (with index
N), although its value (0 or 1) which this bit realises may
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have changed. In addition, we can collectively group all the
remaining bits in the finite tape not attached to and thus not
interacting with the ratchet (and whose values are unchanged)
as the noninteracting subsystem B\{N}. We can now expand the
joint entropy of the composite tape-ratchet system in terms
of their marginals and mutual information (perceived alter-
natively as the interacting bit-ratchet subsystem B ⊗ R and
noninteracting subsystem B\{N}):

�HMk [p] = �HMk (B, R, B\{N})

= H (B′, R′, B\{N}) − H (B, R, B\{N})

= H (B′, R′) + H (B\{N}) − I (B′, R′; B\{N})

− H (B, R) − H (B\{N}) + I (B, R; B\{N})

= �HMk (B, R) + �CMk

= �HMk [pB⊗R] + �CMk , (21)

where we have used the identity H (X,Y ) = H (X ) + H (Y ) −
I (X ;Y ) and denoted the mutual information terms �CMk ≡
−�IMk (B, R; B\{N}) = −[I (B′, R′; B\{N}) − I (B, R; B\{N})].

We next proceed to show that the contribution from �CMk

is always nonnegative by noting that the thermal transition
substep Mk only involves the interacting bit-ratchet sub-
system B ⊗ R, i.e., B ⊗ R → B′ ⊗ R′, independent of the
noninteracting subsystem B\{N} and leaving it unchanged.
We thus have the physical equivalence between the mathe-
matical operations p̃ = M (L)p at the joint level and p̃B⊗R =
M (1)pB⊗R at the marginal level (for any L), owing to the
sequential interaction of each bit with the ratchet. This gives
I (B′, R′; B\{N}|B, R) = 0; see Appendix B for a mathematical
proof of this. We will drop the ⊗ symbol subsequently to
simplify the notation. An alternative perspective is BR statisti-
cally “shields” B′R′ from B\{N} as alluded to in Refs. [17,22].
Using I (X ;Y ; Z ) = I (X ;Y ) − I (X ;Y |Z ), we can now express
�CMk into a single conditional mutual information I (X ;Y |Z ):

�CMk ≡ −�IMk (B, R; B\{N})

= I (B, R; B\{N}) − I (B′, R′; B\{N})

= I (B, R; B\{N}; B′, R′) + I (B, R; B\{N}|B′, R′)

− I (B, R; B\{N}; B′, R′) − I (B′, R′; B\{N}|B, R)︸ ︷︷ ︸
= 0

= I (B, R; B\{N}|B′, R′) � 0. (22)

The nonnegativity of �CMk can also be interpreted in terms of
the data processing inequality; see Ref. [23]. Furthermore, this
informational term is responsible for the minimum inevitable
cost of modularity dissipation which Boyd et al. identified in
Ref. [22],〈

�mod
k

〉
min

kB ln 2
= I (B, R; B\{N}) − I (B′, R′; B\{N})

= −�IMk (B, R; B\{N})︸ ︷︷ ︸
�CMk

� 0, (23)

and arises from the loss of global correlations as only the
interacting bit-ratchet subsystem is involved in the modular
operation of the ratchet independent of the noninteracting
subsystem comprising the remaining bits.

The joint IPSL in Eq. (19) can now be recast as

〈W 〉Mk (p, M (L) ) � �HMk [p]

�
〈W 〉Mk (pB⊗R, M (1) ) � �HMk [pB⊗R] + �CMk︸ ︷︷ ︸

� 0

. (24)

The equivalence of the work terms has been shown earlier in
Eq. (13) and comparing with the marginal IPSL in Eq. (20),
we have thus established that the marginal distribution pB⊗R

for the IPSL in Eq. (20) yields a tighter informational bound
than Eq. (19) using joint distribution p. In fact, the term �CMk

is related to the presence of correlation within our finite-tape
information ratchet system. Similar to the case of Boyd et al.’s
infinite-tape information ratchet, the consideration of correla-
tion in the ratchet system has refined the inequality bounds of
the IPSL [19].

We mention that 〈W 〉Mk in Eq. (24) above actually refers
to the heat transferred out of the heat reservoir in the ther-
mal transition substep Mk . Nonetheless, this is equal to the
eventual work output from the attachment and detachment
mechanism (involving the interacting bit-ratchet B ⊗ R; see
Fig. 2) in the same bit scan k, with details of the thermo-
dynamics discussed earlier in Sec. II. We will thus adopt
〈W 〉Mk as a shorthand for this work while considering the
informational change �HMk [·] for the respective distribution
over substep Mk on the RHS of the IPSL subsequently in this
paper.

To further shed light on the link between �CMk and corre-
lations within this finite-tape information ratchet system, we
first recognize that

I (B, R; B\{N}) = I (B; B\{N}) + I (R; B\{N}|B)

= I (B; B\{N}) + I (B, B\{N}; R) − I (B; R),
(25)

by applying I (X,Y ; Z ) = I (X ; Z ) + I (Y ; Z|X ) twice. The
�CMk in Eq. (21) can now be alternatively expressed as

�CMk ≡ − �IMk (B, R; B\{N})

=�IMk (B; R) − �IMk (B; B\{N})

− �IMk (B, B\{N}; R), (26)

which shows that it is related to the change in correlations be-
tween the different components (as captured by the respective
mutual information terms) within the composite tape-ratchet
system. This insight will facilitate the discussion in our sub-
sequent analysis of correlation effects in two separate ratchet
designs, referred to as the tridiagonal Markov chain with
one-state (T1S) ratchet [20,24] in Sec. VII A and the tridiag-
onal Markov chain with two-state (T2S) ratchet based on the
ratchet design of Boyd et al. [17,19,20,22] in Sec. VII B.

V. STATIONARY STATE

We are now ready to perform an in-depth (mathemati-
cal) analysis of the stationary (steady-state) behavior of our
finite-tape information ratchet. Previously in Ref. [21], we
have uncovered the possibility for negative asymptotic work
in the stationary phase. Here we show that this negativity of
the asymptotic work 〈W 〉∞ is dependent on the presence of
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the correlation term �CM∞ defined earlier in Sec. IV. Specif-
ically, we identify two distinct stationary states which either
correspond to the absence or presence of �CM∞ : the equilib-
rium and nonequilibrium stationary states, respectively. The
necessary prerequisites will first be introduced to illustrate
the subtleties involved between the different stationary states
before culminating in the theorems detailing the differences to
be presented.

In our construction of the bit scan matrix O(L) of dimen-
sion 2LNR modeling a single bit scan operation, the design
is such that it is regular (so eventual convergence to a sta-
tionary joint distribution πL-bit = O(L)πL-bit is guaranteed in
the stationary or steady state) and this πL-bit is unique from
Perron-Frobenius theorem [25]. A regular O(L) corresponds to
an ergodic Markov chain with all (finite) tape-ratchet states
accessible (irreducible) and acyclic (no periodic distributions)
necessary to invoke this theorem.

Note that throughout the ratchet operation, switching Sk

merely reorders the probabilities within the joint distribution
so �HSk [p̃] = 0 always. It is required to transform the in-
termediate distribution p̃ = Mkp (after the thermal transition
Mk) to p′ in each bit scan k, i.e., p′ = Skp̃; see Ref. [21].
Since �Hk[p] = �HSk [p̃] + �HMk [p] over a complete (bit
scan) cycle Ok = SkMk , this implies �Hk[p] = �HMk [p] for
arbitrary bit scan k. In the stationary state when the system has
converged to πL-bit, the change in Shannon entropy of the joint
(tape-ratchet) distribution vanishes, i.e., �H∞[p] = 0, since
now p → πL-bit is unchanged over O∞, and thus �HM∞ [p] =
�H∞[p] = 0.

Crucially, we observe the presence of both zero and
nonzero (specifically negative) asymptotic work 〈W 〉∞ � 0
in this stationary state. To explain this phenomenon, we will
consider the evolution of the stationary (joint) distribution
πL-bit over the substeps M and S, respectively. We associate
the equilibrium stationary state with

M (L)πL-bit = πL-bit, (27)

S(L)πL-bit = πL-bit. (28)

The justification for defining the equilibrium stationary state
with the above condition is M (L) (and also S(L)) preserves
the stationary distribution of O(L), πL-bit in Eq. (27), i.e., this
πL-bit is the stationary distribution of both O(L) and M (L). Note
that our M (L) is tridiagonal [from Eq. (7)] which implies
its stationary distribution, i.e., πL-bit here satisfies detailed
balance. This property of detailed balance arising from the
tridiagonality of M (L) will be further discussed in Corollary
1.1 subsequently. Conversely, the nonequilibrium stationary
state satisfies

M (L)πL-bit = π̃L-bit, (29)

S(L)π̃L-bit = πL-bit, (30)

where π̃L-bit 	= πL-bit, i.e., the intermediate (joint) distribution
π̃L-bit after substep M is different from πL-bit. This implies
πL-bit in this case is not the stationary distribution of M (L) and
does not satisfy detailed balance.

The physical action of the switching substep S shifts
the leftmost bit of the finite tape to its right end (with the

ratchet state fixed) always. It transforms B1B2B3 · · · BL
S−→

B2B3 · · · BLB1 for an L-bit tape with all its bit values Bi ∈
{0, 1} unchanged, with index i ∈ {1, 2, . . . , L}. An arbitrary
tape sequence in general will thus correspond to a different
tape sequence after S, and similarly a different tape-ratchet
configuration. In consequence, the mathematical operation
S(L) serves to reorder the probabilities of the tape-ratchet
configuration in π̃L-bit. At the stationary state, this reordering

by S(L) necessarily restores π̃L-bit back to πL-bit, i.e., π̃L-bit
S(L)−→

πL-bit [Eq. (30) in general, with Eq. (28) a special case when
π̃L-bit = πL-bit]. Specifically, S(L) is a transformation that trans-
fers the probability of one tape-ratchet configuration to that
of another tape-ratchet configuration. Out of all the transfers,
there are two unique tape sequences where S(L) transfers the
probability of the corresponding tape-ratchet configuration
back to the same tape-ratchet configuration. These are tape
sequences of either all “0” s or all “1” s, independent of the
ratchet state. As a result, we expect (a total of 2NR of) these
tape-ratchet configurations to maintain the same probabilities
before and after the switching substep S in the steady-state,
i.e., π̃{0}L⊗R = π{0}L⊗R and π̃{1}L⊗R = π{1}L⊗R with an arbitrary
ratchet state R. From the perspective of either the circular
(Fig. 1) or linear (Fig. 2) finite tape, it is apparent that

π̃{0}L⊗R
S(L)−→ π{0}L⊗R = π̃{0}L⊗R,

(31)

π̃{1}L⊗R
S(L)−→ π{1}L⊗R = π̃{1}L⊗R,

with these linear (circular) tape sequences {0}L and {1}L

possessing translational (rotational) symmetry and thus cor-
respond to its original tape sequence after S.

With the establishing of π̃L-bit containing reordered prob-

abilities in πL-bit, we can now deduce that πL-bit
M (L)−−→ π̃L-bit

in Eqs. (27) and (29) is also a reordering on πL-bit (only in
the stationary state) such that it will be the inverse of the
subsequent S. In particular,

π{0}L⊗R
M (L)−−→ π̃{0}L⊗R = π{0}L⊗R,

(32)

π{1}L⊗R
M (L)−−→ π̃{1}L⊗R = π{1}L⊗R.

Tape-ratchet configurations of the finite-tape information
ratchet with tape sequences of either all “0” s or all “1” s,
independent of the ratchet state, will thus have the same prob-
abilities in πL-bit and π̃L-bit (before and after the thermal tran-
sition substep M, respectively, in the steady-state behavior).

We are now well-poised to account for this steady-state
behavior of our finite-tape information ratchet in terms of the
equilibrium and nonequilibrium stationary states.

A. Equilibrium stationary state

Theorem 1. For a finite-tape (length L) information ratchet
with its corresponding 1-bit thermal transition matrix M (1)

(= O(1) ) that is tridiagonal (and regular), the ratchet system
will converge to an equilibrium stationary state [Eqs. (27) and
(28)] if and only if

�CM∞ = 0. (33)
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Proof. First, we will prove stationary states in equilibrium
necessarily have �CM∞ = 0. For such a state, its stationary
joint distribution πL-bit is preserved over substep M from
Eq. (27), which implies its marginal pB⊗R is also unchanged
over this M and is the stationary distribution of M (1), i.e.,
pB⊗R = π1-bit satisfying

π1-bit = M (1)π1-bit, (34)

since the marginal distribution is evolved by M (1) in Eq. (18).
This gives �HM∞ [pB⊗R] = 0, and �CM∞ = 0 follows subse-
quently from Eq. (21) since �HM∞ [p] = 0 in the stationary
state after the convergence of p → πL-bit.

For the reverse relation, we had shown earlier in Eq. (22)
that �CM∞ = I (BR; B\{N}|B′R′). The conditional mutual in-
formation reads

I (X ;Y |Z ) =
∑
z∈Z

pZ (z) I (X ;Y |Z = z)

=
∑
x∈X

∑
y∈Y

∑
z∈Z

pX,Y,Z (x, y, z)

× log

[
pZ (z) pX,Y,Z (x, y, z)

pX,Z (x, z) pY,Z (y, z)

]
, (35)

which vanishes if and only if the argument of the logarithm in
the sum is equal to one, giving the condition

pX,Y,Z (x, y, z) = 1

pZ (z)
pX,Z (x, z) pY,Z (y, z) ∀ {x, y, z}.

(36)
This stems from I (X ;Y |Z = z) � 0, which is the relative en-
tropy between the conditional joint distribution of X and Y
given Z = z and product distribution of p(X |Z ) and p(Y |Z ).

For I (BR; B\{N}|B′R′) = �CM∞ = 0, we have

p(BR, B\{N}, B′R′) = 1

p(B′R′)
p(BR, B′R′) p(B\{N}, B′R′)

(37)
with X ≡ BR, Y ≡ B\{N}, and Z ≡ B′R′. In addition, we had
earlier shown that I (B′R′; B\{N}|BR) = 0 in deriving Eq. (22),
so the joint distribution also satisfies

p(B′R′, B\{N}, BR) = 1

p(BR)
p(B′R′, BR) p(B\{N}, BR),

(38)
with X ≡ B′R′, Y ≡ B\{N}, and Z ≡ BR.

Equating the above two expressions yields

1

p(B′R′)
p(BR, B′R′) p(B\{N}, B′R′)

= 1

p(BR)
p(B′R′, BR) p(B\{N}, BR)

p(B′R′, B\{N})
p(B′R′)

= p(BR, B\{N})
p(BR)

p(BR)

p(B′R′)
= p(BR, B\{N})

p(B′R′, B\{N})
. (39)

For our finite-tape information ratchet, the respective ran-
dom variables realize B ∈ {0, 1}, R ∈ {1, 2, . . . , NR}, and
B\{N} ∈ {0, 1}L−1. Note that the marginal probabilities p(BR)
are the same for all joint probabilities p(BR, B\{N}) with the
same B = b, R = r independent of the realizations of B\{N},

TABLE III. Tape-ratchet configurations before and after switch-
ing substep S for L = 2 and NR = 2. The index α (and similarly for
α′ after switching S) here has been defined earlier in Eq. (8a) and
used in Table II to enumerate the respective joint states.

α Tape-ratchet configurations before and after S α′

1 00 ⊗ A → 00 ⊗ A 1
2 00 ⊗ B → 00 ⊗ B 2
3 10 ⊗ A → 01 ⊗ A 5
4 10 ⊗ B → 01 ⊗ B 6
5 01 ⊗ A → 10 ⊗ A 3
6 01 ⊗ B → 10 ⊗ B 4
7 11 ⊗ A → 11 ⊗ A 7
8 11 ⊗ B → 11 ⊗ B 8

and similarly for the probabilities p̃(B′R′) and p̃(B′R′, B\{N})
(denoted now with a tilde symbol) with the same B′ =
b′, R′ = r′ in the respective (intermediate) distributions p̃B⊗R

and π̃L-bit after the thermal transition M substep. For the pur-
pose of our proof, we will choose b = b′, r = r′ and applying
this choice to the relation in Eq. (39), we obtain

p(B = b, R = r)

p̃(B′ = b, R′ = r)
= p(B = b, R = r, B\{N} = y)

p̃(B′ = b, R′ = r, B\{N} = y)

= p(B = b, R = r, B\{N} = y)

p̃(B′ = b, R′ = r, B\{N} = y)
, (40)

with y 	= y. From Eq. (32), there always exist a B\{N} = {b}L−1

given B = b ∈ {0, 1} such that the joint probabilities before
and after substep M are the same:

p(B = b, R = r, B\{N} = {b}L−1)

p̃(B′ = b, R′ = r, B\{N} = {b}L−1)
= 1 ∀ {b, r}, (41)

in the RHS of Eq. (39). Combining this with the relation in
Eq. (39) to relate the ratios of marginal and joint probabili-
ties (before and after substep M) for the other corresponding
tape-ratchet states with the same B = b, R = r but different
B\{N} 	= {b}L−1, it implies π̃L-bit = πL-bit corresponding to the
equilibrium stationary state obeying Eqs. (27) and (28). �

To illuminate details of the switching S used to deduce the
relation between πL-bit and π̃L-bit and Eqs. (31) and (32), we
furnish an explicit example with L = 2 and NR = 2 (similar to
Table II) and determine the corresponding tape-ratchet config-
urations before and after S in Table III, by noting the leftmost
bit is shifted to the right end of finite tape from the physical
interpretation of S. This implies⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π00⊗A

π00⊗B

π10⊗A

π10⊗B

π01⊗A

π01⊗B

π11⊗A

π11⊗B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= S(2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π̃00⊗A

π̃00⊗B

π̃10⊗A

π̃10⊗B

π̃01⊗A

π̃01⊗B

π̃11⊗A

π̃11⊗B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π̃00⊗A

π̃00⊗B

π̃01⊗A

π̃01⊗B

π̃10⊗A

π̃10⊗B

π̃11⊗A

π̃11⊗B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (42)

with the first equality arising from the preservation [Eq. (28)]
or restoration [Eq. (30)] of πL-bit after each bit scan O(L) (in the
stationary state) and the second equality from the action of S
detailed in Table III, noting that the positions of π̃10⊗A (π̃10⊗B)
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and π̃01⊗A (π̃01⊗B) are swapped. It can next be deduced that⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π̃00⊗A

π̃00⊗B

π̃10⊗A

π̃10⊗B

π̃01⊗A

π̃01⊗B

π̃11⊗A

π̃11⊗B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= M (2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π00⊗A

π00⊗B

π10⊗A

π10⊗B

π01⊗A

π01⊗B

π11⊗A

π11⊗B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π00⊗A

π00⊗B

π01⊗A

π01⊗B

π10⊗A

π10⊗B

π11⊗A

π11⊗B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (43)

such that the action of M is the inverse of the subsequent
S. The (joint) probabilities p(BR, B\{N}) in πL-bit are thus
reordered by the M substep in the stationary state to give the
intermediate π̃L-bit with probabilities p̃(B′R′, B\{N}). We see
that the probabilities π00⊗A and π11⊗A (similarly for π00⊗B

and π11⊗B, respectively, with the same tape sequences) which
are unchanged over M (2) (and also S(2)) have respective tape
sequences “00” and “11”, which correspond precisely to the
B\{N} = {b}L−1 given B = b which satisfy Eq. (41). A tape
sequence with all bits realizing the same value thus corre-
spond to its original sequence over substep M (and also S)
for an arbitrary ratchet state which also remains fixed in this
stationary state. This guarantees (tape-ratchet) configurations
with B = b, R = r, B\{N} = {b}L−1 fulfill Eq. (41). Coupled
with the relation in Eq. (39), assuming �CM∞ = 0 in this
example, to relate the ratios of marginal and joint probabilities
(before and after substep M) yields

1 = π00⊗A

π̃00⊗A
= π01⊗A

π̃01⊗A
(B = 0, R = A)

1 = π00⊗B

π̃00⊗B
= π01⊗B

π̃01⊗B
(B = 0, R = B)

(44)
1 = π11⊗A

π̃11⊗A
= π10⊗A

π̃10⊗A
(B = 1, R = A)

1 = π11⊗B

π̃11⊗B
= π10⊗B

π̃10⊗B
(B = 1, R = B).

implying π̃L-bit = πL-bit for the equilibrium stationary state
[Eqs. (27) and (28)] as set out in Theorem 1.

Corollary 1.1. This finite-tape information ratchet system
attains a zero asymptotic work:

〈W 〉∞ = 0, (45)

if and only if it is in the equilibrium stationary state [Eqs. (27)
and (28)].

Proof. We will first show 〈W 〉∞ = 0 ⇒ �CM∞ = 0. Ear-
lier knowledge of the marginal distribution as a tighter IPSL
bound than the joint distribution in Eqs. (19), (20), and (24)
gives

〈W 〉Mk � �HMk [pB⊗R] � �HMk [p], (46)

where pB⊗R is the marginal distribution of p → πL-bit in the
stationary state with �HM∞ [p] = �H∞[p] = 0. Switching Sk

also does not involve any work so 〈W 〉Mk = 〈W 〉k . Squeezed
by both the vanishing lower and upper bounds, we necessar-
ily have �HM∞ [pB⊗R] = 0, implying �CM∞ = 0 in Eq. (21).
Theorem 1 then implies this stationary state is in equilibrium.

We will now invoke the design of our ratchet system
to prove equilibrium stationary states necessarily have zero

FIG. 3. Transition state diagram for the T1S ratchet, governing
the transitions between the interacting bit-ratchet states B ⊗ R with
the corresponding transition probabilities.

asymptotic work: 〈W 〉∞ = 0. As our Markov chains (govern-
ing stochastic thermal transitions in the interacting bit-ratchet
state space B ⊗ R; see subsequent Figs. 3 and 5) are ran-
dom walks with partial reflective boundaries whose M (1) is
tridiagonal, its corresponding (block diagonal) M (L) will also
be tridiagonal from its construction in Eq. (7). One property
of tridiagonal matrices is its stationary distribution obeys de-
tailed balance. For equilibrium stationary states, its stationary
(joint) distribution πL-bit is also the stationary distribution of
M (L) from Eq. (27). This confers the property of detailed
balance and the probability flux between the interacting bit-
ratchet states B ⊗ R:

Jji = Jj←i ≡ Mji pi − Mi j p j (47)

for all pairs of states {i, j} vanishes. By expressing Eq. (2) in
terms of the respective fluxes Ji j , i.e.,

〈W 〉 =
∑
i< j

(Mji pi − Mi j p j )︸ ︷︷ ︸
Jji=Jj←i

ln

(
Mi j

Mji

)
, (48)

we observe the asymptotic work 〈W 〉∞ = 0 under the con-
dition of detailed balance. These are characteristics of a
stationary state in equilibrium. �

This establishes the if-and-only-if relation

�CM∞ = 0 ⇔ 〈W 〉∞ = 0 (49)

for the system in its equilibrium stationary state.

B. Nonequilibrium stationary state

Theorem 2. For the same finite-tape information ratchet as
in Theorem 1, the ratchet system will converge to a nonequi-
librium stationary state [Eqs. (29) and (30)] if and only if

�CM∞ > 0. (50)

Proof. First, we will prove nonequilibrium stationary
states imply �CM∞ > 0. For these states, its stationary joint
distribution πL-bit is transformed over substep M to an in-
termediate distribution π̃L-bit 	= πL-bit from Eq. (29). The
consequence is Eq. (39) in Theorem 1 do not hold, voiding
the premise required for Eq. (37), i.e., I (BR; B\{N}|B′R′) =
�CM∞ 	= 0. Since �CM∞ � 0 from (22), the only possibility
is �CM∞ > 0 for this nonequilibrium stationary state.

The reverse relation follows similarly since the station-
ary states of our ratchet system are either in equilibrium
or nonequilibrium, characterized by Eqs. (27) and (28),
and Eqs. (29) and (30), respectively, with respect to π̃L-bit.
With the establishment of Theorem 1 stating the conse-
quence of �CM∞ = 0 ⇔ π̃L-bit = πL-bit, �CM∞ > 0 must then
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necessarily result in a different π̃L-bit 	= πL-bit, associated with
a nonequilibrium stationary state [Eqs. (29) and (30)]. �

Corollary 2.1. This finite-tape information ratchet system
attains a negative asymptotic work:

〈W 〉∞ < 0, (51)

if and only if it is in the nonequilibrium stationary state
[Eqs. (29) and (30)].

Proof. We will first show 〈W 〉∞ < 0 ⇒ �CM∞ > 0. The
inequality (46) with 〈W 〉∞ < 0 and �HM∞ [p] = 0 (station-
ary state) gives �HM∞ [pB⊗R] � 0. However, an inconsistency
arises should �HM∞ [pB⊗R] = 0 since this will also imply
�CM∞ = 0 from Eq. (21) with �HM∞ [p] = 0 in the stationary
state, which is associated earlier with 〈W 〉∞ = 0 in Eq. (49).
Only �HM∞ [pB⊗R] < 0 is thus possible, and �CM∞ > 0 fol-
lows from Eq. (21), implying this stationary state is in
nonequilibrium from Theorem 2.

For the reverse relation starting from �CM∞ > 0, this im-
plies �HM∞ [pB⊗R] < 0 from Eq. (21) in the stationary state.
Plugging this into the inequality (46) with �HM∞ [p] = 0, we
recover again the negative asymptotic work: 〈W 〉∞ < 0. �

This establishes the if-and-only-if relation

�CM∞ > 0 ⇔ 〈W 〉∞ < 0 (52)

for the system in its nonequilibrium stationary state.
A closer inspection of �HM∞ [pB⊗R] < 0 (or more gen-

erally �HM∞ [pB⊗R] 	= 0) since �CM∞ > 0 from Eq. (21) in
the stationary state reveals its consistency with the breaking
of detailed balance for such nonequilibrium stationary states.
Corresponding to Eqs. (29) and (30), the marginal pB⊗R of
πL-bit is also not preserved and evolved by the (tridiagonal)
1-bit thermal transition matrix M (1) to p̃B⊗R (over substep
M) since pB⊗R 	= π1-bit. In consequence, a nonequilibrium
stationary state ensues even though the subsequent switching
substep S in the same bit scan will transform p̃B⊗R (π̃L-bit)
back to the original pB⊗R (πL-bit) [Eq. (30)] since the station-
ary joint πL-bit is unchanged by O(L) for every bit scan in the
steady state, i.e., πL-bit = O(L)πL-bit.

For all our finite-tape information ratchets with L = 1
(independent of NR), its joint and marginal distributions are
the same, i.e., p = pB⊗R, with convergence p → π1-bit in the
stationary state necessarily in equilibrium since the thermal
transition matrix M (1) (= O(1) ) is tridiagonal and this π1-bit is
thus the stationary distribution of both O(1) and M (1). How-
ever, this is not guaranteed for L > 1 with the presence of
the noninteracting subsystem B\{N}, previously absent for the
1-bit tape with only a single (interacting) bit constituting
the entire tape itself and its local bit scan operation O(1) is
essentially a global operation where the informational states
of all the bits within the entire tape can be simultaneously
changed. This global operation is thus reversible with zero
entropy production (in the stationary state) and the change in
Shannon (informational) entropy of the system exactly can-
cels the change in thermodynamic (physical) entropy of the
heat reservoir due to heat dissipation.

On the contrary for L > 1, the local modular operation of
our information ratchet sequentially interacting with each bit
effectively decouples the interacting subsystem B ⊗ R from
the noninteracting subsystem B\{N} held fixed in each bit scan.
This yields a marginalized nonequilibrium (in general) free

energy difference arising solely from the interacting B ⊗ R
subsystem which leads to a tighter bound on the work, i.e.,
the inequality in Eq. (46) with the marginal pB⊗R as compared
with the joint p from the global nonequilibrium free energy
difference of the composite ratchet system. The localized
ratchet operation here is unable to leverage global correlations
as a thermodynamic resource [19,20], which possibly renders
it thermodynamically inefficient and results in a modularity
dissipation 〈�mod〉min—a minimum entropy production which
quantifies the irreversibility of this modular operation [22].
One of its manifestations is the two different (upper) bounds
in the respective joint and marginal formulations of the IPSL
in Eqs. (19) and (20).

We had earlier identified in Eq. (23) the relation between
this 〈�mod〉min and the �CMk term reflecting the different
correlations within the finite-tape ratchet system. The implica-
tions for the stationary states of our information ratchet system
are as follows. Equilibrium stationary states have �CM∞ = 0
and zero asymptotic work 〈W 〉∞ = 0 (from Theorem 1), and
saturate both IPSL inequalities in Eqs. (19) and (20) with
both bounds the same, i.e., �HM∞ [p] = �HM∞ [pB⊗R] = 0.
This ratchet operation is thus reversible in its steady-state be-
havior with 〈�mod〉min = 0. Pertaining to the nonequilibrium
stationary states, however, �CM∞ > 0 (Theorem 2) implies
the modular operation of the ratchet here is irreversible with
a minimum entropy production 〈�mod〉min > 0 in its station-
ary state and work is continuously expended to transform
the stationary πL-bit (of O(L)) to the intermediate π̃L-bit over
substep M. Both distributions are not stationary distribu-
tions of the thermal transition matrix M (L) from Eq. (29),
and results in a difference in the joint and marginal IPSL
bounds in Eqs. (19) and (20), respectively, i.e., �HM∞ [p] = 0
and �HM∞ [pB⊗R] < 0. This explains the negative asymptotic
work 〈W 〉∞ < 0 (work expenditure) to drive and sustain this
nonequilibrium steady-state behavior.

VI. TRANSIENT PHASE

The discussion thus far has revolved around the stationary
(steady-state) behavior of the finite-tape information ratchet.
This inevitably leads to the question of what happens in the
transitional period between the start of ratchet operation and
its steady-state behavior. To address this question, a consid-
eration of the tape-ratchet dynamics before the convergence
p → πL-bit occurs, i.e., in the transient phase, of our informa-
tion ratchet system is as follows in this section. It turns out that
the finite-tape ratchet in the transient phase promises a rich
array of thermodynamic functionalities which had been elu-
cidated in Ref. [21] (and similarly in Ref. [17]), although the
mathematics is in general intractable here in comparison with
the stationary states. It is also in this transient phase that max-
imum mechanical work production is possible with specific
ratchet design from the amassing of (mechanical) energy [21].

Before the finite-tape information ratchet converges to
its stationary distribution π, both its instantaneous joint
(tape-ratchet) p and marginal (bit-ratchet) pB⊗R distribu-
tions are continuously evolving with successive bit scans. At
this stage, the ratchet is said to be in the transient phase.
Crucially, the signs of �HMk [p] and �HMk [pB⊗R] are unde-
termined in this transient phase as (in general) �HMk [p] =
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�Hk[p] 	= 0, in comparison with the previous stationary states
in Theorems 1 and 2. [It is possible here for two different
(joint) distributions to have the same Shannon entropy, i.e.,
�HMk [p] = �Hk[p] = 0, but this will only be instantaneous
as p continues to evolve before its convergence to π; similarly
for the marginal pB⊗R.] Nonetheless, �CMk � 0 from Eq. (22)
and key relations such as Eqs. (1), (18)–(21), (24), and (46)
derived earlier are valid at all times and we can continue to
utilize them to study the behavior of our finite-tape ratchet in
its transient phase.

During the transient phase, our earlier work [21] had de-
duced ratchet operations in the engine, eraser or dud mode,
illuminating a diverse range of ratchet behavior. It is also
at this phase that useful work is performed and converted
to mechanical energy, specifically gravitational potential en-
ergy, which is accumulated and stored in the work reservoir
(a source for future work extraction) in Fig. 1 for practical
purposes (as manifested by the raised mass in the mass-pulley
system). We found ratchet possessing memory to have a
greater capacity for this work-energy transfer (to mechanical
energy in its engine mode) through exploiting correlation.
This is in contrast with the stationary behavior of the finite-
tape information ratchet which is unable to operate as an
engine with 〈W 〉∞ � 0 and is therefore unlikely of much
promise from a practical perspective.

VII. RESULTS ON CORRELATION EFFECT

Here we will probe the correlation term �C(·) further (over
thermal transition M and now also switching S substeps sep-
arately) by delving into the respective mutual information
between the different subsystems within the finite-tape in-
formation ratchet system [see Eq. (26)] in both transient and
stationary phases. This will be applied to two specific ratchet
designs: the tridiagonal Markov chain with one-state (T1S)
ratchet in Sec. VII A and the tridiagonal Markov chain with
two-state (T2S) ratchet in Sec. VII B, to explicitly observe
their different stationary (steady-state) behavior as expounded
upon in the preceding sections. They are the consequences
of accounting for correlation in the tape-ratchet system. We
complete the discussion by working out the mathematical con-
dition for equilibrium stationary states (with 〈W 〉∞ = 0) of
information ratchets that harness correlation, and applying the
condition to the T2S ratchet explicitly, in Sec. VII C as our last
main result in this paper. This is yet another manifestation of
correlation within the ratchet system, with the identified states
serving as promising candidates for the maximum work-
(mechanical) energy conversion for practical purposes [21].

We now illustrate how correlation manifest in different
ratchet designs (specifically the T1S and T2S ratchets in
Ref. [21]) and utilize the expression for �CMk in Eq. (26)
from our earlier analysis of the IPSL bounds. We saw that such
correlations are captured by the mutual information terms in
�CMk which read

�CMk ≡ − �IMk (B, R; B\{N})

= �IMk (B; R)︸ ︷︷ ︸
(i)

−�IMk (B; B\{N})︸ ︷︷ ︸
(ii)

− �IMk (B, B\{N}; R)︸ ︷︷ ︸
(iii)

. (53)

Explicitly, the respective changes over the thermal transition
substep Mk are

(i) �C(B;R)
Mk

≡ I (B′; R′) − I (B; R), (54a)

(ii) �C
(B;B\{N} )
Mk

≡ I (B′; B\{N}) − I (B; B\{N}), (54b)

(iii)�C
(B,B\{N};R)
Mk

≡ I (B′, B\{N}; R′) − I (B, B\{N}; R), (54c)

where the leftmost bit is transformed from the input bit B =
BN to the output bit B′ = B′

N , and we will denote this leftmost
bit as B or B′. Correlations thus exist between (i) the leftmost
bit (B or B′) and the ratchet (R or R′), (ii) the leftmost bit (B
or B′) and all the remaining bits B\{N}, and (iii) the finite tape
comprising all the bits B or B′, B\{N} and the ratchet (R or
R′), over the thermal transition substep Mk within an arbitrary
bit scan k. We have also used the shorthand B\{N} to refer to
the bit sequence BN+1BN+2 · · · BLB′

1 · · · B′
N−1 excluding the

leftmost bit (BN or B′
N ), from the circular tape perspective in

Fig. 1 and the possibility of repeated tape scans with a finite
tape.

For completeness, we also explore into the mutual in-
formational changes over the subsequent switching substep
Sk . The quantities we look into here are: (a) �C

(B;B\{N} )
Sk

≡
I (B; B\{N,N+1}, B′) − I (B′; B\{N}), and (b) �C

(B,B\{N};R)
Sk

≡
I (B, B\{N,N+1}, B′; R′) − I (B′, B\{N}; R′), where in the super-
script we have simply used B and R (without prime symbols)
as labels to denote the leftmost bit and ratchet, respectively.
Crucially, the leftmost bit (B or B′) here involves two dif-
ferent bits. Specifically, the output bit B′ = B′

N is replaced
by the new input bit B = BN+1, unlike over Mk where
the leftmost bit (B or B′) is the same bit (with index N).
Note that the notation B\{N,N+1} denotes the remaining bits
BN+2BN+3 · · · BLB′

1 · · · B′
N−1 excluding the leftmost bit BN+1

and rightmost bit B′
N after Sk . For (a), we found after a

straightforward evaluation in Appendix C that

�C
(B;B\{N} )
Sk

= I (BN+1; B\{N,N+1}) − I (B′
N ; B\{N,N+1}), (55)

where we have made explicit the new input bit B =
BN+1 and old output bit B′ = B′

N above and the tape se-
quence has changed from B′

N BN+1BN+2 · · · BLB′
1 · · · B′

N−1 to
BN+1BN+2 · · · BLB′

1 · · · B′
N−1B′

N after switching Sk . Thus, in

general �C
(B;B\{N} )
Sk

	= 0 in the transient phase for L 	= 1, 2,
but always vanishes for L = 2 as there are no additional bits
in B\{N,N+1} besides the outgoing output bit B′ = B′

N and
incoming input bit B = BN+1. However, a similar evaluation
for (b) in Appendix C has uncovered that �C

(B,B\{N};R)
Sk

= 0 for
all L since the entire information ratchet (tape-ratchet system)
is self-contained with the recirculation of existing bits.

We now proceed to investigate how the behavior of these
correlations affect the tape-ratchet dynamics and nature of the
corresponding stationary states.

A. Tridiagonal Markov chain with one-state (T1S) ratchet

The permissible thermal transitions between the interacting
bit-ratchet states B ⊗ R for the T1S ratchet are schematically
represented in Fig. 3, which has the smallest B ⊗ R state space
of dimension 2, i.e., {0 ⊗ A, 1 ⊗ A}. We have used A to arbi-
trarily label the single ratchet state (NR = 1) which we will
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drop from hereon. The left stochastic matrix corresponding to
this thermal transition substep M is

MT1S
1-bit =

( 0 1
0 1 − p q
1 p 1 − q

)
=

(
E F

G H

)
, (56)

with transition probabilities 0 � p, q � 1 and its partition
labels match those in Eq. (3). Specifically for L = 1, the
marginal and joint distributions are identical with pB⊗R = p
and MT1S

1-bit = OT1S
1-bit governs their dynamics and is responsible

for their convergence to the stationary distribution πT1S
1-bit =

[ q
p+q ,

p
p+q ]�.

A pertinent feature of this T1S ratchet is its single ratchet
state (NR = 1) so itself lacks memory and unable to gener-
ate and introduce correlations within the tape-ratchet system.
Thus, correlations involving the ratchet identified earlier in
Eqs. (54a) and (54c) vanish and we now seek to study the
correlation given by Eq. (54b) between the leftmost bit (B or
B′) and remaining bits in the finite tape with an uncorrelated
and correlated initial joint distributions separately.

1. Uncorrelated initial joint distribution

An uncorrelated initial joint distribution pT1S
L-bit(0) can be

broken into its marginal bit distributions (superscript denoting
the individual bit), i.e.,

pT1S
L-bit(0) =

L⊗
i=1

pT1S, (i)
1-bit (0), (57)

with no initial correlations between the bits and I (B =
B1; B\{1}) = 0 at the beginning of ratchet operation. With the
T1S ratchet (without memory), the sequential processing of
the bits are independent of each other:

OT1S
L-bit

(
L⊗

i=1

pT1S, (i)
1-bit (0)

)
=

(
L⊗

i=2

pT1S, (i)
1-bit (0)

)
⊗ pT1S, (1)

1-bit (τ ).

(58)
The processing is performed over an interaction period τ

for a single bit scan where only the (leftmost) first bit B1

interacts with the ratchet. Thus, the joint distribution pT1S
L-bit

here is always a product of marginals over either substep M
or S from Eq. (58) above. This implies C(B;B\{N} ) = 0 at all
times for the uncorrelated initial pT1S

L-bit(0). This means that

Eq. (54b) vanishes which implies �CMk = −�C
(B;B\{N} )
Mk

= 0
with �HMk [p] = �HMk [pB⊗R] from Eq. (21). Note that the
mutual information terms involving this T1S ratchet, i.e.,
I (B; R) = I (B, B\{N}; R) = 0 vanish, respectively, at the out-
set of its operation because there is no uncertainty for a single
ratchet state R, thus Eqs. (54a) and (54c) are both zero. In the
stationary state, �HM∞ [pB⊗R] = �HS∞ [pB⊗R] = 0, i.e., the
marginal pT1S

B⊗R = πT1S
1-bit is unchanged over either substep M or

S for this steady-state behavior in equilibrium; see Eqs. (27)
and (28).

Since �H∞[p] = 0 in the steady state, pT1S
L-bit will have

converged to its stationary distribution:

lim
k→∞

pT1S
L-bit(k) = πT1S

L-bit =
L⊗

i=1

π
T1S, (i)
1-bit . (59)

FIG. 4. Plot of C (B;B\{N} ) over k = 20 bit scans for
T1S ratchet 2-bit tape with correlated initial distribution
pT1S

2-bit(0) = [p00, p01, p10, p11]� = [ 1
3 , 1

3 , 1
3 , 0]� and transition

probabilities (p, q) = (0.872, 0.949) after every (thermal transition
Mk and switching Sk) substep within the two-step composite bit scan
operation Ok = SkMk . Inset depicts the corresponding change in
C (B;B\{N} ), i.e., �C

(B;B\{N} )
Mk

and �C
(B;B\{N} )
Sk

over the respective Mk and
Sk substep.

This follows from the independent individual bit-ratchet in-
teractions earlier in Eq. (58). Due to the lack of correlation
between the bits and itself, all its stationary states are in equi-
librium fulfilling detailed balance in the steady-state behavior
with zero asymptotic work 〈W 〉∞ = 0 necessarily. This is
consistent with the relation in Eq. (49) derived from our ear-
lier analysis of equilibrium stationary states: �CM∞ = 0 ⇔
〈W 〉∞ = 0.

2. Correlated initial joint distribution

A correlated initial joint distribution pT1S
L-bit(0) cannot be

broken into its marginals as in Eq. (57) and correlations
exist within the bits prior to ratchet operation, i.e., I (B =
B1; B\{1}) > 0. Since the T1S ratchet is unable to generate
or introduce correlations into the tape-ratchet system, any
initial correlations present between the bits of the finite tape
will eventually vanish as all initial joint distributions pT1S

L-bit(0)
converge to the same stationary distribution πT1S

L-bit in Eq. (59)
which is necessarily uncorrelated. This implies C(B;B\{N} ) = 0
in the steady-state behavior and also satisfy the relation in
Eq. (49), implying these stationary states are in equilibrium.

We illustrate with a correlated initial distribution
for L = 2 (the simplest nontrivial L): pT1S

2-bit(0) =
[p00, p10, p01, p11]� = [ 1

3 , 1
3 , 1

3 , 0]� and transition proba-
bilities (p, q) = (0.872, 0.949) to observe the behavior of
correlations between these two bits in the transient phase
before vanishing once equilibrium has been attained in the
stationary state. Quantified by C(B;B\{N} ), this quantity is plotted
in Fig. 4 after every (thermal transition Mk and switching
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FIG. 5. Transition state diagram for the T2S ratchet, governing
the transitions between the interacting bit-ratchet states B ⊗ R with
the corresponding transition probabilities.

Sk) substep within a bit scan Ok = SkMk (specifically
OT1S

2-bit = ST1S
2-bitM

T1S
2-bit) for k = 20 bit scans. We see that indeed

�C
(B;B\{N} )
Mk

� 0 over any Mk and �C
(B;B\{N} )
k = �C

(B;B\{N} )
Mk

,

with �C
(B;B\{N} )
Sk

= 0 and switching does not alter the
information manifested as correlations within the tape in
this case when L = 2 which is in line with our observation
based on Eq. (55). Eventually C(B;B\{N} ) = 0 (steady-state) for
all L also implies �CM∞ = 0 (similarly for �CS∞ ) which is
consistent with (49) for an equilibrium stationary state.

B. Tridiagonal Markov chain with two-state (T2S) ratchet

In contrast with the T1S ratchet, the simplest design of our
information ratchet with memory [21] is NR = 2 (>1), i.e.,
the T2S ratchet (Fig. 5) with its two ratchet states (arbitrarily
labeled A, B) and corresponding tridiagonal thermal transition
matrix M for L = 1:

MT2S
1-bit =

⎛
⎜⎜⎝

0 ⊗ A 0 ⊗ B 1 ⊗ A 1 ⊗ B
0 ⊗ A ε 1 − p 0 0
0 ⊗ B 1 − ε 0 q 0
1 ⊗ A 0 p 0 1 − ε

1 ⊗ B 0 0 1 − q ε

⎞
⎟⎟⎠, (60)

which doubles the interacting bit-ratchet state space B ⊗ R
as compared to the T1S ratchet with its M (1) in Eq. (56).
Due to the T2S ratchet possessing memory and its sub-
sequent ability to generate and introduce correlations from
its modular operation of the finite tape, all the correlation
terms in Eqs. (54a)–(54c) are possibly nonzero. Moreover,
we will show they manifest differently for equilibrium and
nonequilibrium stationary states which stem from the effect
of correlation in their steady-state behavior.

Considering first the trivial case for L = 1, all initial joint
(and here equivalently marginal) distributions pT2S

1-bit(0) will
converge to

πT2S
1-bit = [2(p + q − pq) − (p + q)ε]−1

⎛
⎜⎜⎜⎝

(1 − p)q

(1 − ε)q

(1 − ε)p

p(1 − q)

⎞
⎟⎟⎟⎠, (61)

which is the right eigenvector of OT2S
1-bit = MT2S

1-bit in Eq. (60)
with eigenvalue 1, and the asymptotic work 〈W 〉∞ = 0 van-
ishes in the stationary state with �H∞[p] = 0. All stationary
states of the T2S ratchet with 1-bit tape, independent of
transition parameters (p, q, ε), are thus in equilibrium from
our tridiagonal design of the thermal transition matrix M (1)

alluded to previously and the earlier relation (49).
We will now proceed to explore this T2S ratchet with

finite tape L = 2, the simplest analytically tractable case for

FIG. 6. Plots of the Shannon entropy of the marginal bit-ratchet
distribution H [pB⊗R] (top left) and the respective mutual informa-
tions in �C from Eq. (26) for a system that eventually converges
to a nonequilibrium stationary state: (i) C (B;R) between the leftmost
bit and ratchet (top right), (ii) C (B;B\{N} ) between the leftmost bit and
all the remaining bits (bottom left), and (iii) C (B,B\{N} ;R) between the
finite tape comprising all the bits and ratchet (bottom right). These
quantities are plotted prior to ratchet operation (black cross) and
after every Mk (blue solid circle) and Sk (red hollow circle) substep
within a bit scan Ok = SkMk over k = 75 bit scans with an (uncor-
related) initial definite-state (joint) distribution pT2S

2-bit(0) in Eq. (62),
i.e., the system is initially in the joint tape-ratchet state 00 ⊗ A defini-
tively, with transition probabilities (p, q, ε) = (0.276, 0.680, 0.9).
The insets depict the changes in the mutual information over the
corresponding Mk and Sk substep for ease of discerning their signs.

L > 1, to highlight the effects of correlation on the finite-tape
information ratchet in �CMk which presents both equilibrium
and nonequilibrium stationary states.

1. Nonequilibrium stationary state with 〈W 〉∞ < 0

We will first discuss the case for nonequilibrium stationary
states with negative asymptotic work 〈W 〉∞ < 0 as it turns
out to have an overwhelmingly higher incidence from our
sampling in (p, q, ε) parameter space. We found (p, q, ε) =
(0.276, 0.680, 0.9) corresponds to such a case and plotted
the respective informational quantities in Fig. 6: the Shannon
entropy of the marginal distribution H[pB⊗R] (top left) and
the mutual information in C from Eq. (26), i.e., (i) C(B;R)

between the leftmost (either input or output) bit and ratchet
(top right), (ii) C(B;B\{N} ) between the leftmost bit and all the
remaining bits (bottom left), and (iii) C(B,B\{N};R) between the
finite tape comprising all the bits and ratchet (bottom right).
These quantities are plotted after every (thermal transition Mk

and switching Sk) substep within a bit scan Ok = SkMk over
k = 75 bit scans with an (uncorrelated) initial definite-state
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(joint) distribution [21], i.e.,

pT2S
2-bit(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p00⊗A

p00⊗B

p10⊗A

p10⊗B

p01⊗A

p01⊗B

p11⊗A

p11⊗B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (62)

First, we see that H[pB⊗R] and C(B;R) (top panel) alternate
between every M∞ and S∞ substep within each bit scan O∞ in
the steady-state behavior. The other C(B;B\{N} ) and C(B,B\{N};R),
however, saturate to some positive (nonzero) value (bottom
panel). Both observations are consistent with the respective
changes over a bit scan O necessarily vanishing in the station-
ary state after pT2S

2-bit(0) → πT2S
2-bit. We will continue to consider

the interval over Mk for the respective informational changes
to describe these nonequilibrium (and also for equilibrium)
stationary states (subsequently).

The respective informational changes given by Eqs. (54b)
and (54c) are identical over either a complete bit scan Ok or
corresponding substep Mk , i.e., �C

(B;B\{N} )
k = �C

(B;B\{N} )
Mk

and

�C
(B,B\{N};R)
k = �C

(B,B\{N};R)
Mk

, so �C
(B;B\{N} )
Sk

= �C
(B,B\{N};R)
Sk

=
0.

Although there are no initial correlations in pT2S
2-bit(0),

C(B;B\{N} ) > 0 and C(B,B\{N};R) > 0 saturate eventually (i.e.,
�C(B;B\{N} ) and �C(B,B\{N};R) become zero) as the T2S ratchet
is able to generate and introduce correlations from its oper-
ation unlike the T1S ratchet. We also observe this behavior
in the stationary state for longer L. Of particular interest
is the marginal distribution pB⊗R and its correlation cap-
tured by the mutual information in its steady-state behavior:
�HM∞ [pB⊗R] < 0 and �CM∞ = �C(B;R)

M∞ > 0 and their mag-
nitudes are equal which satisfy Eq. (21) over the interval M∞.
This is consistent with the earlier analysis of nonequilibrium
stationary states characterized by �CM∞ > 0 ⇔ 〈W 〉∞ < 0
in Eq. (52). We emphasize that these informational changes
are considered over M∞ as the corresponding change over
S∞ will be of opposite sign (with equal magnitude) since the
net change over a bit scan O∞ = S∞M∞ must vanish in the
stationary state.

Probing deeper into the underlying mathematical struc-
ture reveals the intriguing role of switching in the finite-tape
ratchet. We recognized in Sec. V that �Hk[p] = �HMk [p]
for arbitrary bit scan k and �H∞[p] = �HM∞ [p] = 0 in the
stationary state. However, we also have �HM∞ [pB⊗R] < 0 in
this stationary state according to our earlier analysis. This
must imply that the mathematical effect of M∞ now is the
opposite of the subsequent (physical) switching by S∞ which
reorders the probabilities of joint states in πT2S

2-bit, reflecting
tape sequences whose respective leftmost bits are shifted to
the right end of the finite tape. This will thus be consistent
with preserving πT2S

2-bit after one complete bit scan O∞ in the
steady-state behavior. We had earlier exemplified this T2S
ratchet (NR = 2) with L = 2 using the same indexing notation
in Eq. (62) for its joint states, and detailed these states with
reordered probabilities in Table III in Sec. V A.

FIG. 7. Plots of informational quantities similar to Fig. 6 except
for a system that eventually converges to an equilibrium stationary
state with transition probabilities (p, q, ε) = (0.710, 0.965, 0.9).

2. Equilibrium stationary state with 〈W 〉∞ = 0

We are now ready to address the case for equilibrium sta-
tionary states with zero asymptotic work 〈W 〉∞ = 0 which are
of practical interest as these are potential candidates for max-
imizing the cumulative tape scan work [21] since 〈W 〉∞ <

0 for the majority of the (nonequilibrium) stationary states
which we saw earlier. We were thus seeking for parametric
combinations (p, q, ε) corresponding to equilibrium station-
ary states with 〈W 〉∞ = 0 in that maximization and found
the required (p, q, ε) = (0.710, 0.965, 0.9) in Ref. [21] for
this T2S ratchet (L = 2). The same informational quantities
in Fig. 6 are now plotted in Fig. 7 over k = 25 bit scans
with the same (uncorrelated) initial definite-state (joint) dis-
tribution pT2S

2-bit(0) given by (62). We point out the salient
differences between Figs. 6 and 7 arising from the nature
of their stationary states. The behavior of the correlations as
given by Eqs. (54b) and (54c) are similar except C(B;B\{N} ) =
C(B,B\{N};R) = 0 for stationary states in equilibrium (bottom
panel of Fig. 7) but C(B;B\{N} ) > 0 and C(B,B\{N};R) > 0 saturate
(bottom panel of Fig. 6) for those nonequilibrium states af-
ter convergence pT2S

2-bit(0) → πT2S
2-bit. Nonetheless, �C(B;B\{N} ) =

�C(B,B\{N};R) = 0 over substep M∞ (and also S∞) in these
equilibrium and nonequilibrium stationary states and both
have no contribution to �CM∞ (�CS∞ ). The notable difference
(in their steady-state behavior) is thus �HM∞ [pB⊗R] = 0 and
�CM∞ = �C(B;R)

M∞ = 0 [considering Eq. (21) over the interval
M∞] for these equilibrium stationary states. Indeed, this is
consistent with the earlier analysis: �CM∞ = 0 ⇔ 〈W 〉∞ =
0 in Eq. (49). Although the net change over a (bit scan) cycle
O∞ = S∞M∞ must vanish in the stationary phase, all the
respective informational changes vanish even over the substep
interval M∞ (and equivalently S∞ here).
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In addition, we infer from �HM∞ [pB⊗R] = 0 in the station-
ary behavior that the marginal distribution pB⊗R of πT2S

2-bit is
the stationary distribution of M (1) for T2S ratchet in Eq. (60),
i.e., πT2S

1-bit in Eq. (61), from Sec. V A. Moreover, since both
M (1) and M (L) leave the marginal and joint distributions un-
changed, respectively [see Eqs. (34) and (27)], the implication
is the subsequent switching S(L) must also mathematically
leave the joint p = πT2S

L-bit unchanged [see Eq. (28)], such that
�H∞[p] = 0 in this steady state. However, S(1) = 12NR is the
identity matrix since there are no other bits to be switched in a
1-bit tape, but S(L) is a permutation matrix which permutes the
indices {α} → {α′} in Table III with its (α′, α)-entries (equal
to unity) the only nonzero entries [21]. We thus deduced that
those joint states whose probabilities were interchanged by
M∞ and S∞ must have equal probabilities for such equilib-
rium stationary states. This condition gives the mathematical
constraint on the transition probabilities (p, q, ε) for these
states with 〈W 〉∞ = 0.

We proceed to work out this constraint in general and
explicitly apply to the T2S ratchet with 2-bit tape in the
immediate subsection before furnishing a proof to show that
the constraint is identical for finite tapes of all length L with
the same ratchet design.

C. Mathematical constraint for 〈W 〉∞ = 0

Intriguingly, the condition for equilibrium stationary states
with 〈W 〉∞ = 0 for our information ratchet with tape of length
L depends on the stationary distribution π1-bit for the 1-bit
tape. Thus, it is useful to begin our derivation with L = 1.

1. 1-bit tape

Given the thermal transition operator (matrix) M (1) in
Eq. (3) for the 1-bit tape, π1-bit obeys the relation

M (1)π1-bit = π1-bit(
E F
G H

)(
π0

π1

)
=

(
π0

π1

)
, (63)

where π0 and π1 are vectors of size NR × 1 since E , F , G,
and H are submatrices of M (1) with size NR × NR. Note that
O(1) = M (1) for L = 1 since S(1) = 12NR (identity) and there
is effectively no contribution (both physically and mathemat-
ically) from switching on the (single) bit-ratchet dynamics
here.

For the T2S ratchet, its πT2S
1-bit in Eq. (61) implies

πT2S
0 = [2(p + q − pq) − (p + q)ε]−1

(
(1 − p)q
(1 − ε)q

)
(64)

πT2S
1 = [2(p + q − pq) − (p + q)ε]−1

(
(1 − ε)p
p(1 − q)

)
.

2. 2-bit tape

The thermal transition operator (matrix) for the 2-bit tape
following Eq. (7) is

M (2) =
(

M (1)

M (1)

)
=

⎛
⎜⎜⎝

E F
G H

E F
G H

⎞
⎟⎟⎠. (65)

As we are seeking for stationary states in equilibrium where
switching leaves its stationary distribution unchanged, the
corresponding π2-bit obeys [see Eq. (27)]

M (2)π2-bit = π2-bit⎛
⎜⎜⎝

E F
G H

E F
G H

⎞
⎟⎟⎠

⎛
⎜⎜⎝

π00

π10

π01

π11

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

π00

π10

π01

π11

⎞
⎟⎟⎠. (66)

Note that π×× are again all vectors of size NR × 1 and the
subscripts denote the respective tape sequences. We can see
that the linear equations involving π00 and π10 only have the
terms π00 and π10. Similarly, the linear equations involving
π01 and π11 only depend on π01 and π11. The equations can
thus be decoupled into

(
E F
G H

)(
π00

π10

)
=

(
π00

π10

)
,

(
E F
G H

)(
π01

π11

)
=

(
π01

π11

)
.

(67)
Each of these set of equations is simply for the 1-bit tape in
Eq. (63). Therefore, the solution for π2-bit follows the same
expression as π1-bit, up to some proportionality factor. With
this linearly independent set of solutions, the general solution
for π2-bit can be expressed as

⎛
⎜⎜⎝

π00

π10

π01

π11

⎞
⎟⎟⎠ = k1

⎛
⎜⎜⎝

π0

π1

0
0

⎞
⎟⎟⎠ + k2

⎛
⎜⎜⎝

0
0
π0

π1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

k1π0

k1π1

k2π0

k2π1

⎞
⎟⎟⎠, (68)

where k1 and k2 are normalization constants obeying the con-
servation of probability k1 + k2 = 1.

Mathematically, switching swaps the position of π10 and
π01 (see Table III), but since switching preserves the distribu-
tion π2-bit [see Eq. (28)], we must have π10 = k1π1 = k2π0 =
π01. This is the condition we are looking for. Explicitly with
the T2S ratchet using Eq. (64),

(
k1(1 − ε)p
k1 p(1 − q)

)
=

(
k2(1 − p)q
k2(1 − ε)q

)
, (69)

where the normalization factor in Eq. (61) cancels out.
Evaluating the ratio k1/k2, we have

k1

k2
= (1 − p)q

(1 − ε)p
= (1 − ε)q

p(1 − q)

(1 − p)(1 − q) = (1 − ε)2

pq − p − q = ε2 − 2ε. (70)

This is the constraint on (p, q, ε) which gives stationary states
in equilibrium for the T2S ratchet with 2-bit tape. As a consis-
tency check, we note that we obtain the same condition (70) by
equating the probabilities for 10 ⊗ A and 01 ⊗ A, and 10 ⊗ B
and 01 ⊗ B after explicitly solving for π2-bit (right eigenvector
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TABLE IV. Relationship between the indices before (i, j) and after (i′, j ′) switching πi, j → πi′, j′ for L > 1.

Case i j i′ j ′ Outcome

I 0 1 � j � 2L−2 0 2 j − 1 k jπ0 = k j′π0

II 0 2L−2 + 1 � j � 2L−1 1 2 j − 2L−1 − 1 k jπ0 = k j′π1

III 1 1 � j � 2L−2 0 2 j k jπ1 = k j′π0

IV 1 2L−2 + 1 � j � 2L−1 1 2 j − 2L−1 k jπ1 = k j′π1

of OT2S
2-bit with eigenvalue 1):

πT2S
2-bit = (· · · )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

00 ⊗ A (1 − p)q2ε(2 − p − ε)
00 ⊗ B q2ε(1 − ε)(2 − p − ε)
10 ⊗ A pqε(1 − ε)(2 − p − ε)
10 ⊗ B pq(1 − ε)[p + q − q(p + ε)]
01 ⊗ A pq(1 − ε)[p + q − p(q + ε)]
01 ⊗ B pqε(1 − ε)(2 − q − ε)
11 ⊗ A p2ε(1 − ε)(2 − q − ε)
11 ⊗ B p2(1 − q)ε(2 − q − ε)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(71)

where we have omitted the normalization factor (· · · ) to avoid
unnecessary clutter.

We next show that the same constraint (70) on equilibrium
stationary states (with zero asymptotic work) holds for all
L-bit tapes with the T2S ratchet and in general, such a spe-
cific condition on its transition probabilities (corresponding to
these equilibrium states) exists given any ratchet design with
NR > 1 and independent of L.

3. L-bit tape

The stationary distribution for the L-bit tape follows [see
Eq. (27)]

M (L)πL-bit = πL-bit⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E F
G H

E F
G H

. . .

E F
G H

E F
G H

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π0,1

π1,1

π0,2

π1,2
...

π0,2L−1−1
π1,2L−1−1
π0,2L−1

π1,2L−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π0,1

π1,1

π0,2

π1,2
...

π0,2L−1−1
π1,2L−1−1
π0,2L−1

π1,2L−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (72)

where we have introduced new notation πi, j with i ∈ {0, 1} de-
noting the value of the leftmost bit and j ∈ {1, 2, . . . , 2L−1 −
1, 2L−1} is the index enumerating the respective (binary)
sequences of the remaining L − 1 bits. As before, this equa-
tion can be decoupled to a set of 2L−1 equations corresponding
to the 1-bit tape,

(
E F
G H

)(
π0, j

π1, j

)
=

(
π0, j

π1, j

)
, (73)

as in Eq. (63). The general solution for πL-bit can then be
expressed as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π0,1

π1,1

π0,2

π1,2
...

π0,2L−1−1
π1,2L−1−1
π0,2L−1

π1,2L−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k1π0

k1π1

k2π0

k2π1
...

k2L−1−1π0

k2L−1−1π1

k2L−1π0

k2L−1π1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (74)

where k j are the normalization constants with
∑

j k j = 1, and
π0 and π1 are the stationary distributions of π1-bit in Eq. (63)
for the 1-bit tape.

Switching will reorder the elements of the (joint tape-
ratchet) distribution, which is denoted by πi, j → πi′, j′ , where
i, j and i′, j′ are the indices before and after switching, respec-
tively. The relationship between these indices before and after
switching for L > 1 is given in Table IV.

From Table IV, there are two possibilities for the
(mathematical) action of switching. The first possibility
includes cases with the reorder of π0, j → π0, j′ (case I)
and π1, j → π1, j′ (case IV). To exemplify for L = 3 (us-
ing both notations π×···× and πi, j), π001 becomes π010, and
π110 becomes π101 after switching. Since switching leaves
πL-bit unchanged, then π0, j = π0, j′ (π1, j = π1, j′ ) or k jπ0 =
k j′π0 (k jπ1 = k j′π1). This only tells us that the proportion-
ality constants should be equal, i.e., k j = k j′ , but it tells us
nothing about the condition.

The second possibility includes cases with the reorder of
π0, j → π1, j′ (case II) and π1, j → π0, j′ (case III). To exem-
plify for L = 3 (using both notations π×···× and πi, j), π010

becomes π100, and π101 becomes π011 after switching. Since
switching leaves πL-bit unchanged, then π0, j = π1, j′ (π1, j =
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π0, j′ ) or k jπ0 = k j′π1 (k jπ1 = k j′π0). This is precisely the
condition we are looking for, which can be obtained by eval-
uating the ratio between the normalization constants (k j/k j′

or k j′/k j) as in Eq. (70) for T2S ratchet. This serves as
the general condition for any L > 1 and explains why the
condition for 2-bit tape also applies to finite tapes of longer
length.

From a physical perspective of this switching operation
(with the leftmost bit shifted to the right end of finite tape),
we can deduce the condition(s) required for an equilibrium
stationary state with 〈W 〉∞ = 0: tape sequences which are
cyclic permutations of one another have equal (stationary)
probabilities. Summarising the outcomes of the reordering
in the example for L = 3 (with 23 = 8 different tape se-
quences) exemplified above, this implies π001 = π010 = π100

and π110 = π101 = π011. The remaining two sequences, corre-
sponding to π000 and π111 whose probabilities are unchanged
after switching [see Eq. (31)], are precisely {0}L and {1}L,
respectively, which satisfy Eq. (41) in Theorem 1 earlier.

This completes the proof to show that the same constraint
applies to all (finite) tapes of length L for the corresponding
equilibrium stationary states (and distributions) with the same
ratchet design.

VIII. CONCLUSION

In conclusion, we have recasted the information processing
second law (IPSL) for a finite-tape information ratchet in
terms of the marginal (leftmost) bit-ratchet distribution pB⊗R

in Eq. (20), analogous to the original IPSL established by He
et al. with the joint tape-ratchet distribution p in Eq. (19), by
showing the equivalence of the work 〈W 〉 expressions using
either the marginal or joint distribution in Eq. (13). Moreover,
this marginal pB⊗R yields a tighter informational bound than
with the joint p for the IPSL. Crucially, we also showed that
the marginal probabilities in pB⊗R are evolved by the 1-bit
thermal transition operator (matrix) M (1), independent of the
length L of the finite tape, over the corresponding (thermal
transition) substep M, in Eq. (18). This reflects the sequential
interaction of each bit with the ratchet physically, and sig-
nificance accorded to this (leftmost) either interacting bit B
or interacted bit B′ in the ratchet operation. We subsequently
utilized this marginal pB⊗R extensively to establish the rela-
tionship between joint and marginal distributions [Eq. (21)]
and capture the correlations manifested within the informa-
tion ratchet (tape-ratchet) system with the introduction of the
respective mutual information terms [Eq. (26)].

We analyzed in detail the differences between equilibrium
and nonequilibrium stationary states and identified this as a
manifestation of the absence (presence) of such changes in
correlation in Eq. (26) with zero (negative) asymptotic work
〈W 〉∞, respectively, for these stationary states in general. The
analysis is applied to two designs of the finite-tape informa-
tion ratchet, the T1S ratchet (without memory) and the T2S
ratchet (with memory), respectively, where correlations can be
generated and introduced by the latter (T2S) but not the former
(T1S), from their modular operation of the finite tape. We saw
how the lack of these correlations resulted in stationary states
(distributions) which are all in equilibrium for the T1S ratchet,
and their presence (of correlations) can bias the T2S ratchet

away from equilibrium such that its asymptotic work 〈W 〉∞ <

0 in the steady state is nonvanishing, specifically negative.
We realized this case for nonequilibrium stationary states has
an overwhelmingly higher incidence from our exploration
of different parameters (p, q, ε) with the T2S ratchet, and
subsequently uncovered the mathematical condition [Eq. (70)]
for its stationary states to be in equilibrium which intriguingly
is independent of the length L of the finite tape. This can be
generalized to any ratchet design (with NR > 1) giving rise to
such a specific constraint (independent of L) on its respective
transition parameters. Such equilibrium states are of practical
interest as they are potential candidates for maximizing the
cumulative tape scan work [21].

Finally, we showed how correlation is responsible for the
aforementioned phenomenon of negative asymptotic work
〈W 〉∞ < 0 through the mutual informational terms in �CM∞
for those nonequilibrium stationary states. Using the marginal
pB⊗R to probe the mathematical structure behind the ratchet
mechanism (specifically the bit scan operation O = SM) turns
out to be fruitful in surfacing the distinguishing features
between equilibrium and nonequilibrium stationary states.
Solely with the joint p, the respective changes �H∞[p] = 0
for both states all vanish as they are in their steady-state
behavior. The marginal pB⊗R facilitates an insightful study of
the underlying bit-ratchet dynamics over the respective (Mk

or Sk) substep interval. The constraint for arbitrary ratchet
design, and explicitly for the T2S ratchet, i.e., Eq. (70), was
obtained through the understanding that switching S (and also
M) preserves both joint and marginal distributions for station-
ary states in equilibrium. To possibly further these results,
an extended investigation into the information ratchet mech-
anism through the framework of stochastic thermodynamics
[26–29] seems promising.

APPENDIX A: MATHEMATICAL PROOF
OF MARGINAL IPSL

A mathematical proof for the marginal IPSL in Eq. (20)
asserted in the main text is given below, with an explanation
behind the work expression 〈W 〉 in Eq. (2) and its assumptions
involved pertaining to the operation mechanism of the finite-
tape information ratchet.

For this information ratchet with an arbitrary number of
ratchet states NR and a finite tape of L bits, we can obtain
the corresponding marginal (interacting bit-ratchet) probabil-
ities in pB⊗R (a 2NR × 1 vector) from its joint (tape-ratchet)
distribution p (a 2LNR × 1 vector), as given in Eq. (11), at
the beginning of a thermal transition substep M (and also
the beginning of a two-step bit scan O = SM). We have also
shown in the main text that the evolution of pB⊗R over substep
M is governed by the 1-bit thermal transition matrix M (1) in
Eq. (18), i.e.,

p̃B⊗R = M (1) pB⊗R, (A1)

with the tilde symbol used to denote the intermediate prob-
ability distribution after the thermal transition substep M, in
contrast with the prime symbol [in Eq. (1)] over a complete bit
scan O. Note that the dimension of the (square) matrix M (1) is
2NR; see Eq. (3). This M (1) essentially governs the transitions
between the interacting bit-ratchet B ⊗ R states driven by the
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heat reservoir, with matrix elements the respective transition
probabilities repeated in M (L); see Eq. (7) for the details.

We next proceed to obtain the work 〈W 〉 given by Eq. (2)
in the main text. Unlike a piston, our (finite) tape-ratchet
system does not perform work (in the absence of external
perturbation). It basically mediates a transfer of energy be-
tween the heat reservoir and the work reservoir. The energy
that is being transferred is heat as the tape-ratchet system
interacts with the heat reservoir during the thermal transition
substep M (from stage 2 to 3 in Fig. 2). The heat energy is then
converted to gravitational potential energy capable of doing
work in the work reservoir, analogous to Refs. [17,19]. It is in
this context that Q = −W over every bit scan O, where Q is
the heat dissipated by the ratchet into the heat reservoir and
W is the mechanical energy stored (which manifests as work)
in the work reservoir by the ratchet, since the ratchet does not
retain energy. We assume that the mediation of energy transfer
by the tape-ratchet system is performed through its energy
levels. Because the energy flow is solely through heat during
the thermalization of the tape-ratchet system with the heat
reservoir (in substep M), the energy levels �Eji ≡ Ej − Ei of
the tape-ratchet system is fixed. Furthermore, thermalization
implies that the dynamics of the tape-ratchet system obey
detailed balance. Our assumption is that detailed balance
follows the Markovian dynamics during each thermal tran-
sition substep M involving the interacting bit-ratchet B ⊗ R
states:

M (1)
ji π

(1-bit)
i = M (1)

i j π
(1-bit)
j ∀ {i, j} with i, j ∈ {B ⊗ R},

(A2)
where the stochastic transition from state i to state j is quan-
tified by the transition probability M (1)

ji , which is the ( j, i)
entry of the left stochastic 1-bit thermal transition matrix M (1).
In addition, the probabilities in the equilibrium (stationary)
distribution

π
(1-bit)
i = e−βEi∑

k e−βEk
= exp [β(F − Ei )] (A3)

are given by the canonical ensemble in equilibrium statistical
mechanics with β ≡ 1/kBT the inverse temperature and F be-
ing its Helmholtz free energy. Note that this π1-bit = M (1)π1-bit

is also the stationary distribution of the tridiagonal M (1); see
Eq. (34) for an earlier discussion on this. Equations (A2) and
(A3) then lead to

Mi j

Mji
= πi

π j
= exp[β(Ej − Ei )], (A4)

where we have withheld the superscripts (1) and (1-bit) to
simplify notation. This implies

�Eji ≡ Ej − Ei = kBT ln

(
Mi j

Mji

)
. (A5)

Specifically, the interaction with the work reservoir to ac-
cumulate (or expend) the mechanical energy from the work
conversion (with Q = −W earlier) occurs during the attach-
ment of input bit to and detachment of output bit from the
ratchet; see Fig. 2. Thus, the expected (or ensemble-averaged)
work production 〈W 〉 from a single bit scan O at any arbitrary

time can be expressed as

〈W 〉 = kBT
∑
i, j

Mji pi ln

(
Mi j

Mji

)
, (A6)

which is the sum of the respective work Wji ≡
kBT ln(Mi j/Mji ) (originating from thermal transition
i → j) weighted by the corresponding probability Mji pi

for such a transition to occur. We have subsequently set
kBT = 1 to simplify the 〈W 〉 expression and recover Eq. (2)
in the main text with Wji and thus 〈W 〉 now in units of
kBT . We emphasize that the probabilities pi here are the
instantaneous probability distribution which is continuously
evolving as the information ratchet operates, and not from
the time-independent equilibrium stationary distribution πi in
Eq. (A3).

Next, let us evaluate the change in entropy of the B ⊗ R
subsystem (over substep M) using the Shannon entropy [23]:

�H = H[p̃B⊗R] − H[pB⊗R] =
∑

i

pi ln pi −
∑

j

p̃ j ln p̃ j

=
∑

i

⎛
⎝∑

j

Mji

⎞
⎠pi ln pi −

∑
j

(∑
i

Mji pi

)
ln p̃ j,

(A7)

where
∑

j M (1)
ji = 1 (from probability conservation) is in-

serted in the first parentheses and the second parentheses
results from applying Eq. (A1), i.e., the action of M (1) on
pB⊗R (matrix multiplication). We have again suppressed the
superscripts (1) and (B ⊗ R) in the above and subsequent
equations here; we explicitly refer to the matrix elements in
M (1) and marginal probabilities in pB⊗R. Putting the double
sums and terms together, the informational term �H thus
reads

�H =
∑
i, j

Mji pi ln

(
pi

p̃ j

)
. (A8)

Note that H[ · ] is the base 2 binary entropy function but we
will be using the natural logarithm (with base e) here, to
eliminate the prefactor ln 2 appearing in the IPSL of Ref. [17].
In addition, both the 〈W 〉 and �H terms are expressed in the
same natural ln, necessary for the subsequent step in the proof.

Now consider the difference between �H and 〈W 〉:

�H − 〈W 〉 =
∑
i, j

Mji pi ln

(
Mji pi

Mi j p̃ j

)
. (A9)

The log sum inequality is first applied to the inner sum (within
the square brackets) to yield

�H − 〈W 〉 =
∑

i

pi

⎡
⎣∑

j

Mji ln

(
Mji pi

Mi j p̃ j

)⎤
⎦

�
∑

i

pi

⎡
⎣

⎛
⎝∑

j

Mji

⎞
⎠ ln

( ∑
j′ Mj′i∑

j′′
1
pi

Mi j′′ p̃ j′′

)⎤
⎦

=
∑

i

pi ln

(
pi

˜̃pi

)
, (A10)
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where we have used
∑

j Mji = 1 and
∑

j Mi j p̃ j = ˜̃pi, with ˜̃pi

denoting the intermediate (marginal) probabilities after one
thermal transition starting from an initial distribution p̃i.

Applying the log sum inequality once again to the last
expression, we obtain

�H − 〈W 〉 �
∑

i

pi ln

(
pi

˜̃pi

)
�

(∑
i

pi

)
ln

(∑
j p j∑
k

˜̃pk

)

= ln 1 = 0, (A11)

since probability conservation holds at any discrete time. We
have thus established our proposed marginal IPSL:

〈W 〉 � �H[pB⊗R]. (A12)

Note that the proof for the marginal IPSL here is similar to
the joint IPSL proof for 1-bit tape in Sec. IV A of Ref. [21],
since M (L) = M (1) and p1-bit = pB⊗R (i.e., joint and marginal
probabilities are the same) for L = 1.

APPENDIX B: MATHEMATICAL PROOF
OF I(B′, R′; B\{N}|B, R) = 0

Here we furnish a mathematical proof of
I (B′R′; B\{N}|BR) = 0 where we have dropped the commas
in the labels of joint states.

For our information ratchet with NR ratchet states and a
(finite) tape of L bits, the number of possible marginal states
BR (B′R′) before (after) a thermal transition substep M is 2NR,
with the marginal (bit-ratchet) distribution pB⊗R a 2NR × 1
vector established earlier. We will denote the marginal prob-
abilities by pBR

i and p̃B′R′
j with indices i, j ∈ {1, 2, . . . , 2NR}

labeling the marginal states. Subsequently, the number of pos-
sible tape sequences for the remaining L − 1 bits, i.e., B\{N}
not involved in this thermal transition M, is 2L−1, and its
state will be denoted with the index k ∈ {1, 2, . . . , 2L−1}. In
addition, we denote with pi,k ( p̃ j,k) the joint probability with
the marginal BR (B′R′) in state i ( j) and the noninteracting
bits B\{N} in state k.

The conditional mutual information is defined as

I (X ;Y |Z ) =
∑
z∈Z

pZ (z) I (X ;Y |Z = z)

=
∑
z∈Z

pZ (z)
∑
x∈X

∑
y∈Y

pX,Y |Z=z(x, y|z)

× log

[
pX,Y |Z=z(x, y|z)

pX |Z=z(x|z) pY |Z=z(y|z)

]
. (B1)

To evaluate I (B′R′; B\{N}|BR) with X ≡ B′R′, Y ≡ B\{N}, and
Z ≡ BR, we seek to establish the respective conditional prob-
abilities in Eq. (B1).

First, pX |Z=z(x|z) ≡ p( j|i) is the (conditional) probability
of finding B′R′ in state j given BR is in state i. This is simply
the transitional probability from state i to state j in a thermal
transition given by Mji, i.e., the ( j, i)-entry of the thermal
transition matrix M (1).

Next, pY |Z=z(y|z) ≡ p(k|i) is the (conditional) probability
of B\{N} in state k given BR is in state i, which is pi,k/pBR

i .

Last, pX,Y |Z=z(x, y|z) ≡ p( j, k|i) is the joint probability of
the tape-ratchet system in state j, k (after thermal transition
M) given BR is in state i. Owing to the sequential interaction
of the ratchet with each bit, only the leftmost bit interacts with
the ratchet (constituting the interacting bit-ratchet subsystem
BR), with the remaining bits B\{N} (noninteracting subsystem)
in state k before and after this M. We can thus obtain the
joint probability after M from the joint probability before M
with B\{N} fixed in state k throughout. With BR in state i, the
joint probability prior to M is pi,k/pBR

i . This joint state i, k is
then transformed to j, k with transition probability Mji in the
thermal transition. We thus have p( j, k|i) = Mji pi,k/pBR

i .
Collecting the above expressions,

pX |Z=z(x|z) ≡ p( j|i) = Mji, (B2a)

pY |Z=z(y|z) ≡ p(k|i) = pi,k

pBR
i

, (B2b)

pX,Y |Z=z(x, y|z) ≡ p( j, k|i) = Mji
pi,k

pBR
i

, (B2c)

and inserting these into the conditional mutual information
expression in Eq. (B1) yields

I (B′R′; B\{N}|BR)

=
2NR∑
i=1

pBR
i

2NR∑
j=1

2L−1∑
k=1

p( j, k|i) log

[
p( j, k|i)

p( j|i) p(k|i)
]

=
2NR∑
i=1

pBR
i

2NR∑
j=1

2L−1∑
k=1

Mji
pi,k

pBR
i

log

[
Mji

pi,k

pBR
i

M ji
pi,k

pBR
i

]
= 0. (B3)

The argument in the logarithm is always unity as a con-
sequence of (i) the joint probabilities pi,k and p̃ j,k (before
and after a thermal transition, respectively) are related by
p̃ j,k = ∑

i Mji pi,k , and (ii) the transition probabilities for the
joint states pi,k → p̃ j,k and marginal states pBR

i → p̃B′R′
j are

the same, i.e., Mji [see Eq. (18)]. Crucially, (i) and (ii) stem
from the thermal transition leaving B\{N} in state k unchanged
and independent of this arbitrary B\{N}.

We have thus shown I (B′, R′; B\{N}|B, R) = 0 in our finite-
tape information ratchet system, which processes the bits of
the finite tape modularly.

APPENDIX C: EVALUATION OF �C
(B;B\{N} )
Sk

AND �C
(B,B\{N};R)
Sk

IN SWITCHING S

The details of the evaluation for the following mutual in-
formational terms involved in switching S are provided here,
utilizing information-theoretic properties.

In the following, we will consider the transformation of a
tape sequence before and after the switching substep Sk (in an
arbitrary bit scan k):

B′
N BN+1BN+2 · · · BLB′

1 · · · B′
N−1

↓ (C1)

BN+1BN+2 · · · BLB′
1 · · · B′

N−1B′
N .
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Specifically, we considered (in the main text)

(a) �C
(B;B\{N} )
Sk

≡ I (BN+1; B\{N,N+1}, B′
N ) − I (B′

N ; B\{N}), (C2a)

(b) �C
(B,B\{N};R)
Sk

≡ I (BN+1, B\{N,N+1}, B′
N ; R′) − I (B′

N , B\{N}; R′), (C2b)

where we have made explicit the new input bit B = BN+1 and old output bit B′ = B′
N . The notation B\{N} denotes the bit sequence

BN+1BN+2 · · · BLB′
1 · · · B′

N−1 (excluding the leftmost bit with index N), and similarly B\{N,N+1} for BN+2BN+3 · · · BLB′
1 · · · B′

N−1
(excluding the leftmost bit BN+1 and rightmost bit B′

N ) after Sk .
For (a), we have

�C
(B;B\{N} )
Sk

= I (BN+1; B\{N,N+1}, B′
N ) − I (B′

N ; BN+1, B\{N,N+1})

= [H (BN+1) + H (B\{N,N+1}, B′
N ) − H (BN+1, B\{N,N+1}, B′

N )]

− [H (B′
N ) + H (BN+1, B\{N,N+1}) − H (B′

N , BN+1, B\{N,N+1})]

= [H (BN+1) + H (B\{N,N+1}) − H (BN+1, B\{N,N+1})] − [H (B′
N ) + H (B\{N,N+1}) − H (B\{N,N+1}, B′

N )]

= I (BN+1; B\{N,N+1}) − I (B′
N ; B\{N,N+1}), (C3)

corresponding to Eq. (55). We had noted in general �C
(B;B\{N} )
Sk

	= 0 in the transient phase for L 	= 1, 2, but always vanishes for
L = 2 (see bottom left plots in Figs. 6 and 7) as there are no additional bits in B\{N,N+1} besides the outgoing output bit B′ = B′

N
and incoming input bit B = BN+1.

Similarly for (b),

�C
(B,B\{N};R)
Sk

= I (BN+1, B\{N,N+1}, B′
N ; R′) − I (B′

N , BN+1, B\{N,N+1}; R′)

=[H (BN+1, B\{N,N+1}, B′
N ) + H (R′) − H (BN+1, B\{N,N+1}, B′

N , R′)]

− [H (B′
N , BN+1, B\{N,N+1}) + H (R′) − H (B′

N , BN+1, B\{N,N+1}, R′)] = 0, (C4)

for all L since the entire information ratchet (tape-ratchet system) is self-contained with the recirculation of existing bits after
each tape scan.
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