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Diffusion in a two-dimensional energy landscape in the presence of dynamical correlations and
validity of random walk model
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Diffusion in a multidimensional energy surface with minima and barriers is a problem of importance in
statistical mechanics and it also has wide applications, such as protein folding. To understand it in such a system,
we carry out theory and simulations of a tagged particle moving on a two-dimensional periodic potential energy
surface, both in the presence and absence of noise. Langevin dynamics simulations at multiple temperatures
are carried out to obtain the diffusion coefficient of a solute particle. Friction is varied from zero to large
values. Diffusive motion emerges in the limit of a long time, even in the absence of noise. Noise destroys the
correlations and increases diffusion at small friction. Diffusion thus exhibits a nonmonotonic friction dependence
at the intermediate value of the damping, ultimately converging to our theoretically predicted value. The latter
is obtained using the well-established relationship between diffusion and random walk. An excellent agreement
is obtained between theory and simulations in the high-friction limit but not so in the intermediate regime. We
explain the deviation in the low- to intermediate-friction regime using the modified random walk theory. The
rate of escape from one cell to another is obtained from the multidimensional rate theory of Langer. We find
that enhanced dimensionality plays an important role. To quantify the effects of noise on the potential-imposed
coherence on the trajectories, we calculate the Lyapunov exponent. At small friction values, the Lyapunov
exponent mimics the friction dependence of the rate.
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I. INTRODUCTION

The relationship between diffusion and friction was first
derived by Einstein in his classic work on Brownian motion
[1] in 1905, where the single-particle transport rate diffusion
(D) was related to friction (ζ ) on the particle by D = kBT /ζ .
This simple relation may define friction, particularly in liq-
uids, aided further by the Langevin equation. In many studies,
the above relation or its generalization is used to obtain fric-
tion, for example to obtain the effects of friction and viscosity
on the rate of a chemical reaction [2,3].

We note that friction is a linear-response function, and
Einstein’s relation is a statement of linear-response theory [2].
These are expected to be valid across systems, although the
nature of friction can be complex in systems such as diffusion
on an energy landscape with maxima and minima. The motion
of a particle in a potential energy landscape finds applica-
tions in many branches of physics, chemistry, and biology to
discuss diverse problems [4–6]. In these examples, diffusion
usually involves crossing barriers in the presence of noise
[7,8].

In some cases, diffusion in a complex energy landscape
can be modeled as a random walk where the transition rate
between the sites (or cells, basins) depends on friction or vis-
cosity. Here diffusion is given by D = (1/2d )ka2, where D is
the value of the diffusion coefficient, d is the dimension of the
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system, a is the distance between two adjacent minima, and k
is the rate of transition between two adjacent sites. When the
rate is inversely proportional to friction, the diffusion inherits
the same frictional dependence as given by Einstein through a
simple random walk model [9,10]. There would appear, how-
ever, to be a nontrivial temperature dependence determined by
certain characteristic features of the barrier that the random
walker needs to surmount. Another example is provided by
Zwanzig’s solution of diffusion in a rugged energy landscape,
discussed further below [11,12]. These models lead to the
following form of the relation between diffusion and friction:

D = kBT

ζ
F (T ), (1)

where the temperature-dependent factor F(T ) contains such
effects of the potential energy surface as the barrier height,
barrier frequency, etc. Equation (1) can be regarded as a
generalization of the celebrated Einstein’s relation between
diffusion and friction discussed above.

As pointed out above, Eq. (1) can be useful in wide-
ranging problems where diffusion occurs in the presence of
a potential energy landscape. However, most general studies
employed only a one-dimensional potential energy descrip-
tion because the established technique of mean first passage
time with an absorbing/reflecting barrier is usually not avail-
able in higher dimensions. There are interesting issues that
have drawn attention. We note that Newman and Stein
earlier had established that diffusion in a one-dimensional
rugged energy landscape could be “pathological” [13]. The
same is removed in higher dimensions. Banerjee et al. have
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confirmed these predictions by employing computer simu-
lations [14]. A theoretical study that generalizes Zwanzig’s
original mean first passage time calculation was presented by
Seki and Bagchi [15], and the new expression for the effective
diffusion coefficient D(δ, σ ) is given by

D(δ, σ ) = D0 exp

(
− δ2

(kBT )2

)/

[
1 + erf

(
δ

2kBT

√
1 − exp(−a2/2σ 2)

)]
. (2)

In this formalism, one-dimensional potential energy U(x)
is composed of a background smooth potential U0(x) and a
rugged potential U1(x), i.e., U (x) = U0(x) + U1(x). Here D0

is the bare diffusion coefficient in the absence of a rugged
landscape. This model assumes that site energies on the lat-
tice positions have Gaussian correlations, i.e., 〈U (0)U (x)〉 =
δ2 exp(−(a2x2/2σ 2)). Here σ is the correlation length, a de-
notes the lattice spacing, kB is the Boltzmann constant, T
denotes temperature, and δ measures the root mean squared
roughness of the potential energy surface. This expression was
found to be quantitatively reliable. Note that the form given
by Eq. (1) is preserved but valid only in the overdamped limit
(high-friction limit).

A systematic study of the combined effects of noise and po-
tential energy surface on diffusion is relatively rare for higher
dimensions. Festa and d’Agliano studied diffusion for a Brow-
nian particle in a periodic field of force in the overdamped
limit [16]. In that particular case, they obtained an eigen-
value solution for the long-time diffusion coefficient, which is
given by

D = a2

2d
[∇ka∇kaλ(k, 1)]k=0, (3)

with the eigenvalue taking the form λ(k, α) = kBT
ζ

�(k, α).
Here � represents the dimensionless non-negative parame-
ter and depends on the characteristic nature of the potential
energy surface. In Eq. (3), d denotes the dimension, α is a
band index familiar in the quantum theory of solids, k denotes
a generic vector of the reciprocal space ranging in the first
Brillouin zone, and a is the interplanar spacing of a crystal
[16]. This exciting study bears a resemblance to Langer’s
well-known analysis of rate across a barrier in a multidimen-
sional potential energy surface [17]. In Langer’s analysis, the
rate is also given by an eigenvalue that defines the unstable
mode and applies to the overdamped limit.

In recent years, there have been impressive developments
in the numerical evaluation of the multidimensional free-
energy surface [18–22]. Many of these studies were motivated
by the pioneering analytical studies of Onuchic and Wolynes,
who modeled protein folding as a configuration space diffu-
sion on a rugged two-dimensional free-energy surface where
the collective variables were the size of the protein and the
contact order parameter [4,8]. Most of the recent numerical
calculations, such as protein folding and protein association-
dissociation reactions, have used metadynamics, umbrella
sampling, and more sophisticated techniques, and they con-
centrated mainly on two-dimensional free-energy surfaces
[23,24]. A substantial amount of discussion has focused on the
criteria for selecting the appropriate order parameters [25,26].

In our earlier work, we discussed those aspects in the context
of insulin dimer dissociation [27,28]. We observed that the
choice of appropriate order parameters might depend on the
stage of the complex reaction. While at significant separation,
the center-to-center distance is the desired order parameter.
More specific quantities, such as contact between two helices,
each from one monomer, provide a better description at close
separation.

While substantial effort has been devoted to calculating
the multidimensional free-energy surface, less effort has been
directed toward the calculation of the rate or diffusion. Recent
rate theory developments suggest that frictional effects arising
from a solvent can influence the reaction rate considerably
along with barrier height [29,30]. As we have experienced
in the study of one-dimensional activated barrier crossing
dynamics, where the frictional effects can reduce the rate
by more than one order of magnitude, similar effects can be
operative in multidimensional barrier crossing dynamics [29].

In the present work, we study the diffusional dynamics of a
Brownian particle in a periodic and continuous-potential ana-
log of regular Lorentz gas where the potential energy surface
in two dimensions is given by [32]

V (X,Y ) = ε
[
cos

(
X + Y/√

3
)

+ cos(X − Y/√
3) + cos

(2Y/√
3
)]

. (4)

Here ε is the energy scaling constant described later. The
potential function is depicted in Fig. 1. It is evident that a study
of diffusion in this periodic cosine potential can also be rele-
vant to various applications such as superionic conductors, the
motion of adsorbates on crystal surfaces, polymers diffusing
at the interfaces, molecular graphene, etc. [31–33]. Moreover,
as we demonstrate, even such an apparently simple system can
exhibit rich dynamical features.

In this work, we ask the following questions:
(i) What is the nature of diffusion in the zero- and very

low-friction limit when the migration of a tagged particle
depends on the details of the potential energy surface? How
do we characterize the emergence of diffusion? For diffusion
to emerge, the dynamical system must become chaotic.

(ii) Is it possible to discuss chaos quantitatively for this
system? Does the divergence rate between two trajectories in
the phase space exhibit a similar dependence on frictionlike
diffusion?

(iii) If diffusion is found to exist, can we describe it as a
random walk model? It is commonly believed that diffusion
should have an underlying random walk picture.

(iv) How do we analytically calculate the diffusion coeffi-
cient values as we vary noise and temperature?

(v) How do we estimate the escape rate of the Brownian
particle from the minimum of the initial cell by employing
multidimensional rate theories and connect it with diffusion?

(vi) Is it possible to derive a scaling relation between
diffusion and entropy starting from the basic principles of
statistical mechanics for this system?

We obtain the answers to the above questions using a mix
of analytical and numerical techniques.

The rest of the article is organized as follows. In Sec. II, we
detail the studied system and simulation methodology. Section
III A presents the nonmonotonic behavior of the noise-driven
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FIG. 1. (a) A schematic representation of the two-dimensional
potential energy function defined in Eq. (4). The range and color
codes are given on the right side of the plot. (b) The time evolution
of a long trajectory is shown on the two-dimensional representation
of the potential energy function. Here the yellow line represents the
trajectory of a Brownian particle starting at the minimum of a cell.
The red circle represents the initial configuration of the particle in the
phase space. Note that the trajectory makes multiple returns to the
initial cell, indicating the presence of correlations, discussed further
in the text. Here X and Y are in the reduced units.

diffusion against friction. Section III B measures the chaos by
computing the Lyapunov exponent. Section III C calculates
the barrier crossing rate using different theoretical and nu-
merical schemes. In Sec. III D, we validate the random walk
model in the presence of crossing and recrossing. We adopt
a modified random walk formalism to address the long-range
correlated returns, specifically in the low-friction regime in
Sec. III E. A discussion on the exponential scaling relation be-
tween diffusion and entropy for a particle following Langevin
dynamics is presented in Sec. III F. Finally, Sec. IV summa-
rizes our work and draws some general conclusions.

II. SYSTEMS AND SIMULATIONS

In our system, the Brownian particle moves on a two-
dimensional periodic potential given by Eq. (4), and the
equation of motion is governed by the ordinary Langevin

equation [Eq. (5)],

dv

dt
= −ζv + 1

m
F (X,Y ) + R(t ), (5)

with 〈R(t )〉 = 0, 〈R(t )R(t ′)〉 = 2ζkBT δ(t−t ′).
Here v denotes the velocity of the particle at time t ,

F(X, Y) is the two-dimensional force experienced by the
tagged particle, m is the mass of the particle, ζ denotes
friction coefficient, and the noise R(t) denotes the random
or fluctuating force. The fluctuating force arises from oc-
casional impacts of the Brownian particle with molecules
of the surrounding medium. Therefore, the noise R(t) is
a centered Gaussian white noise with the covariance of
2ζkBT δ(t−t ′). The fluctuation-dissipation theorem relates the
strength of random noise (B) with the coefficient of friction
(ζ ) via the relation B = ζkBT . Temperature enters the calcu-
lation through the fluctuation-dissipation theorem described
above [34,35].

We project the potential energy function defined in Eq. (4)
in the two-dimensional X-Y plane, and we find that each cell
contains a minimum at the center of the triangle, maxima
at the three corners of the triangle, and saddle points at the
midpoints of the edges, as shown in Fig. 1(b). Energies of the
maxima, minimum, and saddle points of each cell are given
by 3.0ε, −1.5ε, and −1.0ε, respectively. Initially, a Brow-
nian particle is placed near the minimum of the triangular
cell to have an energy-minimized configuration, as shown
by the red circle in Fig. 1(b). The velocity of the particle
is assigned according to the equilibrium Maxwell distribu-
tion at a fixed temperature. We carry out all the analyses
for 2000 different initial configurations. We use Gear’s fifth-
order predictor-corrector algorithm to integrate the equation
of motion of the particle because of its stability throughout
the entire friction range with time step 0.001τ [36,37], where
τ =

√
(mσ 2/ε) is the unit of time with m the mass, σ is

the unit of length, and ε is the unit of energy. In our study,
we follow the conventional way of dealing with the reduced
quantities in molecular-dynamics simulation, and we stick to
that throughout the work. We perform all the calculations for
2000 different initial configurations to obtain a statistically
significant and reproducible result at two reduced tempera-
tures, T ∗ = 0.1 and 0.2, with σ = 1, ε = 1, and m = 1. We
basically study a point particle here. A virtual size or mass is
provided in order to make a connection to the real units.

III. RESULTS AND DISCUSSIONS

A. Nonmonotonic behavior of noise-driven diffusion

The diffusional dynamics of a particle in this system are
complex due to a refocusing of trajectories caused by a con-
cave curvature in the potential energy surface, as shown in
Fig. 1(b). This is to be regarded as the opposite to disper-
sion caused by a convex surface. This concavity causes an
additional, long time (as opposed to short time, collisional)
trapping of the trajectories, causing back-and-forth journeys
between the same two cells. In an isolated system where the
existence of diffusion is solely the consequence of interactions
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FIG. 2. The plot of MSD against time for different values of fric-
tion at reduced temperatures: (a) T ∗ = 0.1 and (b) T ∗ = 0.2. After a
short ballistic motion, MSD grows linearly with time in both cases.
The slope of the plot in the linear regime provides a measure of the
self-diffusion coefficient, which displays a nonmonotonic behavior
against friction.

with the potential energy surface, such refocusing lowers dif-
fusion significantly.

1. Diffusion in the presence of friction

This subsection demonstrates the diffusion behavior in the
presence of friction at two reduced temperatures, T ∗ = 0.1
and 0.2. We calculate the self-diffusion coefficient (D) of the
Brownian particle using Einstein’s relation between D and
the mean-square displacement (MSD). In two dimensions, the
self-diffusion coefficient is defined by

D = lim
t→∞

〈(r(t ) − r(0))2〉
4t

, (6)

where r(t ) is the position of the particle at time t, and an-
gular brackets indicate the ensemble average. In Fig. 2, we
plot MSD against time for different values of friction at two
reduced temperatures, T ∗ = 0.1 and 0.2. In both figures, we
observe that MSD grows linearly with time after the corre-
lation time, and its slope in the linear regime provides the
self-diffusion coefficient [Eq. (6)].

In our study, both the inertia effect and the characteristic
nature of the potential energy surface play a vital role in in-
ducing correlation in the system. We plot the well-converged
diffusion values against friction (i.e., in the range ζ ∗ � 0.05,

where the noise strength is sufficient to make the motion
diffusive) in Fig. 3 at two reduced temperatures. The results

FIG. 3. Variation of self-diffusion coefficients against friction (in
the range 0.05–5.0) at two reduced temperatures (a) T ∗ = 0.1 and (b)
T ∗ = 0.2. We estimate the self-diffusion coefficient of the Brownian
particle by employing Eq. (6), and we plot it against friction here.
Diffusion exhibits a nonmonotonic dependence on friction in both
cases. The inset shows the variation of D* as a function of friction,
specifically in the low-friction region. The line joining the data points
is provided as a guide to the eyes.

are expressed in dimensionless units where [38]

E∗ = E

ε
, T ∗ = kBT

ε
, X ∗ = X

σ
, Y ∗ = Y

σ
,

τ =
√

mσ 2

ε
, t∗ = t

τ
, D∗ = Dτ

σ 2
, and ζ ∗ = ζ τ.

Here D∗ denotes the reduced self-diffusion coefficient, ζ ∗
denotes the reduced friction, E* is the reduced total energy,
T* is the reduced temperature, and t∗ indicates the reduced
time.

Figure 3 shows an interesting nonmonotonic friction de-
pendence of the diffusion at two different temperatures. A
similar kind of nonmonotonic behavior of diffusion is ob-
served in an earlier study where a tagged particle moves
among fixed spherical crowders [39]. In this system, the
tagged particles interact with the crowders through a com-
bination of hard-core repulsion and short-range attraction.
Effective diffusion is found to exhibit a nonmonotonic be-
havior against the strength of the attractive potential between
crowders and tagged particles. In the presence of a large
attraction, it is perhaps not too difficult to understand that
diffusion decreases with the increase in the strength of at-
traction. The accelerated diffusion in the presence of small
attraction is reminiscent of the phenomenon of facilitated
diffusion. It should be noted that in the above-mentioned
work, all the calculations are performed in the overdamped
limit only. However, in our work we investigate the diffusive

024127-4



DIFFUSION IN A TWO-DIMENSIONAL ENERGY … PHYSICAL REVIEW E 107, 024127 (2023)

dynamics of the Brownian particle from the low-friction limit
to the high-friction limit. This nonmonotonic dependence of
diffusion on friction has two nontrivial origins.

(i) Because of recrossing induced by the concave nature of
the potential energy surface superimposed on the maximum,
diffusion is low in the very low-friction regime. There is
a proportional relation between friction and noise following
the fluctuation-dissipation theorem [2]. The initial increase
in diffusion with friction happens because the particle enters
the energy-controlled region where the sole energy source
comes from colliding with the surrounding solvent. Noise
destroys the coherence and serves to increase diffusion as we
move from low- to intermediate-friction regions. However, in
the overdamped limit, localization of the trajectories happens
in configurational space, which lowers diffusion (discussed
later). This is why we would not be observed the nonmono-
tonic behavior in the overdamped limit. This is somewhat
novel and could be present in some cases.

(ii) A second reason (discussed more later) is the non-
monotonic friction dependence of the barrier crossing rate.
This is a two-dimensional version of Kramers’ turnover, well-
known in chemical kinetics [30,40]. These two are intimately
connected.

We can obtain the self-diffusion coefficient also by inte-
grating the unnormalized velocity autocorrelation. According
to the Green-Kubo formalism, D is defined as

D = 1

d

∫ ∞

0
〈v(t ) · v(0)〉dt, (7)

where d indicates the dimension of the system, and v(t)
is the velocity vector of the particle at time t . We define
the normalized velocity autocorrelation function as Cv (t ) =
〈v(0) · v(t )〉/〈v(0)2〉, and we plot it against time at two re-
duced temperatures for different friction values in Fig. 4. We
observe that Cv(t ) for the system without friction shows a
pronounced long-time oscillatory behavior, which gradually
decreases with the increasing strength of friction. The oscil-
latory behavior of the velocity autocorrelation function is a
consequence of the combined effect of inertia and potential
energy landscape. However, it is vastly dominated by the
characteristic nature of the potential energy landscape. This
exciting observation brings about the following subsection to
explore the diffusional dynamics of a particle in the absence
of friction in more detail, where the inertia effect plays no
role. We perform the Fourier transformation of the velocity
autocorrelation function, and we find that the peak height at
a comparably higher frequency gradually decreases with the
increase in friction at two temperatures (see the Supplemental
Material [65] for details, SM-S1).

2. Study of diffusion in the absence of friction

In the study of diffusion phenomena, diffusion is inevitably
correlated with friction through Einstein’s relation and the
Langevin equation. However, one can observe diffusion even
in the absence of friction or noise exerted externally. The
appearance of diffusion in a deterministic system (i.e., in the
absence of noise) is intimately connected with the existence
of ergodicity and chaos. The emergence of ergodicity in a
deterministic system was studied by Bunimovich and Sinai

FIG. 4. (a) The plot of the normalized velocity autocorrelation
function Cv (t∗) against time at a reduced temperature T ∗ = 0.1.
Here, we show the variation of Cv (t∗) for several friction values
(like ζ ∗ = 0.0 , ζ ∗ = 0.07, ζ ∗ = 0.3, ζ ∗ = 0.5, and ζ ∗ = 0.7).
(b)The same is plotted at a reduced temperature T ∗ = 0.2. In (a) and
(b), we observe the oscillatory nature of Cv (t∗), which is prominent
in the absence of friction, and gradually diminishes with the increas-
ing strength of friction.

in a two-dimensional system of hard disks [41]. Machta and
Zwanzig studied similar issues in a regular Lorentz gas [42].

In the absence of friction, the system becomes isolated
from the surroundings, and Newton’s equation governs the
equation of motion of the particle. In this limit, the particle
gets trapped near the minimum of the initial triangular cell
forever, as is evident in Fig. 7(a), when its total energy is
below the saddle point energy, i.e., ES = –1.0ε. However, the
system with energy just above the saddle energy exhibits a
coherence where the trajectory gets refocused after reaching
the end of the adjacent cell and turns back to shuttle between
the two cells [as shown in Fig. 7(b)]. As a result, the motion
becomes chaotic, and diffusion exists in this system. Towards
this goal, we investigate the variation of the normalized ve-
locity autocorrelation function against time with increasing
strength of the total energy in Fig. 5.

It is important to note that we perform an average over
only the initial Maxwell distribution in this limit. In Fig. 5,
we observe that as we increase the total energy of the particle,
the oscillatory nature of the velocity autocorrelation function
decreases. Increasing the strength of the total energy lowers
the probability of getting trapped near the minimum of a
cell. This observation can be quantitatively rationalized by
performing a Fourier transformation of the velocity autocorre-
lation function, as demonstrated in our earlier studies [32,43].
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FIG. 5. The plot of the normalized velocity autocorrelation func-
tion Cv (t∗) against time in a deterministic isolated system. We
observe that with the increasing total energy of the system, the
velocity correlation function starts converging at a faster rate. The
oscillations are mainly due to trapping near the minimum of a trian-
gular cell. The oscillatory nature of the velocity correlation functions
gradually decreases with energy since the probability of getting
trapped decreases with the increasing strength of the total energy.

Since we observe oscillations in the isolated system where
inertia plays no role, we can conclude that the characteristic
nature of the potential energy plays a dominating role in
inducing oscillations over inertia effects in the presence of
friction. The existence of diffusion in the absence of friction
requires the total energy of the particle to be higher than the
saddle energy. To extract a well-converged diffusion in this
regime, one needs to carry out a long simulation.

B. Onset of chaotic motion and crossover behavior in a
Lyapunov exponent

In the absence of friction, the system studied is fully de-
terministic. In this limit, the trajectories are getting strongly
mixed within each trapping region in the configurational phase
space because of the characteristic nature of the potential
energy surface. This can happen in a deterministic system
when collisions between the particle and the scatterer become
dispersive. As a result, the motion of the particle becomes
chaotic. On the other hand, noisy and chaotic motions are
two distinct phenomena. In a noisy system, sensitivity to
initial conditions is due to a mechanism fundamentally differ-
ent from deterministic chaos. Therefore, a positive Lyapunov
exponent cannot be considered a hallmark of chaos in a
stochastic system. We indeed require sophisticated mathe-
matical tools to discriminate the two phenomena [44,45].
However, the present study does not investigate these two in
great detail since it aims to study the role of noise on the dif-
fusional dynamics and kinetics of the tagged particle moving
on the two-dimensional periodic potential energy landscape.

To measure the average exponential rate of divergence or
convergence of near orbits in the phase space, it is convenient
to compute the Lyapunov exponent (Ln) [46–48]. We study the
Lyapunov exponent to understand the character of the motion.
In this context, we employ a “shadow trajectory” formalism

to estimate Ln, as given by [48]

Ln = 1

n
t

n∑
i=1

ln
di

di−1
. (8)

To implement this formalism, we initially choose two ar-
bitrary close points separated by a distance (d0), and we
monitor their mutual separation (di) with time. Here di is the
distance between two trajectories at the ith time step, and di–1

is the same at the (i − 1)th time step. In Eq. (8), (n) counts
the step number, and 
t is the time interval between two
steps. It should be noted that, during the process, we need to
renormalize the distance between the two selected trajectories
periodically. We detail the numerical procedure employed to
renormalize the distance between two close trajectories in
Sec. SM-S3 of the Supplemental Material (SM) [65]. After
each 10-time-step interval, we rescale the separation vector
to its initial length. This procedure generates a time average
over the two trajectories that start at close proximity in the
phase space. If we plot Ln against n, it saturates after initial
oscillations, allowing Ln to be estimated unambiguously, as
shown in Fig. S4 of the SM [65].

Figure 6 plots Ln against friction at two reduced tem-
peratures (i.e., T ∗ = 0.1 and 0.2). The calculated Lyapunov
exponent exhibits an interesting dependence on friction. In
Fig. 6, we observe two significant trends. In the energy-
controlled regime (i.e., at low friction), Ln rises sharply with
friction. However, in the intermediate- to high-friction region,
the calculated Ln exhibits a slow decay with the increase in
friction. In the inset, we show the variation of Ln with friction,
emphasizing the overdamped limit. The inset shows that the
divergence rate between two trajectories decreases with the
increase in friction in the high-friction limit.

In the energy-controlled regime, the motion of the Brow-
nian particle is primarily dictated via collisions with the
surrounding solvent molecules. Therefore, the divergence rate
of the two close trajectories increases with the slight increase
in friction in this regime. However, beyond a particular value
of friction, the system enters the diffusion-controlled regime
where frictional effects slow down the motion of the parti-
cle. As discussed later, the analogy is similar to Kramer’s
turnover problem. In this regime, the frictional effects favor
the localization of the trajectory in the phase space, which
tends to reduce the Lyapunov exponent slightly. We estimate
the Lyapunov exponent of the isolated system in order to
capture the role of the potential energy surface when the
total energy of the particle (E = −0.99ε) exceeds the saddle
point energy (i.e., ES = −1.0ε), as shown by the black dotted
line in Fig. 6. We find that the Lyapunov exponent of the
system following Langevin dynamics is higher than that of
the isolated system. This is expected, and we take this as a
signature of correct dynamical behavior. In the presence of
friction, the combined effect of the potential energy surface
and noise plays an essential role in increasing the divergence
rate of the two trajectories.

To make the discussion more concrete, we carry out tra-
jectory analysis in Fig. 7 for some specific friction values. In
the absence of friction and with an energy content below the
saddle point energy, the particle remains trapped near the min-
imum of the initial cell, as shown in Fig. 7(a). However, the
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FIG. 6. Plot of the calculated Lyapunov exponent (Ln) against
friction at two reduced temperatures (a) T ∗ = 0.1 and (b) T ∗ = 0.2.
Here we employ Eq. (8) to obtain the Lyapunov exponent for differ-
ent friction values at two reduced temperatures. We observe that in
the low damping regime, Ln increases with friction sharply, whereas
in the overdamped regime, Ln does not seem to increase rapidly
due to the slowness of the medium. The inset shows the variation
of Ln against friction, specifically in the high damping regime. In
the overdamped limit, frictional effects favor the localization, which
reduces the divergence rate of the two close trajectories in the phase
space. This is why Ln decreases with the increase in friction in this
limit. The black dotted line measures the Lyapunov exponent for the
isolated system when the total energy of the particle (E = −0.99ε)
exceeds the saddle point energy (i.e.,ES = −1.0ε) in both (a) and
(b). This suggests that the motion of the particle is chaotic even in
the absence of noise due to the characteristic nature of the potential
energy surface. In (a) and (b), the line joining the data points is
provided as a guide to the eyes.

particle can explore the configurational space without friction
when the total energy is above the saddle energy, as shown in
Fig. 7(b). In Fig. 7(c), we plot the trajectory of the Brownian
particle at friction ζ ∗ = 0.3. We choose this friction because,
at this friction, diffusion becomes maximum, as shown in
Fig. 3.

It is evident in Fig. 7(c) that the particle explores the phase
space at a faster rate than in the first case within the same
time. In contrast, the particle in the overdamped limit (like
at ζ ∗ = 10.0) shows localization in the configurational phase
space [as shown in Fig. 7(d)]. The trajectories shown in Fig. 7
are much longer than the natural timescales.

There is one more exciting aspect of the role of noise, as
discussed in detail in SM-S5 [65]. As is evident in the time
trajectory of the total energy (i.e., Fig. S5 of the SM [65]), the
Brownian particle exhibits a nonzero escape rate even when its

TABLE I. We use the exponential function a0 exp(− t
τ

) to fit
the normalized energy autocorrelation function, i.e., 〈δE (0)δE (t )〉

〈δE (0)δE (0)〉 at
two reduced temperatures, T ∗ = 0.1 and 0.2. We report the fitting
parameters here in reduced units.

T ∗ = 0.1 T ∗ = 0.2

ζ∗ τ ζ∗ τ

0.05 18.57 0.05 15.67
0.07 16.12 0.07 11.49
0.09 14.54 0.09 8.80
0.1 10.88 0.1 8.70

total energy is less than the saddle energy (i.e., ES = −1.0ε

in this case). In Fig. 8, we plot the fluctuation of energy
relaxation 〈δE (0)δE (t )〉 against time, where δE (t ) at time t
is given by E (t ) − Ē .

Here Ē is the average energy, and E(t) denotes the total
energy of the particle at time t . From the plot, we observe that
the correlation function for the fluctuations of energy relaxes
faster with increasing noise strength. We fit the normalized
autocorrelation of energy fluctuation given by 〈δE (0)δE (t )〉

〈δE (0)δE (0)〉 with
the exponential function, and we report the fitting parameters
in Table I at two reduced temperatures (i.e., T ∗ = 0.1 and 0.2).

According to the fluctuation-dissipation theorem, noise in-
duces dissipation and causes the system to relax back to the
equilibrium state. This is why the relaxation time decreases
with the increase in friction. This is a classic example of the
role of noise. We perform Fourier transformation of energy
relaxation and plot it in the frequency plane (i.e., Fig. S6 of
the SM [65]) to understand the effects of correlated motions.

C. Calculation of the escape rate: Comparisons

It is essential to estimate the escape rate of the tagged
particle exhibiting the correlated random walk on a periodic
potential energy surface. The primary reason for calculating
the escape rate is twofold. As we know, in any system, if a dif-
fusion constant exists, one should be able to identify a random
walk in a coarse-grain sense. This leads us to probe the regular
random walk picture (D = 1/4 k a2), given that we do have,
in our model, the lattice point or the cell rather well-defined.
Here “a” denotes the distance between two adjacent minima,
and k is the escape rate. Therefore, one needs to compute the
escape rate from one cell to an adjacent cell to validate the
regular random walk model. On the other hand, it is advan-
tageous to have a simple Hamiltonian system like this where
all the parameters required for the rate calculation are read-
ily available, and an accurate estimation of the rate constant
from the simulation is also feasible. Due to the simplicity of
this chosen Hamiltonian system, we can compute the escape
rate accurately by invoking both theoretical and simulation
formalisms [43]. To calculate the rate of a barrier crossing pro-
cess, we require several parameters such as well frequencies,
barrier height, barrier frequency, friction, etc. [17,37,49]. Let
us assume in our isotropic two-dimensional system that X is
the reaction coordinate and Y is the nonreactive coordinate.
We take the second derivative of the potential given by Eq. (4)
with respect to the reactive and the nonreactive coordinates at
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FIG. 7. The time evolution of a long trajectory (i.e., t ∗ = 5000) of the tagged particle on the two-dimensional potential energy surface
shown by the red lines at a reduced temperature T ∗ = 0.1. Here X and Y are in the reduced units (i.e.,X∗ = X/σ , Y ∗ = Y/σ ; we have omitted
the superscript * to simplify the notation throughout the study). (a) In the absence of friction, the particle with total energy below ES gets stuck
inside the original cell, indicating that noise is mandatory for the motion of a particle in this case. (b) We show the trajectory of the particle
with total energy (here E = –0.99 ε) above the saddle point energy ES in the absence of friction. The particle explores the phase space after
spending a long time in each trap region. (c) We show the trajectory of the particle at friction ζ∗ = 0.3. We choose this particular friction
because, at this friction, the diffusion becomes maximum, as discussed before. It clearly shows that the particle moves at a faster rate on the
potential energy surface. (d) We demonstrate the trajectory of the particle in the comparably high-friction limit (i.e., ζ∗ = 10.0 in this case).
We observe localization in the configurational space.

the minimum of the initial cell and the saddle to extract well
frequency, barrier frequency, etc. In Table II, we report all the
parameters required for the theoretical estimate of the escape
rate in the reduced unit.

Theoretically, one can estimate the multidimensional rate
in several ways [29,49–56]. Our primary aim is to calcu-
late the escape rate for the barrier crossing process going
from the minimum of the starting cell to the nearby cell
through the available saddle located at the midpoint of the
edge. Therefore, the product well does not signify the entire
region outside the initial cell, and it is just the minimum of the

TABLE II. We report the parameters required to calculate the
rate along the reactive and the nonreactive coordinates. Here, all the
parameters are provided in the reduced units.

Well frequency along X,ωw
X 1.0 τ−1

Well frequency along Y, ωw
Y 1.0 τ−1

Barrier frequency along X,ωb
X 0.82 τ−1

Barrier frequency along Y,ωb
Y 1.41 τ−1

Barrier height between the 0.5ε

saddle and the minimum

adjacent triangular cell separated by a saddle (ES = −1.0ε).
Due to the isotropic nature of the periodic system, the double-
well approximation is valid, allowing us to employ standard
theoretical methods such as multidimensional transition state
theory, Kramers-Langer theory, etc. We employ the multidi-
mensional rate theory given by Langer to obtain the escape
rate, which reads [17,29]

kL = λ+
2π

[
det Ew

|det Eb|
]1/2

exp

(
− E†

kBT

)
, (9)

where λ+ is the only positive root of the equation
det(λI + EbD) = 0. Here D denotes the diffusion matrix, and
Ew and Eb are the symmetric matrices containing the second
partial derivatives of the potential energy at the minima of
the initial well and the saddle point, respectively. In Eq. (9),
E† denotes the activation barrier. We estimate the rate using
Eq. (9), and we plot it against friction in Fig. 9, as shown by
the green line at two different reduced temperatures, T ∗ = 0.1
and 0.2. In the limit of zero friction, Eq. (9) reduces to the
transition state theory rate [given by Eq. (12)] kTST, as shown
by the black dotted line in Fig. 9. Since the transition state
theory (TST) formalism neglects the effects of friction, kTST
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FIG. 8. Variations of the unnormalized energy relaxation func-
tion against time at two reduced temperatures (a) T ∗ = 0.1 and
(b) T ∗ = 0.2. It is observed that the relaxation of energy fluctuations
〈δE(0)δE(t )〉 becomes faster with the increase in friction in both
cases. Exponential fitting parameters are provided in Table I.

remains constant throughout the friction regime, as shown in
Fig. 9.

Now, we turn to compute the escape rate directly from the
simulation. There are several ways one can estimate the rate
now from simulations.

(i) We can fit the population decay profile to a first-order
exponential decay function. We shall refer to the rate obtained
by this procedure as the phenomenological rate.

(ii) One of the important methods to get the escape rate is
the mean first passage time (MFPT) formalism. In the MFPT
(or first-order decay) formalism, we neglect the effects of the
long-time correlated returns on the escape rate [57]. We, of
course, include the immediate Kramers-type recrossing by
placing the barrier away from the saddle. We discuss the
variation of the escape rate obtained via the MFPT formalism
against friction in more detail in SM-S7 [65].

(iii) To take into account the effect of long-range cor-
relations, one can employ the method first introduced by
Yamamoto and popularized by Chandler, and also used by
Berne et al., etc. [58].

We know that recrossing through the saddle reduces the
escape rate. However, here the recrossing has a different origin
in our context.

According to the Yamamoto-Chandler formalism, we in-
troduce a correlation function to take into account the effects
of recrossing, which is defined as [58–60]

C(t ) = 〈h(0)h(t )〉
〈h(0)〉 . (10)

FIG. 9. Variation of the escape rate (k/kTST) against friction at
two reduced temperatures (a) T ∗ = 0.1 and (b) T ∗ = 0.2. Here kTST

denotes the two-dimensional transition state theory rate given by
Eq. (12), and it is shown by the black dotted line. We use Langer’s
multidimensional rate theory to obtain the escape rate theoretically,
as shown by the green line, to consider the effect of friction. The
blue line connecting the brown data points indicates the variation
of the rate obtained directly from simulation using the population
decay formalism introduced by Yamamoto and Chandler. We have
employed this formalism to consider the effect of long-time recross-
ing through the saddle. The line joining the data points is provided
as a guide to the eyes.

Here h(t ) is a Heaviside function, which is one when the
particle is inside the original cell and becomes zero whenever
the particle is outside the original cell. It is noted that h(0)
always assumes the value of unity by this definition. For
the rare transition between the two cells, C(t) approaches as
C(t ) ≈ 〈h〉(1 − e−t/τrxn ), where τrxn = (k1 + k−1)−1. Here k1

and k–1 denote the forward and backward rates, respectively.
If the reaction time τrxn is much larger than the molecular time
τmol, there exists a time, i.e., τmol < t � τrxn, in which C(t)
grows linearly like C(t ) ∼ k1t . Consequently, reactive flux
k(t ) = dC(t )

dt exhibits a plateau region whose value determines
the forward rate constant k1. According to this definition, we
calculate the forward rate constant and plot it against friction
at two reduced temperatures, as shown by the brown points in
Fig. 9. Simulation results show a nonmonotonic dependence
of rate on friction, unlike theoretically predicted results.

In the limit of zero friction, the transition state theory or
Kramer’s theory fails for the following reasons [37,44,46].
When the friction is very low, the system fails to acquire
the energy required to cross the barrier, as the sole energy
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source via colliding with the surrounding solvent molecules
decreases significantly in this limit. Therefore, unlike the
high-friction limit, this limit has a proportional relation be-
tween friction and rate. Several attempts have been made to
modify Kramer’s theory to overcome the turnover issue in the
low-friction limit [45,61]. In this regard, Skinner and Wolynes
derived an expansion of rate in the powers of the friction
coefficient, given by [62]

k = 2πζ

ωb
X

⎡
⎣1 +

2πζ

ωb
X

2
+

( 2πζ

ωb
X

)2

2π

⎤
⎦

−1

kTST. (11)

Here kTST denotes the two-dimensional transition state the-
ory rate constant, and it is given by [63]

kTST =
(

ωw
Y

ωb
Y

)
ωw

X

2π
exp

(
− E†

kBT

)
. (12)

In Eq. (12), ωw
X is the well frequency along the reactive

coordinate X, ωw
Y is the frequency near the well along the

orthogonal nonreactive coordinate Y, and ωb
Y denotes the har-

monic frequency associated with the barrier along Y. In the
overdamped limit, the multidimensional rate expression given
by Eq. (9) reduces to the following equation:

kSL =
(

ωb
X

ζ

)
kTST. (13)

Equation (13) is popularly known as the Smoluchowski
rate [9]. The regime where the diffusion or escape rate shows
an inversely proportional relation with friction is known as
the overdamped limit. From Fig. 9, it is clear that simulation
results start converging with the theoretical predictions as we
move to the overdamped regime. This is due to the reduction
of the long-range correlated returns in the overdamped limit,
discussed in the next section.

D. The random walk model estimates and comparisons

This section compares the diffusion obtained via a regular
random walk model with the one directly obtained from simu-
lation. According to the regular random walk model, diffusion
(D) is related to the rate constant (k) via the relation [49]

D = 1

2d
ka2.

Here, d denotes the dimension of the system, and a is
the distance between the two adjacent minima. When the
transitions between traps are uncorrelated, the random walk
model can be used without approximation. However, these
criteria are satisfied only when the particle spends sufficient
time in each trapping region to forget its initial conditions.
On the other hand, in the presence of correlation, the random
walks traces the same path repeatedly by recrossing through
the saddle point boundary. This makes the general expression
D = (1/4) ka2 invalid. We shall come to this point in the next
section.

On the other hand, we can directly calculate the escape
rate (k) of the particle from the simulation. We employ the
formalism introduced by Yamamoto and Chandler to calculate
the escape rate, considering the effects of correlated returns.
We then extract the diffusion coefficient value by invoking the

FIG. 10. The plot of the self-diffusion coefficient against friction
at two reduced temperatures: (a) T ∗ = 0.1 and (b) T ∗ = 0.2. The
blue line connecting the brown data points represents the variation
of the diffusion against friction obtained from the mean-square dis-
placement (MSD) by the Langevin dynamics simulations. The line
(blue trace) joining the data points is provided as a guide to the eyes.
In theory, we employ the regular random walk model (RW), i.e.,
D = 1/4 ka2, to obtain the diffusion where the rate (k) is extracted
from different theoretical formalisms. The purple line (model RW1)
shows the variation of diffusion against friction where k is predicted
by Eq. (11)—the expression of Skinner and Wolynes. Similarly, we
plot D obtained via the regular random walk model against friction,
where k is calculated from simulation by employing the formalism
introduced by Yamamoto and Chandler (model RW2, shown by the
red line connecting the green data points). The line (red trace) joining
the data points is provided as a guide to the eyes. From the plot, we
observe that the random walk model predicts the diffusion well as we
move to the overdamped limit. This is because, in the high-friction
limit, noise destroys the correlated motion of the particle. But the
theories fail in the intermediate-friction regime.

regular random walk model, as shown by the green circles in
Fig. 10 (model RW2). We also obtain the diffusion using the
regular random walk model, where Eq. (11), the rate theory of
Skinner-Wolynnes (SW), provides the escape rate [62]. The
purple line represents the variation of this diffusion (model
RW1) against friction. In Fig. 10, the blue line connecting
the brown data points shows the variation of diffusion against
friction obtained directly from simulation via MSD.

The plots presented in Fig. 10 show that the regular ran-
dom walk model with rates obtained from both theory and
simulation predicts the diffusion satisfactorily only in the
high-friction regime. This is due to the fact that as we move
into the high-friction regime, noise destroys the correlated
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motion of the particle. As discussed before, the dissipation of
excess energy becomes faster in the overdamped limit. There-
fore, the diffusion predicted by both random walk models
(RW1 and RW2) shows acceptable convergence to the actual
diffusion in this regime.

E. Modification of the random walk model
in the presence of correlated returns

The disagreement between theoretical and simulation re-
sults, particularly in the low-friction regime, as shown in
Fig. 10, proposes a modification in the theory of the regular
random walk model employed here. To address the effect
of correlated returns, we follow the formalism introduced
by Hynes [64]. According to the formalism, the transition
state theory rate constant can be modified in the presence of
correlated random walks as

k(T ) = 〈Je(S)〉e +
∫ TM

0
dt〈Je(S)JR(S, t )〉e, (14)

where Je(S) and JR(S, t ) are the outgoing flux crossing the
saddle surface S at time t = 0 and intrinsically negative flux
coming back to the initial surface at later t . The second term is
mainly responsible for lowering the value of the rate constant.
In Eq. (14), the subscript “e” denotes the equilibrium average
in the canonical ensemble, and TM is the upper limit of inte-
gration to neglect the contribution coming from the long-time
“thermalized” returns. We can further modify Eq. (14) as

k(T ) = 〈J (S)〉
[

1 −
∫ TM

0
PR(t )dt

]
. (15)

Here PR(t) is the conditional probability of return at time
t to the initial cell, provided the particle crossed the sad-
dle boundary at t = 0 to enter the neighbor cells. 〈J (S)〉 is
the rate constant without the effects of long-term correlated
returns. We define a term as f (TM ) = ∫ TM

0 PR(t )dt, which
measures the fraction of returns within the cutoff time TM .
We show the variation of f (TM) against the cutoff time TM

for different friction values in Fig. S8 of the SM [65]. The
plot demonstrates that a well-defined plateau region follows
a sharp rise in all the cases. The sharp rise is due to the
oscillatory nature of the returning trajectories with a well-
defined frequency. The value of f (TM) at the plateau region is
plotted against friction in Fig. 11(a) at a reduced temperature
T ∗ = 0.1. The existence of the plateau region is due to the
separation of timescales between correlated returns and ther-
malized returns. In Fig. 11(a), the probability of correlated
returns increases with increasing friction in the high-friction
regime. However, in the low to intermediate damping region,
initially, it shows a slight decrease followed by a sharp rise af-
ter passing through a minimum. In Fig. 11(b), we plot the rate
constant against friction employing Eq. (15) at T ∗ = 0.1, and
we find that the predicted rate constant deviates slightly from
the actual values in the low-friction regime. It is important to
note that we consider only a single recrossing to obtain the
rate. However, the trajectory analysis confirms that the system
suffers multiple recrossing at the saddle. Therefore, multiple
recrossings need to be considered to address the appearance
of a slight deviation in the low-damping region.

FIG. 11. (a) The plot of the return probability against friction (in
the range 0.05–5.0) at a reduced temperature T ∗ = 0.1. We find that
the probability of correlated returns increases with the increase in
friction in the high-friction regime. However, in the low to interme-
diate damping region, initially, it shows a slight decrease followed
by a sharp rise after passing through a minimum. (b) The plot of the
diffusion coefficient against friction. The purple line connecting the
data points shows the variation of diffusion against friction where k is
predicted by Eq. (15)—the expression of the modified random walk
model (MRW). For comparison, the result predicted by the regular
random walk model with k obtained from simulation (i.e., using the
formalism introduced by Yamamoto and Chandler) is also shown
by the red dotted line as a reference. The blue line connecting the
data points indicates the variation of diffusion directly obtained from
simulation via MSD, as discussed earlier. Here lines joining the data
points are provided as a guide to the eyes.

F. Entropy and diffusion

There have been considerable discussions on the relation-
ship between diffusion and entropy. Entropy is a measure of
the configuration space available to the system, while diffu-
sion is the rate of exploration of this configuration. In the
liquid regime, this relation is straightforward, as discussed be-
fore. However, when diffusion occurs on a multidimensional
energy landscape where the solute or the system has to cross
barriers, the relation between diffusion and entropy becomes
nontrivial.

On the other hand, according to the celebrated transi-
tion state theory of Wigner and Eyring, the rate constant
is a property of phase space dynamics [44,63,66]. We use
this connection to relate diffusion with entropy. In a recent
article, we presented a microscopic derivation of the expo-
nential relation between diffusion and entropy starting from
the basic principles of statistical mechanics in both canonical
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and microcanonical ensembles [67]. This section presents a
derivation of an exponential scaling relation between diffusion
and entropy in a system where a massive Brownian particle is
coupled with a heat bath at temperature T. Therefore, the so-
lute particle follows an ordinary Langevin equation defined by
Eq. (5) with a coupling constant ζ . In a canonical ensemble,
rate constant k (T ) is given by [67–69]

k(T ) =
1
2

1
(2π h̄)Nd

∫ ∫
dqN d pN exp(−βHN )δ(q1 − q†)|q̇1|

1
(2π h̄)Nd

∫ ∫
dqN d pN exp(−βHN )

.

(16)

In Eq. (16), HN denotes the total Hamiltonian of the
system with N degrees of freedom and is given by HN =∑Nd

i=1
p2

i
2M + VN (q1, q2, ..., qN ). Here q† is the location of the

saddle along the reaction coordinate q1, and M is the mass of
the Brownian particle. Before proceeding further, we assume
that the potential of the Brownian particle takes the form near
the saddle [70]

VN = E (0) +
N∑

i=1

M

2
ζ 2(qi − q†)

2
, (17)

where E(0) is the potential energy at the saddle point without
noise. We then simplify the denominator of Eq. (16) (i.e.,
denoted by Q) to obtain

Q =
(

kBT

h̄ζ

)Nd

exp

(
−E (0)

kBT

)
. (18)

In a canonical ensemble, entropy is related to the partition
function (Q) through a relation like S = kB

∂
∂T (T ln Q).We

then employ the relation between entropy and partition func-
tion to rewrite Q in terms of S as

Q = exp

(
S

kB

)
exp

(
−Nd − E (0)

kBT

)
. (19)

In a similar way, we simplify the numerator of Eq. (16) to
obtain

kBT

2π h̄
exp

(
S†

kB

)
exp

(
−(N − 1)d − E (0)

kBT

)
. (20)

We define Q† as the partition function of the system at the
saddle point without the reactive motion. Effectively Q† pos-
sesses one less vibrational degree of freedom compared to the
canonical partition function Q for the reactant state. With the
same analogy, we can establish the following relation between
the configurational entropy and partition function at the saddle
point as S† = kB

∂
∂T (T ln Q†). Here S† is the configurational

entropy without the reactive mode [67].
By taking the ratio of Eqs. (19) and (20), we obtain the

following expression for the rate constant, given by

k(T ) =
(

kBT

h

)
ed exp

(
− (S − S†)

kB

)
. (21)

We then invoke the random walk formalism, i.e., D =
1

2d ka2, where d denotes the dimension of the system, de-
scribed earlier to obtain the following expression for the

diffusion:

D = a2

2d

(
kBT

h

)
ed exp

(
− (S − S†)

kB

)
. (22)

It is similar to the form of Rosenfeld but not identical
[67,71]. According to the Rosenfeld scaling relation, diffusion
is related to entropy (S) via the relation D∗ = a exp(bS−Sid

NkB
).

Here D* is the reduced self-diffusion coefficient, Sid is the to-
tal entropy of the ideal gas, a and b are two scaling constants,
and N denotes the total number of atoms/molecules present in
the system. In Eq. (22), S† is a scaling constant that serves the
same role as Sid involved in the Rosenfeld scaling relation. We
can compute S† by exponentially fitting the plot of diffusion
against entropy with the aid of Eq. (22).

We hope to explore the relationship between diffusion and
entropy by computing the configurational entropy for this
system in the future.

IV. CONCLUSION

The study of diffusion in a multidimensional energy sur-
face has been a subject of immense interest in many branches
of physics, chemistry, and biology to discuss diverse prob-
lems. To interrogate the role of noise in such diffusion
processes, we study the diffusional dynamics of a Brownian
particle in a periodic and continuous-potential analog of regu-
lar Lorentz gas. The system of interest can also be relevant
to a variety of applications, such as superionic conductors,
the motion of adsorbates on crystal surfaces, polymers dif-
fusing at the interfaces, molecular graphene, etc. We observe
a nonmonotonic dependence of diffusion as a function of
friction in this two-dimensional periodic system. We explain
the nonmonotonic dependence of diffusion by invoking the
random walk model with the rate given by an appropriate
two-dimensional rate theory. The presence of coherence in the
trajectory in the low-friction limit gives rise to an exciting
complexity that can be understood by using the Lyapunov
exponent.

It is not clear a priori that a random walk model based
analytical theory with an accurate rate calculation can repro-
duce the nonmonotonic friction dependence of the diffusion
constant. In fact, the Padé approximant in the theory of
Skinner-Wolynes is reasonably satisfactory in describing this
nonmonotonic dependence.

Although diffusion in the absence of noise is in itself a fas-
cinating feature for this Hamiltonian system and has not really
been studied in detail, our emphasis here is on the combined
role of noise and energy landscape on diffusive motions. In the
absence of noise, the particle gets trapped at the minimum of
the initial cell and exhibits a pronounced oscillatory behavior
in the plot of velocity autocorrelation against time. However,
noise destroys the coherence by randomizing the motion of
the particle. This study demonstrates how the combined effect
of noise and the curvature of the potential energy landscape
plays an essential role in inducing oscillations in the plot of a
velocity correlation function against time.

Trajectory analysis confirms that the particle suffers multi-
ple long-range returns by crossing and recrossing the saddle
in the low-friction limit. Such long-range crossing and
recrossing through the saddle are different from those usu-
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ally discussed in the context of barrier crossing dynamics,
especially in relation to the theories of Kramers and Smolu-
chowski. The ones we focus on return from other cells after
rebounding from the maxima in other cells. These are not due
to noise-generated solvent collisions.

In the presence of such correlated returns, the onset of
chaotic motion is an interesting problem that needs to be
studied. As we remarked earlier, the concave nature of the
surface potential induces refocusing of the trajectories that
leave one cell and enter the next adjoining cell. To characterize
the motion of the particle quantitatively, we calculate the
Lyapunov exponent for this system and plot it against friction.
We observe a nearly saturated region following a sharp rise in
Ln against friction in each case (i.e., T ∗ = 0.1 and 0.2), and
we address this issue in detail. Our study demonstrates that
both noise and the potential energy landscape play a vital role
in influencing the divergence rate of two close trajectories in
configurational space.

Although we have used a two-dimensional periodic land-
scape, the results are expected to remain valid in three and
higher dimensions. Such a generalization was observed earlier
for diffusion on rugged energy landscapes [72].

To validate the random walk model in such a complex
dynamical system in the presence of the long-range return
of trajectories, we require the rate of escape from one cell
to an adjacent cell. At the same time, in a recent study, we
attempted to analyze the rate of barrier crossing dynamics in
a more complex two-dimensional reaction energy surface for
insulin dimer dissociation [27]. In that case, a quantitatively
accurate estimate of the rate required to validate the theoret-
ical predictions was not available. Due to the simplicity of
this deterministic model system, we can not only predict the
rate by various theoretical approaches, but we also obtain a
quantitatively accurate rate directly from simulations without
making approximations.

We theoretically employ the multidimensional rate theory,
like the two-dimensional transition state theory and Langer’s
theory, to compute the escape rate. To obtain the escape rate
directly from simulation, we invoke the mean first passage
time formalism and the scheme developed by Yamamoto and
Chandler, considering the effect of long-term recrossing. We

find that Langer’s theory can explain the high-friction region
semiquantitatively but not the low-friction domain. Thus, it
fails to provide a nonmonotonic friction dependence.

We next model the diffusion as a random walk in a two-
dimensional lattice and invoke the relation between diffusion
and rate (i.e., D = 1/4 ka2) to calculate the diffusion with
k obtained from the simulation. We compare that diffusion
with the diffusion directly obtained via MSD to validate the
random walk model. With the increasing strength of the noise,
the random walk model starts to predict a more accurate value
for the diffusion since noise destroys the existing long-term
correlated motions. Our study clearly shows that the long-
term correlated returns induced by the concave region of the
surface play a significant role in lowering diffusion. To un-
derstand the deviation in the low-friction regime, we adopt a
theoretical formalism following the approach introduced by
Hynes. We explicitly estimate the return probability for the
initial cell for different friction values, and we calculate the
escape rate. As is evident in our study, the modified random
walk model provides better results than the regular random
walk model, specifically in the low-friction regime. The ap-
pearance of a slight deviation is due to the consideration of
single recrossing, which suggests multiple recrossing needs
to be considered in the low-friction regime to obtain a more
accurate value.

The relationship between diffusion and entropy is highly
intriguing since it relates to two seemingly different prop-
erties: structure and dynamics. In this context, we present
a microscopic derivation of the exponential relationship be-
tween diffusion and entropy for a system coupled with a
heat bath at a particular temperature starting from the basic
principles of statistical mechanics. We hope to explore the
derived relation between diffusion and entropy in our system
in the near future.
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