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The cover-time problem, i.e., the time to visit every site in a system, is one of the key issues of random walks
with wide applications in natural, social, and engineered systems. Addressing the full distribution of cover times
for random walk on complex structures has been a long-standing challenge and has attracted persistent efforts.
Usually it is assumed that the random walk is noncompact, to facilitate theoretical treatments by neglecting
the correlations between visits. The known results are essentially limited to noncompact and homogeneous
systems, where different sites are on an equal footing and have identical or close mean first-passage times,
such as random walks on a torus. In contrast, realistic random walks are prevailingly heterogeneous with
diversified mean first-passage times. Does a universal distribution still exist? Here, by considering the most
general situations of noncompact random walks, we uncover a generalized rescaling relation for the cover time,
exploiting the diversified mean first-passage times that have not been accounted for before. This allows us to
concretely establish a universal distribution of the rescaled cover times for heterogeneous noncompact random
walks, which turns out to be the Gumbel universality class that is ubiquitous for a large family of extreme value
statistics. Our analysis is based on the transfer matrix framework, which is generic in that, besides heterogeneity,
it is also robust against biased protocols, directed links, and self-connecting loops. The finding is corroborated
with extensive numerical simulations of diverse heterogeneous noncompact random walks on both model and
realistic topological structures. Our technical ingredient may be exploited for other extreme value or ergodicity
problems with nonidentical distributions.
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I. INTRODUCTION

Random walk [1–6] has been one of the pillars of the
probability theory since the 17th century from the analysis of
games of chance [7], and lays the foundation of the modern
theory of stochastic processes and Brownian motions [8–10].
Cover time, the time for a random walker to visit all the sites,
is a key quantity that characterizes the efficiency of exhaus-
tive search [11–15]. The cover-time problem, also known as
the traverse process [11,12], has widespread natural [16–19],
social [14,15,20,21], and engineering [22–24] applications.
Examples include rodent animals searching and storing as
much food as possible in their confined habitats [16–18],
the dendritic cells chasing all danger-associated antigens in a
constantly changing tissue environment [19], collecting all the
items in the classic coupon collector problem [14,15,20,21],
the Wang-Landau Monte Carlo algorithm sampling every en-
ergy state in calculating the density of states in a rough energy
landscape [22,23,25], robotic exploration of a complex do-
main for cleaning or demining and corresponding algorithm
design [24], and information spreading or collecting on large
scale Internet, mobile ad hoc network, peer-to-peer network,
and other distributed systems where random walks are more

*huangl@lzu.edu.cn

feasible versus topology-driven algorithms due to the dynam-
ical evolution, unknown global structure, limited memory, or
otherwise broadcast storm issues [26–30].

Since the proposal of the cover-time problem [11–15], a
series of theoretical progresses has been made for standard
random walks, where the walker moves to the neighboring
sites with equal probabilities. By bridging the cover time
with the longest first-passage time (FPT, the time required to
reach a particular site), the cover time can be estimated via
the tail of the FPT distribution [14]. The average cover time
scales distinctively in different dimensions, i.e., N2 for one-
dimensional lattices [13,15,31], N (ln N )2 for two-dimensional
(2D) lattices with periodic boundary conditions or 2-torus
[18,32], and N ln N for 3- or 4-torus [13].

Despite these theoretical progresses, the full distribution
of the cover time for complex topologies has been a long-
standing challenge and has attracted persistent efforts due to
its ultimate importance in characterizing all types of statistics
including extreme events [33–38]. Erdős and Rényi found
in 1961 that the cover time for fully connected graphs with
self-connecting loops (the coupon collection time) follows
the Gumbel distribution [33], one of the well-known extreme
value distributions [39]. Later in 1989 Aldous conjectured
that for random walks on the d � 3 torus the distribution is
also Gumbel [34], which has been proved by Belius in 2013
[35]. Recently, a substantial progress has been achieved for
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FIG. 1. Schematics of heterogeneous random walks. (a) Het-
erogeneity due to the confinement boundary and nonuniform
landscapes, which result in diversified location-dependent occupa-
tion ratios and mean first-passage times. (b) Heterogeneity due
to inherent heterogeneous connection structures, e.g., a small sub-
set pruned from Wikipedia where nodes are pages and edges are
hyperlinks.

noncompact homogeneous random walks, where the mean
first-passage times (MFPTs) 〈Tk〉 ≡ 〈Tk←s〉s averaging over
the starting sites are narrowly distributed and can be approx-
imated by a single value 〈T 〉 ≡ 〈Tk〉k , i.e., the global mean
first-passage time (GMFPT). In particular, by rescaling the
cover time τ as χ̃ = τ/〈T 〉 − ln N and employing the Laplace
transform, the full distribution for χ̃ was shown to follow the
Gumbel universality class [36].

It should be noted that the theory in Ref. [36] only de-
pends on a single value, i.e., the GMFPT 〈T 〉, of different
random walk models. This will be sufficient for homogeneous
systems. For example, for random walks on a torus, 〈Tk〉 for
different sites will be exactly the same due to the translational
symmetry. However, for confined or disordered systems, or
those with complex topological structures, as illustrated in
Fig. 1, sites at different locations are obviously inequivalent
[5,40–47], even in the thermodynamic limit. This invalidates
the basis of the rescaling process and leads to an immediate
question of whether there still exists a universal cover-time
distribution for such systems, and more commonly, in general
heterogeneous systems where 〈Tk〉 can be diverse [48]. This is
of particular importance as most realistic systems are in fact
heterogeneous.

In this paper, based on the transfer matrix framework and
employing the longest FPT for the cover time, we derive the
Gumbel universality class for rescaled cover-time distribu-
tions explicitly in heterogeneous systems under reasonable
approximations. The key is the generalized rescaling rela-
tion exploiting the complete set of MFPTs {〈Tk〉}, which can
degenerate to Ref. [36] for homogeneous cases. Thus our
results extend the universality of the Gumbel class to realis-
tic, heterogeneous noncompact random walks. The finding is
corroborated by extensive numerical simulations of 12 diverse
random walk models with ideal or realistic heterogeneous
structures, standard or biased random walk protocols, and
undirected or directed connections.

The rest of the paper is organized as follows. In Sec. II, the
distribution function of the rescaled cover times in heteroge-
neous systems is derived. Section III provides evidence of the
universal distribution with extensive simulations. Conclusion
and discussions are provided in Sec. IV. Detailed derivations
are provided in the Appendixes.

II. THEORY OF UNIVERSAL COVER-TIME
DISTRIBUTIONS FOR HETEROGENEOUS

RANDOM WALKS

For random walks in homogeneous systems, different sites
are on an equal footing where the MFPTs to all the sites are
close to each other and can be approximated by their mean
value, i.e., the GMFPT 〈T 〉. In contrast, for random walks
in a confined region, the existence of the boundary breaks
the symmetry of the sites. For example, the boundary itself
may have attracting effects that the walker crawls along the
boundary and reaches sites closer to the boundary with a
higher probability. Therefore, the FPT between a given pair
of sites depends not only on their distance, but also on their
specific locations. This is even critical for random walks
on complex structures such as heterogeneous graphs, where
sites with more edges are easier to be reached. As a natural
consequence, the time for the walker to visit all the sites, i.e.,
the cover time, will need to consider the diversity of those
FPTs, especially the long FPTs.

Therefore, in the following we shall first present the FPT
distribution function based on the transfer matrix framework
of Markovian process, which can take the heterogeneity into
account through inhomogeneous transition probabilities. Then
by counting the longest FPTs, the distributions of the cover
times are derived.

A. First-passage time

The transfer probability that a random walker moves from
site j to site i at the next time step given that in the current
time step it is at site j is denoted as �i← j . The case i = j
is included to account for the case when the walker has a
nonzero probability to stay on the same site at the next time
step, which effectively describes the effect of self-connecting
loops. Collecting all the elements �i j = �i← j forms the trans-
fer matrix �. The occupation probability gi(t ) that a walker
appears on site i at time t can be obtained recursively by

gi(t ) =
∑

j

�i← jg j (t − 1). (1)

To obtain the FPT from starting site s to site k, a matrix D(k) is
constructed based on Eq. (1). The element Di j (k) equals �i← j

except the kth column Dik (k), which equals zero. When �i← j

in Eq. (1) is replaced by Di j (k), if the random walker arrives
at site k, it will be removed from the system in the next time
step. Then, the FPT probability Fk←s(t ) from site s to site k
at time t is equal to the difference of the probability that the
walker is still in the system at time t and that at t + 1, given
that the walker starts from site s in the beginning:

Fk←s(t ) = ‖D(k)t G(s)‖1 − ‖D(k)t+1G(s)‖1, (2)

where G(s) is the initial spatial distribution at t = 0, Gi(s) =
1 if i = s and zero otherwise, and ‖v‖1 = ∑

i vi is the L1 norm
of vector v.

In very short time scales, Fk←s(t ) is caused by the direct
diffusion process according to the transfer matrix, thus it de-
pends on the specific starting site s and could decrease rapidly
versus time if s and k are not far from each other.
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For large t , the asymptotic behavior of Fk←s(t ) in Eq. (2)
is determined by the largest eigenvalue λk (0 < λk < 1)
of the matrix D(k), i.e., Fk←s(t ) ∼ λt

k ∼ e−t/Tk , where Tk =
−1/ ln(λk ) is the characteristic FPT to site k in the long time
limit. Therefore, the asymptotic behavior of Eq. (2) can be
written as

Fk (t ) � 1

Tk
exp

(
− t

Tk

)
. (3)

The FPT distribution Fk←s(t ) in the long time limit only
depends on Tk , but is independent of the starting site s. This
is kind of surprising given here the context of heterogeneous
random walks, which can be understood from the physical
picture provided by Eq. (2). For a given target site k and a
starting site s, there is a critical time scale, when the time is
smaller than this critical time, it is mainly a diffusion process
from the starting site to the other sites. The relative occupa-
tion probabilities on different sites will evolve into a steady
state where they are proportional to the components of the
eigenvector corresponding to the largest eigenvalue λk . This
process depends on the starting site. Beyond that critical time
scale, Fk←s(t ) shrinks in time in the form of λt

k , where the
relative occupation probabilities for different sites are fixed
to be proportional to the components of the eigenvector of
λk . That critical time scale can be very short compared to the
FPTs. For example, assuming the second largest eigenvalue of
D(k) is λ′

k , then the weight of the second largest eigenvector
over the largest one decays in time as (λ′

k/λk )t , thus this
critical time can be in the order of tens or hundreds compared
with tens of thousands or hundreds of thousands for typical
FPTs. See Appendix A for a detailed numerical example for
Eq. (3). For random walk on homogeneous systems such as
lattices with periodic boundary conditions, all target sites are
identical and share the same characteristic FPT. However, for
heterogeneous systems such as confined regions with non-
trivial boundary conditions or other complex structures, the
characteristic FPT Tk can be scattered in a broad span, thus the
distribution function Fk (t ) will be nonidentical and site depen-
dent. Therefore, the complete set of the diverse characteristic
FPTs will be needed to determine the cover-time distribution
in heterogeneous system.

In many cases it is impractical to calculate the characteris-
tic FPT Tk based on matrix D(k), since the transfer probability
�i← j cannot be completely obtained in general. Alternatively,
since Tk = ∫

tFk (t )dt is also the mean FPT to site k, Tk can
be approximated by the average of the FPT Tk←s from all
possible starting sites s to site k, i.e., Tk ≈ 〈Tk〉 ≡ 〈Tk←s〉s (see
Appendix A for an exemplary numerical verification), which
can be calculated more efficiently.

B. Full cover time

For a trajectory which fully covers the system, the random
walker will first successively pass N − 1 sites in a specific
order. Then the time arriving at the last unvisited site is the full
cover time. Meanwhile, this time is also the FPT to this ending
site. Therefore, the cover time can be regarded as the longest
FPT in a single cover process [14]. As a result, ignoring the
correlations between the visits, the probability that the cover

time equals τ can be estimated as

P(τ ) = 1

N

∑
k,s, k �=s

Fk (τ )

⎡
⎣ ∏

i/∈{k,s}

τ−1∑
t=1

Fi(t )

⎤
⎦, (4)

where
∑τ−1

t=1 Fi(t ) is the probability of the first arrival onto the
site i up to time τ − 1, which is exactly the probability that this
site i will be visited during the first τ − 1 steps. The product
over i in the square brackets is thus the probability that all
sites, except s and k, are visited up to τ − 1, as if they were
realized by independent walkers. Fk (τ ) is the probability that
the last unvisited site k is first visited at τ , which completes the
covering process. The factor 1/N is for the average over all the
starting sites. Equation (4) neglects any structural correlation
of the background system, which should be (at least weakly)
satisfied for noncompact random walks [49], i.e., the diffusion
dimension dw of the random walk (defined by 〈|r|2〉 ∼ t2/dw )
is smaller than the dimension of the background space d . In
this case, the number of sites visited by the walker |r|dw will
be negligible compared to all the sites within |r|, which is
|r|d . Thus the walker needs to traverse the region many times
in order to cover all the sites. This means that the effective
structural correlation will be significantly reduced as the in-
formation of the initial position is completely lost when the
walker comes back again.

Replacing Tk by 〈Tk〉, and considering τ − 1 ∼= τ for τ 

1, the summation in the square bracket yields

τ∑
t=1

Fk (t ) ∼= 1 − exp

(
− τ

〈Tk〉
)

. (5)

For τ being large, higher order terms in the product in the
square bracket can be neglected, leading to

N∏
i=1

τ∑
t=1

Fi(t ) ∼= exp

[
−

N∑
i=1

exp

(
− τ

〈Ti〉
)]

, (6)

where the condition i /∈ {k, s} has also been relaxed. Define a
rescaled cover time χ from the original cover time τ by

χ = − ln
N∑

i=1

e− τ
〈Ti 〉 , (7)

where the summation can be replaced by the integra-
tion if the distribution of 〈Ti〉 is known, i.e.,

∑
i e− τ

〈Ti 〉 =
N

∫
e− τ

〈Ti 〉 P(〈Ti〉)d〈Ti〉. Practically, when the topological struc-
ture and the type of random walks are known, the distribution
P(〈Ti〉) can be obtained via Monte Carlo simulation. Together
with Eq. (3), it is straightforward to show that

∑
k Fk (τ ) =

exp(−χ )dχ/dτ . Thus one has

P(τ )dτ ∼= exp[− exp(−χ )] exp(−χ )dχ, (8)

yielding a universal distribution function for the rescaled
cover time χ that is independent of any of the system details:

P(χ ) = exp[−χ − exp(−χ )]. (9)

The detailed derivations are shown in Appendix B.
Equation (9) is the Gumbel distribution which is one of

the three well-known extreme value distributions [50], and
shares the same form as in the theory for homogeneous cases
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[36]. The main difference is the rescaling functional relation
between χ and τ , e.g., χ̃ = τ/〈T 〉 − ln N for homogeneous
cases, and Eq. (7) for the heterogeneous cases, which now
requires the complete set of MFPTs {〈Tk〉} or their distribution
function. Equation (7) ensures a monotonous relation between
χ and τ . For homogeneous cases, all sites share a single
identical characteristic MFPT, which is then the GMFPT 〈T 〉,
and Eq. (7) degenerates to χ̃ = τ/〈T 〉 − ln N .

Note that in the derivation of Eq. (9), it is assumed that the
cover time is large compared to the MFPT 〈Tk〉. This condition
is typically satisfied automatically, as the cover time τ ending
at site k is approximately the longest FPT to k. Therefore, the
large FPT dominates in the covering process, justifying the
use of Eq. (3). Even for short τ , e.g., negative χ , it is usually
still larger than 〈Tk〉, thus Eq. (9) works well.

C. Partial cover time

For a random walk in which the walker only needs to
visit a fraction of the system, it is obvious that the time
cost depends on how to choose the unvisited sites. There are
two related processes: one is random cover, and the other is
partial cover. In the random cover problem, the m sites that
are not counted (but can be visited) are chosen randomly from
the total N sites in the system before the cover process. For
m � N , due to the noncompact nature of the random walk,
the walker needs to traverse the system many times in order
to visit all the sites, thus any site in the system will be vis-
ited many times on average. For example, for homogeneous
random walk, the most probable rescaled cover time is χ̃ = 0,
yielding τ = 〈T 〉 ln N , where 〈T 〉 is typically in the order of
N or even larger. For a system with N = 1000 sites, each site
will be visited ln N ≈ 7 times for typical covering processes,
including those uncounted sites. Therefore, if m is small, the
uncounted sites are most likely to be already visited during
the random cover process when the rest of the system is
covered. Therefore the random cover will have almost the
same cover-time distribution with the full cover process. In
the partial cover process, it stops when there are m sites left.
If the m sites are distributed randomly in the system, for
the full cover process the walker needs to wander over the
system again and again until it finds all of them, which will in
general take a much longer time, at least in the order of their
respective MFPTs. Therefore, the partial cover times will have
a nontrivial distinctive distribution other than that for random
or full cover processes.

Although significantly different from the full cover pro-
cess, for partial cover there still exists a universal distribution
for noncompact random walks in heterogeneous systems. In
particular, the partial cover-time distribution can be expressed
as

Pm(τ ) =
∑
{Im}

P(τ | /∈ {Im}) Q(τ, {Im}), (10)

where {Im} is a specific set of m sites, and we assume m �
N . The first term P(τ | /∈ {Im}) denotes the probability that the
walker visits the N − m other sites during time τ regardless of
the sites in the set {Im} being visited or not. This follows the
random cover-time distribution, which can be approximated
by the full cover-time distribution.

The second term Q(τ, {Im}) is the probability that the sites
in set {Im} are not visited yet at time τ . If the unvisited sites
{Im} are independent, i.e., the information of the sites that are
already visited in {Im} does not change the probability that any
of the rest of the sites in {Im} will be visited, the second term
Q can be simplified as

Q(τ, {Im}) =
∏

i∈{Im}

(
1 −

τ∑
t=1

Fi(t )

)
=

∏
i∈{Im}

exp

(
− τ

〈Ti〉
)

,

where the second equality makes use of Eq. (5).
After enumerating all possible configurations of {Im} by

the summation
∑

{Im}, the partial cover-time distribution
Pm(τ ) can then be obtained in the form of Gumbel class
(Appendix C)

Pm(χ ) = 1

m!
exp[−(m + 1)χ − e−χ ], (11)

where χ is the rescaled cover time and is defined by Eq. (7).
Equation (11) has the same form as that given in Ref. [36] for
homogeneous cases. According to Eq. (11), the most probable
rescaled partial cover time χ∗ satisfies exp(−χ∗) = 1 + m, or
χ∗ = − ln(1 + m). Thus χ∗ is characteristically distinct for
different m. Due to the monotonous relation between χ and
τ , this indicates that the corresponding characteristic times τ ∗
to visit N (m = 0) and N − 1 (m = 1) sites are discontinuous,
which is consistent with the results in Ref. [51] for full cover
and partial cover with m = 1 in 2D lattices.

For correlated unvisited sites, since P(τ | /∈ {Im}) is approx-
imately the random (or full) cover-time distribution, the main
issue caused by the correlation is the simplification of the Q
term. When N 
 m, the correlation of the unvisited sites can
be weak, and it will lead to only a small correction. As a
consequence, m will need to be replaced with an effective,
typically smaller, m∗, and the rescaled partial cover-time dis-
tribution has the same form as Eq. (11). Indeed, it has been
found that for various heterogeneous random walk models,
the rescaled partial cover-time distributions of different sys-
tems can collapse to an identical distribution function that
agrees perfectly with Eq. (11). However, there are also cases
that correlation of unvisited sites could be so strong that it
cannot be ignored even in the large N limit, especially for
low dimensional random walks, such as 2D persistent random
walks and random walk on three-dimensional (3D) lattices
with reflective boundaries.

D. Parallel search

Parallel search is an important practical issue when there
are n (� N) independent walkers. The system is covered
when each site is visited at least by one of the walkers. We
have examined the MFPT and the rescaled cover-time dis-
tribution in heterogeneous systems. In particular, in the long
time limit, the MFPT to site k follows n independent and iden-

tical distributions of Eq. (3), which is then F (n)
k (t ) � n

Tk
e− nt

Tk .
Thus the new characteristic FPT T ′

k (also the MFPT 〈T ′
k 〉)

becomes 1/n of that for one walker. With the new set of {〈T ′
k 〉},

the rescaled cover time can be obtained from Eq. (7) to yield
the universal distributions Eqs. (9) and (11). Thus when there
are n independent parallel walkers in a heterogeneous system,
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the cover time will be 1/n as that for one walker. This result
has been found in Ref. [36] for homogeneous cases, it is kind
of surprising that it is also the case for heterogeneous random
walks. This is because the distribution of the MFPTs to a par-
ticular site k in the circumstance of n independent walkers has
the same form with only the characteristic time divided by n.

III. NUMERICAL VERIFICATION

A. Generality and the random walk models

It should be noted that our approach to derive the full
and partial cover-time distribution is based on the general
framework of transfer matrix, whose elements can be as-
signed arbitrarily given the normalization condition that the
summation of the elements for each column is 1. It is not
necessary that the walker moves to the neighbors with equal
probability as in the standard random walk models. Indeed,
the results are also valid for biased walking protocols or di-
rected connections, as will be demonstrated in the simulation
part. In addition, the walker may have a nonzero probability
to stay on the same site for the next step, accounting for the
self-connecting loop effects. These considerations enable our
theory to be applicable in broad realistic circumstances.

In this section, the universality of the rescaled cover-time
distribution will be corroborated with different types of ran-
dom walks on various heterogeneous systems, for both full
cover [Eqs. (9) and (7)] and partial cover [Eqs. (11) and
(7)] processes. Here we provide extensive numerical simula-
tion results for 12 cases with different random walk models
and topological structures, including three realistic networks,
which agree with the full cover theory well. For partial cover,
most of the simulation cases (10) agree, but deviation occurs
for low dimensional cases where the correlation of the unvis-
ited sites is not negligible.

The 12 random walk cases are (1) standard random walk
on a 3D lattice with reflective boundaries (SRW 3D); (2)
standard random walk on a four-dimensional (4D) lattice with
reflective boundaries (SRW 4D); (3) standard random walk on
an Erdős-Rényi (ER) graph (SRW ER); (4) standard random
walk on scale-free graphs (SRW SF); (5) biased random walk
on an Erdős-Rényi graph (BRW ER); (6) biased random
walk on scale-free graphs (BRW SF); (7) persistent random
walk on a 2D lattice with reflective boundaries (PRW 2D);
(8) the Lévy flight on a 2D lattice with sticking boundaries
(LF 2D); (9) chaotic motion as random walks (Logistic); (10)
standard random walk on the Internet at the autonomous sys-
tem level (Internet); (11) standard random walk on the Twitch
social network (Twitch); and (12) standard random walk on
the directed subgraph containing the page “Random walk”
of Wikipedia (Wiki). The topological structures of the last
three cases come from the real-world complex systems. These
models are chosen due to their simplicity, representativeness,
and significance in realistic applications.

In our simulation, a site s is chosen randomly from a total
of N sites with probability 1/N as the starting site, then the
random walk begins, until it covers the whole system, yielding
the cover time τ . In the meantime, the partial cover time with
arbitrary m and one ensemble of the FPT from the starting
site s to all the other sites k, Tk←s, are also obtained. For each

FIG. 2. Rescaled full cover-time distributions of the 12 random
walk cases. The key parameters are as follows. SRW 3D, N = 343;
SRW 4D, N = 625; SRW ER, N = 1000, 〈K〉 = 8; SRW SF, N =
2000, 〈K〉 = 4; BRW ER, N = 1000, 〈K〉 = 8; BRW SF, N = 2000,
〈K〉 = 4; PRW 2D, N = 2304, lc = 24; LF 2D, N = 1600; Logis-
tic, N = 1000; Internet, N = 11 174; Twitch, N = 7126; Wiki, N =
3623. The cover-time distribution for each case is evaluated from
sampling over 1 × 106 rounds. The symbols are the data rescaled
with Eq. (7), and the thick black curve is Eq. (9). Inset: A few
representative cases where the cover time is rescaled based only
on the GMFPT as χ̃ = τ/〈T 〉 − ln N . The thick black curve is the
corresponding prediction.

case, 1 × 106 rounds by randomly choosing s are carried out
to obtain reliable statistics. Then for each site k, averaging
over the starting site s for the 1 × 106 rounds of Tk←s yields
the MFPT 〈Tk〉, and thus the MFPT set {〈Tk〉} for all the
sites. For each cover time τ , the corresponding χ is derived
according to Eq. (7) based on the numerically obtained MFPT
set {〈Tk〉}. Then the distribution of the 1 × 106 χ values is
obtained by direct counting, which is plotted in Fig. 2. The
different symbols are for different cases. They are all in good
agreement with the universal distribution Eq. (9) as plotted by
the thick black curve.

All the above 12 cases are heterogeneous. Due to the diver-
sified value of the MFPT 〈Tk〉, the GMFPT 〈T 〉 is insufficient
to rescale the cover time by χ̃ = τ/〈T 〉 − ln N , which leads
to substantial deviations, as shown in the inset of Fig. 2 for a
few representative cases.

A brief description of the models is as follows. Detailed
parameters may be listed in the caption of the corresponding
figures.

(1) Standard random walk on a 3D lattice in a cubic domain
with reflective boundary conditions (SRW 3D), i.e., if the
walker moves outside the boundary, it will be reflected back
to the cubic domain. As a result, the MFPT to the target site is
location dependent and mainly depends on the distance to the
boundary [41,47,52]. For a given finite domain, the transfer
matrix � can be written down explicitly [53].

(2) Standard random walk on a 4D lattice in a hypercubic
domain with reflective boundary conditions (SRW 4D). The
transfer matrix � can be obtained similarly.
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(3) Standard random walk on an Erdős-Rényi graph [54]
(SRW ER). The ER graph with size N is generated by con-
necting each pair of nodes with probability p. A graph is
connected if there is always a path passing through sites and
edges to connect any given pair of sites. In our simulation,
only the connected graphs are considered. The degree K of
a site is the number of its edges. The degree distribution for
the ER graph is Poissonian: P(K ) = 〈K〉K

K! exp(−〈K〉), where
〈K〉 ≈ N p for large N is the average degree, which is also the
variance. Thus when 〈K〉 is large, the relative standard devia-
tion with respect to the mean, i.e., 1/

√〈K〉, is small, and the
system is approximately homogeneous. However, when 〈K〉 is
not so large, the degrees and consequently the MFPTs can be
broadly distributed, breaking the homogeneous assumption.
In this paper we choose 〈K〉 = 8, where the heterogeneity is
obvious, and consider those only connected graphs to carry
out random walk simulations.

For standard random walk on a graph, starting from any
site with degree K , the walker moves to any of its neighboring
sites with equal probability 1/K .

(4) Standard random walk on scale-free graphs (SRW SF)
with power law degree distribution [55], i.e., P(K ) ∼ K−γ and
γ = 3 in our simulation, where 〈K〉 = ∫

KP(K )dK = 4 is the
average degree. This system is inherently heterogeneous, even
in the thermodynamic limit.

(5) Biased random walk on an Erdős-Rényi graph (BRW
ER). Unlike the standard random walk in which the walker
moves to one of its neighbors with equal probability, for
a biased random walk, the walker at site s with Ks neigh-
bors moves to a neighboring site i with the probability
K−α

i /
∑Ks

j=1 K−α
j , where the summation is over the site i’s

neighbors. When α = 0, it returns to the standard random
walk. We take α = 1 for this case. 〈K〉 = 8.

(6) Biased random walk on scale-free graphs (BRW SF)
with 〈K〉 = 4, α = 0.18.

(7) The persistent random walk [56,57] on 2D lattices in
a square domain of side length L with reflective boundary
conditions (PRW 2D). The walker keeps its previous moving
direction with probability pr , and moves to any of the other
three directions with probability (1 − pr )/3. The mean
persistent length is given by lc = 1/(1 − pr ) [56]. When it is
much larger than 1, the random walk is noncompact. However,
when lc is small, especially when lc ≈ 1.3, the persistent
random walk degenerates to conventional random walk,
which becomes compact. In addition, the persistent random
walk is not Markovian, i.e., it not only depends on the current
position, but also depends on its previous step, therefore
the transfer matrix framework is valid only approximately,
leading to deviations from the theory, especially for the short
cover times (negative χ ).

(8) The Lévy flight [17,58–61] on 2D lattices in a
square domain of side length L with sticking boundaries
(LF 2D). The walker flies in one of the four directions
(±x,±y) to a site of distance l with probability P(l ) =
1
π

∫ ∞
−∞ exp(−la

0 ka) exp(ikl )dk [36], where l0 = L/20 and a =
3/2 are constants. If the walker flies out of the region at one
time step, it will be stuck at the boundary along its flying
route, and continues the flight at the next step.

(9) Chaotic trajectories as a biased and directed random
walk (Logistic), which is biased and directed due to the

dynamical structures. A feature for chaotic dynamical systems
is that an initial perturbation δ(0) will be enlarged exponen-
tially in time, i.e., δ(t ) = δ(0) exp(h1t ), where the largest Lya-
punov exponent h1 is positive, and 1/h1 is the Lyapunov time.
The predictability of the chaotic trajectory will vanish after
evolving a few Lyapunov times [62,63]. Therefore, in time
scales that are much larger than the Lyapunov time, the
chaotic trajectory can be regarded as a stochastic process.
An interesting question is whether the time for the chaotic
trajectory to cover the coarse-grained phase space (the coarse-
grained ergodic time) also obeys the universal cover-time
distribution. Here we take the fully chaotic logistic map as an
example, which is yn+1 = 4yn(1 − yn). The system is ergodic
and the entire phase space can be filled if the evolution time
is long enough. The region [0,1] of the map is divided into N
mesh grids. Since the grids have a non-negligible finite size
1/N , although the original dynamics is deterministic, due to
the chaotic nature, the trajectory on the scale of the grids can
be highly stochastic. The occupation ratio is proportional to
the natural measure of the system and is highly nonuniform
for the logistic map [64]. This suggests that the MFPT 〈Tk〉
should be also diverse and depends on the position of target
grid k.

(10) Standard random walk on the Internet at the level of
autonomous systems (Internet). This undirected connection
structure is a snapshot in 2001 which contains 11 174 nodes
and 23 409 edges [65].

(11) Standard random walk on a subset of the Twitch so-
cial network (Twitch). A node is a Twitch user who streams
in English, and an edge between two users represents their
mutual friendship. This social network contains 7126 users
and 35 324 edges [66].

(12) Standard random walk on a directed subgraph of
Wikipedia (Wiki). The subgraph is pruned from the hyperlink
network of Wikipedia, where the original data set is pro-
vided in Refs. [67,68]. The node is the page in Wikipedia,
and a directed edge represents a hyperlink from one page to
another. The original data set has about 4 × 106 nodes and
100 × 106 links, which is far beyond our computation power.
Therefore, we extract a smaller cluster in which any page can
be reached by following at most two steps from the page
“Random walk.” This cluster is strongly connected, in that
for each pair of nodes (i, j), there always exists a directed
path in the cluster going from i to j. This subgraph contains
3623 nodes and 75 929 directed edges. The walker moves
randomly along the directed edge, which simulates a wanderer
exploring Wikipedia. The probability that the walker moves to
a neighboring node (page) is 1/Ko, where Ko is the out-degree
of the current node.

B. Numerical verification for full, partial,
and parallel cover processes

The rescaled cover-time distributions for all the 12 cases
are plotted in Fig. 2. Despite the diversity of the random
walk models, the background topology, the biased protocols,
and the directed links, the simulation results all fall onto the
theoretical curve well, especially for positive χ values. As
a comparison, the distributions of the rescaled cover time
based only on the GMFPT (χ̃ = τ/〈T 〉 − ln N) for a few
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FIG. 3. Rescaled partial cover-time distributions of ten hetero-
geneous random walk models as labeled in the figure. SRW 4D,
N = 4096; SRW ER, N = 5400; SRW SF, N = 5000; BRW ER,
N = 5400; BRW SF, N = 2000; LF 2D, N = 6400; Logistic map,
N = 10 000; Internet, N = 11 174; Twitch, N = 7126; and Wiki,
N = 3623. Each distribution is obtained from 1 × 106 samples. The
symbols are the data, and the curves are the theory Eq. (11) for m = 2
(dashed) and m = 4 (solid). The inset shows the effective m∗ vs size
N of the seven model systems where the size can be changed.

representative cases, e.g., standard random walks in confined
3D lattices, the ER graph, Twitch, and persistent random
walks on confined 2D lattices, are shown in the inset of Fig. 2.
They deviate from the prediction significantly. This illustrates
that for heterogeneous systems, rescaling of the cover time
only using the GMFPT is insufficient, and the complete set of
MFPTs is needed to properly rescale the cover time.

For partial cover time, the correlation effects are more
significantly revealed, and the 12 heterogeneous random walk
models can be classified into two groups. The second group
consists of two cases: the standard random walk on 3D
lattices and persistent random walk on 2D lattices with reflec-
tive boundaries. The remaining ten cases are the first group,
where the correlation between the unvisited sites is small. The
rescaled partial cover-time distributions of these ten systems
are shown in Fig. 3, which agree well with the theoretical
prediction Eq. (11). The correlation between unvisited sites
can be treated by a modified value of m, i.e., m∗, in Eq. (11),
which can be obtained by fitting the data to the curve Eq. (11).
The difference between m∗ and m then characterizes the extent
of correlation. The inset of Fig. 3 shows the dependence of m∗
on the system size. It can be seen that the overall values of m∗
are close to m, and as the system size increases, m∗ converges
to m. This is consistent with the expectation that as the size
of the system increases, the correlation between the unvisited
sites decreases.

For the second group, they are both low dimensional
cases, where correlation between unvisited sites could be non-
negligible and leads to a larger difference between m∗ and
m. The rescaled cover time and the dependence of m∗ versus
system size for these two cases are shown in Fig. 4. With the
effective m∗, the rescaled partial cover-time distribution again
follows Eq. (11) reasonably well, especially in the large cover

FIG. 4. (a) Rescaled partial cover-time distribution of SRW 3D.
N = 1000, 2744, 8000 for crosses, pluses, and circles, i.e., the three
data points with the largest size in (b). The dashed curve is Eq. (11)
with m∗ = 1.7 for m = 2, and the solid curve is m∗ = 3.1 for m = 4.
(b) The effective m∗ vs size N for SRW 3D. (c) Rescaled par-
tial cover-time distribution of PRW 2D. N = 1296, 2304, 7056 for
crosses, pluses, and circles. The dashed curve is Eq. (11) with m∗ =
1.3 for m = 2, and the solid curve is m∗ = 2.5 for m = 4. (d) The
effective m∗ vs size N for PRW 2D. The characteristic persistent
length is lc = L/2.

time limit [Figs. 4(a) and 4(c)]. However, in contrast to the
first group, here m∗ is close to m only for small system sizes.
As the system size increases, the difference between m∗ and m
does not vanish; instead it becomes larger and m∗ approaches
to a constant but smaller value than m, as shown in Figs. 4(b)
and 4(d). Given the behavior of the data, this effect is expected
to persist even in the thermodynamic limit. Furthermore, as
shown in Fig. 4(c), for each m, the cover time for systems
with different size can still be rescaled to follow the same
distribution, as the data points collapse on each other in almost
all χ ranges, although the deviation from Eq. (11) at negative
χ is apparent. This indicates that although the “real” rescaled
distribution function for partial cover time might be different
from the theoretical expectation, the scaling relation Eq. (7)
still holds.

For parallel search, when there are n independent walkers,
the new MFPT 〈T ′

k 〉 becomes 1/n of that for one walker. With
the new set of {〈T ′

k 〉}, the rescaled cover time can be obtained
from Eq. (7) to yield the universal full and partial cover-time
distributions Eqs. (9) and (11). Here we provide numerical
evidence for the validity of the above reasoning. Figure 5
shows the results of both the full and the partial cover-time
distributions when there are five independent walkers in the
simulation systems. It is clear that the distributions from the
simulation agree with the theoretical curves well.

IV. DISCUSSIONS AND CONCLUSION

The full distribution of cover time for random walks on
complex topological structures has been a long-standing issue
with broad potential applications. It has been found widely
and robustly in various homogeneous noncompact random
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FIG. 5. The cover-time distribution when there are five inde-
pendent walkers for the simulation models. (a) The full cover-time
distribution of the 12 systems in Fig. 2. (b) The partial cover-time
distribution of the ten systems in Fig. 3 with dashed and solid lines
for m = 2 and 4, respectively.

walk models that the cover times can be rescaled to follow
the Gumbel distribution [33–37]. These results assume that
the MFPTs are identical or close to each other. However,
in realistic systems such as confined domains or those with
inhomogeneous components [5,40–47,69–73], heterogeneity
is prevailing, leading to broad spans of the MFPT values
[48,74].

In this paper, based on the transfer matrix framework, we
have established the universal distribution in heterogeneous
noncompact random walks for both full and partial cover
processes. Our results show that the rescaled cover times
fall again onto the Gumbel universality class. Thus we step
forward and ground the Gumbel universality of the cover-time
distribution on a much broader field of random walks that are
prevalent in realistic circumstances. The key is the rescaling
relation, Eq. (7), where the complete set of the MFPTs {〈Tk〉}
or their distribution is needed to account for their diversified
values. The results have been corroborated by extensive nu-
merical simulations on 12 random walk models with various
background topologies. Thus our approach is valid for gen-
eralized random walks that can be either standard or biased,
undirected or directed, and can have self-connecting loops.

Note that the requirement of noncompactness is crucial to
our results for both full and partial cover processes. Actu-
ally, it is the most common requirement to develop theories
for cover-time distributions, as only for noncompact random
walks the correlation can be ignored, and the probability ap-
proach can be tackled straightforwardly. For compact random
walks, the correlation cannot be ignored, thus our approach
becomes invalid. Nevertheless, as Figs. 4 and 8 show, when
there is non-negligible correlation, the deviation from the
theory is mostly in the small or negative χ range. This is
comprehensible as only for small or negative χ where the
cover time is short the correlation between subsequent visits is
strong due to the spatial lattice structure that can be attributed
to the low dimensionality, i.e., the walker has a much higher

probability to visit its neighbors than distant sites. For large
positive χ , long cover time indicates that the walker will
traverse the lattice many times before a full cover is accom-
plished, which is analogous to noncompact walk, leading to
good agreement with the Gumbel distribution.

Since heterogeneity is prevailing in realistic random walk
situations, e.g., either due to the spatial confinement on the
2D terrestrial surface or in three dimensions by the cell
membrane, building structure, etc., or due to the inherent
heterogeneity in the social and engineered systems, our results
are expected to have broad applications. For example, our
results can be used as a guideline in the design of searching or
demining algorithms of robots in complicated environments,
or control of the exhaustive information collecting or broad-
casting in heterogeneous cyberspace or constantly evolving
distributed sensing and communicating systems.

As our theory solves the distribution function of the ex-
treme value problems with nonidentical distributions, it may
be exploited in investigating other extreme value problems
such as extreme climate events, robustness of engineered
systems, etc. [39,75–77], with heterogeneous characteristic
spatial or time scales. In addition, the cover process of chaotic
trajectories in discretized phase space is effectively the ergod-
icity issue. Thus our treatment can also be used to estimate
the ergodic time of chaotic dynamical systems for a given
discretization (or observation resolution) of the phase space
with nonuniform natural measures.
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APPENDIX A: FPT DISTRIBUTION
AND APPROXIMATION OF Tk BY 〈Tk〉

In general, the exponential form in Eq. (3) of the distri-
bution of the FPTs to site k is valid only for large FPTs;
therefore, it can be written more accurately as in the large FPT
limit

Fk (t ) ∼ ck exp

(
− t

Tk

)
, (A1)

where ck is a constant. Then the summation of Eq. (5) for
τ 
 1 becomes

τ∑
t=1

Fk (t ) ∼= 1 −
∫ ∞

τ

Fk (t )dt = 1 − ckTk exp

(
− τ

Tk

)
. (A2)

The coefficient ckTk will enter into Eqs. (6) and (7) for the
rescaling relation, i.e.,

χ = − ln
N∑

i=1

ci〈Ti〉e− τ
〈Ti 〉 , (A3)

where Ti has been replaced with 〈Ti〉 for convenience.
The coefficients ci〈Ti〉 will render the calculation much

more difficult. Fortunately, as demonstrated in Fig. 6, Fk (t )
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FIG. 6. For standard random walk on a cube of 3D lattice with
L = 21 and reflective boundary conditions. (a) The distribution of
FPTs to a few representative sites marked in the inset, i.e., corner,
edge center, face center, and body center for circles, hexagons,
squares, and triangles, respectively. (b) A zoom-in of (a) for t <

3000. The curves are Eq. (3) with Tk = 94 891.5, 47 415.5, 23 582.9,
and 11 594.5, respectively, as computed from Dk .

starts to follow a perfect exponential distribution for t � Tk ,
around 0.01Tk or even 0.001Tk . Therefore, Fk (t ) can be ap-
proximated by the exponential distribution well almost in
the whole range, leading to ck = 1/Tk by the normalization
condition. The coefficient ci〈Ti〉 = 1, and Eq. (A3) reduces to
Eq. (7).

Figure 7 compares the MFPT 〈Tk〉 and the characteristic
FPT Tk of standard random walk for representative sites in
a cube of a 3D lattice with reflective boundary conditions.
Figure 7(a) shows that both 〈Tk〉 and Tk almost overlap. Fig-
ure 7(b) plots the relative difference, i.e., |〈Tk〉 − Tk|/Tk . It is
clear that the relative difference is within 2%, indicating that
the approximation of Tk by 〈Tk〉 is valid.

APPENDIX B: DERIVATION OF THE RESCALED FULL
COVER-TIME DISTRIBUTION

For the noncompact random search process, the cover-time
distribution can be estimated by Eq. (4), i.e.,

P(τ ) = 1

N

∑
k,s, k �=s

Fk (τ )

⎡
⎣ ∏

i/∈{k,s}

τ−1∑
t=1

Fi(t )

⎤
⎦, (B1)

FIG. 7. (a) For standard random walk on a cube of 3D lattice with
reflective boundary conditions, the MFPT 〈Tk〉 and the characteristic
FPT Tk for sites along the body diagonal, face diagonal, and the edge
of the cube. Each data point of 〈Tk〉 (empty triangles, squares, and
circles) is the average over 20 000 simulations; Tk (the plus symbols)
is calculated from Dk according to Tk = −1/ ln(λk ), where λk is
the largest eigenvalue of Dk . (b) The relative difference between
〈Tk〉 and Tk .

where Fk (t ) is the probability density of the FPT to site k.
According to the analysis in Sec. II, Fk (t ) is an exponential
function in the large FPT limit, replacing Tk by 〈Tk〉, and one
has

Fk (t ) ∼= 1

〈Tk〉 exp

(
− t

〈Tk〉
)

.

Since τ 
 1, τ − 1 ∼= τ , then the summation
∑

Fk (t ) can be
approximated as

τ∑
t=1

Fk (t ) ∼= 1 − exp

(
− τ

〈Tk〉
)

. (B2)

Substituting the above equation into Eq. (B1), and considering
N 
 1 and that the condition i /∈ {k, s} can also be relaxed, the
term in the square bracket can be approximated as

N∏
i=1

τ∑
t

Fi(t ) ∼=
N∏

i=1

[
1 − exp

(
− τ

〈Ti〉
)]

≈ 1 −
∑

i

exp

(
− τ

〈Ti〉
)

+ 1

2

∑
i �= j

exp

(
− τ

〈Ti〉 − τ

〈Tj〉
)

− · · · . (B3)

Note that the summation in the last term excludes the case i =
j, as i appears only once in the product before the expansion.
This also occurs in higher order terms, where the terms with
identical indices are excluded. However, the number of those
terms is about 1/N of all the terms, and since τ is typically
much larger than 〈Ti〉 and that the most dominant term is the
lowest order term, the above expression can be approximated
by

N∏
i=1

τ∑
t

Fi(t ) ∼= exp

[
−

N∑
i=1

exp

(
− τ

〈Ti〉
)]

. (B4)

The above equation can be used to define a rescaling trans-
formation to obtain the rescaled cover time χ from the original
cover time τ :

exp(−χ ) =
N∑

i=1

exp

(
− τ

〈Ti〉
)

(B5)

or

χ = − ln
N∑

i=1

e− τ
〈Ti 〉 . (B6)

Thus for a given set of {〈Ti〉}, the rescaling relation between
χ and τ is a monotonous deterministic function. Substituting
Eqs. (B4) and (B5) back to Eq. (B1), and noting that from
Eq. (B5)

dχ/dτ =
[

N∑
k

1

〈Tk〉 exp

(
− τ

〈Tk〉
)]

/ exp(−χ ),
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one has

P(τ ) ∼= 1

N

∑
k,s, k �=s

Fk (τ ) exp[− exp(−χ )]

= exp[− exp(−χ )]
N∑

k=1

1

〈Tk〉 exp

(
− τ

〈Tk〉
)

= exp[− exp(−χ )] exp(−χ )dχ/dτ.

(B7)

Since P(τ )dτ = P(χ )dχ , one has

P(χ ) ≡ exp[−χ − exp(−χ )], (B8)

which is the rescaled distribution function.

APPENDIX C: DERIVATION OF THE RESCALED
PARTIAL COVER-TIME DISTRIBUTION

In Sec. II, the partial cover-time distribution is given by

Pm(τ ) =
∑
{Im}

P(τ | /∈ {Im}) Q(τ, {Im}), (C1)

where {Im} = {i1, i2, · · · , im} is a particular set of m sites, and
P(τ | /∈ {Im}) is the time distribution of covering all the other
N − m sites, regardless of whether it has been covered or not
for the sites in {Im}. The function Q(τ, {Im}) is the probability
that the walker does not visit any of the sites in {Im} during
time τ . After enumerating all possible configurations of {Im}
by the summation

∑
{Im}, the partial cover-time distribution

Pm(τ ) is then obtained.
P(τ | /∈ {Im}) is the distribution for a random cover process.

Using Eqs. (B5) and (B8), it can be written as

P(τ | /∈ {Im}) = P(χ | /∈ {Im})
dχ

dτ

= exp[− exp(−χ )] exp(−χ )
dχ

dτ

∣∣∣∣
i/∈{Im}

.

(C2)

Note that

exp(−χ )|i/∈{Im} =
∑

i/∈{Im}
exp

(
− τ

〈Ti〉
)

.

Since m � N , the summation of N − m on the right hand side
will be close to the summation over all the N terms, where the
difference is on the order of m/N . Therefore, exp(−χ )|i/∈{Im} ∼=
exp(−χ ).

Thus

P(τ | /∈ {Im}) = P(τ ) = P(χ )
dχ

dτ

= exp(−χ − e−χ )
dχ

dτ
,

(C3)

which is almost independent of {Im}.
If the unvisited sites are uncorrelated, the probability Q can

be explicitly obtained:

Q(τ, {Im}) =
∏

i∈{Im}

(
1 −

τ∑
t

Fi(t )

)
, (C4)

FIG. 8. Rescaled full cover-time distributions for 2D standard
random walks with reflective boundaries. The cover-time distribution
for each case is evaluated from sampling over 1 × 106 rounds. The
symbols are the data rescaled with Eq. (7), and the thick black curve
is the Gumbel distribution Eq. (9).

where Fi(t ) is the probability density of the FPT to site i.
According to Eq. (B2), Q(τ, {Im}) can be expressed as

Q(τ, {Im}) =
∏

i∈{Im}
exp

(
− τ

〈Ti〉
)

. (C5)

Equation (C1) for Pm(τ ) can then be represented as

Pm(τ ) ∼ exp
(−χ − e−χ

)⎡⎣∑
{Im}

∏
i∈{Im}

exp

(
− τ

〈Ti〉
)⎤

⎦dχ

dτ
.

The summation in the square brackets is over all possible
combinations of m different sites out of the total N sites, for a
total of (

N
m

)
= N × · · · × (N − m + 1)/m!

terms. Note that the number of terms stated above excludes
those with identical indices, which are in general only a small
fraction, i.e., on the order of m/N . For m � N , their contri-
butions can be neglected, and the summation in the square
brackets can be approximated as

1

m!

[∑
i

exp

(
− τ

〈Ti〉
)]m

= 1

m!
exp(−mχ ). (C6)

Then, the uncorrelated partial cover-time distribution is

Pm(χ ) = 1

m!
exp [−(m + 1)χ − exp(−χ )], (C7)

and the normalization condition is satisfied naturally.
When the unvisited sites have non-negligible but still small

correlation, the approximation Eq. (C6) may be inaccurate. As
a consequence, the value of m in Eq. (C7) has to be corrected
to a smaller value m∗, while the same form Eq. (C7) of the
partial cover time may still be valid.

024128-10



UNIVERSAL COVER-TIME DISTRIBUTION OF … PHYSICAL REVIEW E 107, 024128 (2023)

APPENDIX D: THE NECESSITY OF NONCOMPACTNESS

In our derivation of the universal cover-time distributions
and other theoretical treatments, noncompactness is an indis-
pensable condition such that the correlation can be neglected.
When there are non-negligible correlations, Fig. 4 shows
slight deviation from the Gumbel distribution. It would be
interesting to see more clearly the impact of broken non-
compactness. Therefore, we calculate standard random walk
on bounded 2D lattices with reflective boundary conditions,

which is compact. The results are shown in Fig. 8. The
deviation for small or negative χ is obvious. But for large
positive χ , the agreement with the Gumbel distribution is still
good. This is because for large positive χ , the cover time is
long, where the effect of the correlation can be neglected,
while for small or negative χ , the cover time is short, thus
the correlation between subsequent visits is strong, and the
approximation in the derivation of Eq. (4) becomes invalid,
leading to the deviations.
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