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Delocalization-localization dynamical phase transition of random walks on graphs
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We consider random walks evolving on two models of connected and undirected graphs and study the exact
large deviations of a local dynamical observable. We prove, in the thermodynamic limit, that this observable
undergoes a first-order dynamical phase transition (DPT). This is interpreted as a “coexistence” of paths in the
fluctuations that visit the highly connected bulk of the graph (delocalization) and paths that visit the boundary
(localization). The methods we used also allow us to characterize analytically the scaling function that describes
the finite-size crossover between the localized and delocalized regimes. Remarkably, we also show that the DPT
is robust with respect to a change in the graph topology, which only plays a role in the crossover regime. All
results support the view that a first-order DPT may also appear in random walks on infinite-size random graphs.

DOI: 10.1103/PhysRevE.107.024126

I. INTRODUCTION

Random walks on graphs are versatile tools to model
real-world noisy dynamical processes embedded in spatial
structures [1–6]. These processes describe both natural and
human-made phenomena such as the spreading of infectious
diseases [3,7], the transport of vesicles in cell cytoskele-
tons [8], the propagation of information in communication
networks [9,10], and the robustness of networks to random
failures [3] to name just a few examples. Often, the focus in
these applications is toward time-averaged quantities, includ-
ing stationary distributions, and energy and particle currents.
Indeed, these are observables commonly used in applica-
tions to gather information on the average state occupation
and mobility in network structures [3,6]. On the other hand,
fluctuations are also fundamental to understand the behav-
ior of physical systems living in unstable environments as
rare events are often responsible for the evolution dynamics
[11,12]. However, much less is known about them and in the
past few decades many research efforts have been deployed
toward the development of theoretical frameworks that allow
for their study, e.g., large deviation theory [13–18].

Recently, signatures of a dynamical phase transition
(DPT), viz. a transition between different fluctuation mech-
anisms, has been identified in the study of the mean degree
(connectivity) visited by unbiased random walks evolving
on sparse random graphs [19–21]. There are good grounds
to consider it as a first-order DPT where we observe the
coexistence of two “phases” characterized by random walk
paths that visit the whole graph and paths localized in dan-
gling chains, i.e., lowly connected structures of the graph.
However, a rigorous proof for ensembles of random graphs
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is still lacking and, in fact, the community still debates on the
real nature and interpretation of DPTs [22,23]. DPTs asso-
ciated with localization phenomena have been found also in
other similar contexts, such as fluctuations of partial currents
in continuous time random walkers on a two-dimensional
lattice [24].

In this paper, we contribute to the debate by analyzing two
exactly solvable models where the transition appears to be
first-order and characterized by an absorbing dynamics. This
sees, on the one hand, the random walk fully localized in dan-
gling structures and, on the other hand, the random walk fully
absorbed by the bulk of the graph, which acts as an entropic
basin and allows the random walk to be fully delocalized.
We make use of a theoretical framework for the calculation
of large deviations that we developed in Ref. [18] and that
allows us to (i) consider general time-additive observables,
(ii) analytically characterize the behavior of random walks
on finite-size graphs, and (iii) rigorously study the scaling
(with respect to the size of the graph) of fluctuations around
the critical value of the DPT. Remarkably, in agreement with
Refs. [22,23] we notice that an important ingredient for the
appearance of a first-order DPT in both models is the pres-
ence of absorbing dynamics, generated by different scalings
of the hopping probabilities in the graph. Furthermore, we
notice that although the first-order DPT appears in both the
models we investigated, the scaling of the fluctuations around
the transition is different and we argue that it is both function
of the dynamical process and of the inherent topology of the
network.

A brief outline of the paper follows. In Sec. II we set up a
general model of an unbiased random walk (URW) hopping
on a graph, discuss the general form of observables that we
consider in this paper and introduce the theory of large devia-
tions in this setting. In Sec. III we collect our results related to
two exactly solvable models. In Sec. IV we conclude the paper
by summarizing the results obtained and briefly discussing
open questions.
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II. SETTING AND LARGE DEVIATIONS

We consider a URW X = (X�)n
�=1 = (X1, X2, . . . , Xn)

evolving on a finite connected graph G = (V, E ), with V
denoting the set of N vertices (or nodes) and E the set of
edges (or links). The topology of the graph is encoded in the
symmetric adjacency matrix A, which has components

Ai j =
{

1 i ∈ ∂ j
0 otherwise , (1)

where ∂ j denotes the set of neighbors of node j. Notice that
we choose to consider an unweighted symmetric graph for
simplicity, but our methods can be easily generalized to more
structured cases. The dynamics of the random walk is defined
by the transition matrix � having components

�i j = Ai j

ki
, (2)

where ki = ∑
j∈V Ai j is the degree of node i, viz. the num-

ber of edges in which node i participates. The matrix �

characterizes the uniform probability of going from a vertex
X� = i at time � to a vertex X�+1 = j at time � + 1–that is, the
probability of transitioning from i to j ∈ ∂i does not depend
on j. Furthermore, for simplicity we restrict the random walk
to be ergodic, viz. � is irreducible and aperiodic. In the rest
of the paper we use the index � to refer to time and the indices
i and j to refer to nodes of the graph.

The long-time behavior of the URW is well understood.
Thanks to ergodicity, the random walk has a unique stationary
distribution,

ρi = ki∑
j∈V k j

, (3)

which is found to be proportional to the degree of each node.
Furthermore, the URW is also reversible, viz. it is an equi-
librium process, as it satisfies the detailed balance condition,

ρi�i j = ρ j� ji, (4)

for each pair of nodes in V .
In this setting, we assume that the URW X accumulates a

cost in time given by

Cn = 1

n

n∑
�=1

f (X�), (5)

where f is any function of the vertex state. In nonequilibrium
statistical mechanics, this cost is also called a dynamical ob-
servable [14] and, depending on f , it may represent interesting
physical quantities, such as occupation times [16], internal
energy [25], chemical concentrations [26], activities [21], and
entropy production rates [20]. Because of the ergodicity of the
URW, in the long-time limit the observable Cn converges with
probability 1 to the ergodic average,∑

i∈V

ρi f (i) =: c∗. (6)

This convergence property is often used to estimate proper-
ties of large graphs, such as degree distributions or centrality

measures, by running random walks (or, generally speaking,
agents) on the graphs for long times [4].

Following the Introduction, here we study fluctuations of
Cn around the typical value c∗ by calculating its probability
distribution P (Cn = c) in the n → ∞ limit. The probabilistic
theory of large deviations [13–15] tells us that this distribution
has an exponentially decaying form,

P (Cn = c) = e−nI (c)+o(n), (7)

described by the rate function I given by the following limit:

I (c) = − lim
n→∞

1

n
logP (Cn = c). (8)

The rate function I is a pivotal object in the theory of large
deviations as it characterizes the fluctuations of Cn to leading
order in n; it is a non-negative function and it is equal to 0
for ergodic random walks only at c∗ (where the probability
concentrates exponentially fast with time).

Much effort is drawn toward the development of methods
that allow one to calculate I in (8) efficiently [14]. Spec-
tral and variational techniques can both be implemented and,
depending on the particular model studied, it may well be
that some work better than others [27]. Spectral techniques
based on moment generating functions have the merit to
reformulate the problem in a different setting—similarly to
a microcanonical-canonical change of ensemble—whereas
variational techniques based on the contraction principle
[13,14] are useful to find probabilistic bounds [28]. In the
following, we will base our large deviation study on the tech-
niques discussed in Ref. [18] which try to merge the pros of
spectral and variational methods.

In line with Ref. [18] and previous works [13,15,29–34],
in order to calculate the rate function I associated with the
observable Cn in (5) we move the focus on to the study of the
higher-dimensional pair-empirical occupation measure,

L(2)
n (i, j) = 1

n

n∑
�=1

δX�,iδX�+1, j = νi j ∀i, j ∈ V, (9)

which counts the fraction of jumps νi j that the URW makes
between each couple of nodes in the graph—see Ref. [18].
Remarkably, the value of Cn can be deduced via the formula

Cn =
∑
i, j∈V

f (i)L(2)
n (i, j). (10)

We can calculate the rate function (8) by means of the Gärtner-
Ellis theorem [14,15]. To do so we need to introduce the
scaled cumulant generating function (SCGF) of Cn, which is
defined as

λs,N [ν∗] = lim
n→∞

1

n
E[ensCn ], (11)

and calculate its Legendre-Fenchel transform, i.e.,

I (c) = sup
s∈R

{sc − λs,N [ν∗]}. (12)
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In Ref. [18], we showed that λs,N [ν∗] can be obtained mini-
mizing the following action:

λs,N [ν] = λ1,N [ν] + λ2,N [ν] + λ3,N [ν] + λ4,N [ν], (13)

λ1,N [ν] =
N∑

i=1

N∑
j=1

νi j

[
log

(
N∑

k=1

νik

)
− log(νi j )

]
, (14)

λ2,N [ν] =
N∑

i=1

N∑
j=1

log(�i j ) νi j, (15)

λ3,N [ν] = s
N∑

i=1

f (i)
N∑

j=1

νi j, (16)

λ4,N [ν] = ε

⎛
⎝ N∑

i=1

N∑
j=1

νi j − 1

⎞
⎠ +

N∑
i=1

ηi

⎛
⎝ N∑

j=1

νi j −
N∑

j=1

ν ji

⎞
⎠,

(17)

with respect to νi j , ε, and ηi, which are respectively the
fraction of jumps from node i to node j, and the Lagrange
multipliers fixing the normalization constraint and the global
balance. We remark that these formulas are valid for any finite
N . In our setting the rate function I in (12) reduces to

I (c) = −λ1,N [ν∗] − λ2,N [ν∗] − λ4,N [ν∗], (18)

where the dependence on the fluctuation c enters through
the minimizer ν∗, which depends on the optimized tilting
parameter s∗(c), i.e., ν∗ ≡ ν∗[s∗(c)]. For further details on
the methods we used to derive (13)–(17) and on a useful
physical characterization of the action (13) we refer the reader
to Ref. [18] and related bibliography.

Although the equations for the minimum of (13) may be
complicated to solve analytically for complex models, the
proposed approach has several advantages that will also be
highlighted in the next sections when studying simplified sce-
narios. First, the explicit form of the action (13) for any finite
N allows us to study directly the scaling of the fluctuations
with varying graph size. As we will see in the following,
this is an important feature that will help us in characterizing
fluctuations around critical points. Furthermore, the tilting
parameter s is responsible for biasing the dynamics of the
URW via (16) to realize a fluctuation c for the observable Cn

fixed by the Legendre duality equation

c = dλs,N [ν]

ds
. (19)

Therefore, the minimizer ν∗ of the action λs,N characterizes
the typical configuration of jumps on the graph G that give rise
to the fluctuation c defined by (19) (similarly to Ref. [21]).

It is natural to introduce a biased dynamics for which Cn =
c is realized in the typical state. This biased dynamics has been
thoroughly characterized in its general form in Refs. [16,35]
and also in the setting of random walks on graphs in Ref. [20].
The process characterized by the biased dynamics is known
as driven (or effective or auxiliary) process and in this con-
text is a locally biased version of the URW whose transition
probability matrix has been described in Ref. [20]. Within our
approach, we can also fully define the driven process and its

transition matrix, which reads

(�s)i j = ν∗
i j (s)∑

k∈V ν∗
ik (s)

. (20)

In other words, the driven process is the effective biased
random walk that explains how a fluctuation Cn = c is created
up to time n.

In this framework, a DPT is a nonanalytic point sc of the
SCGF λs,N which may be interpreted as a sudden change in
the mechanisms that generate fluctuations. A standard result
of large deviation theory is that the SCGF of an additive
observable of an ergodic Markov chain on a finite state space
is analytic, hence does not show DPTs [14,15]. Nonetheless,
when the number of states N diverges or a transition probabil-
ity between two states goes to zero, the limiting Markov chain
may exhibit a DPT. At the critical point sc, the minimizer
of λs,N [ν] is not unique, and Eqs. (19) and (20) are ill de-
fined. However, we can still reconstruct the rate function using
Eq. (12) and give a large deviation estimate of the probability
of realizing a fluctuation c ∈ [c−, c+] as

P(Cn = c) = e−n(xI (c− )+(1−x)I (c+ ))+o(n), (21)

where c+ = lims→s+
c

dλs,N [ν∗]
ds and c− = lims→s−

c

dλs,N [ν∗]
ds and

x ∈ [0, 1] is fixed by the requirement that the time average
of the observable gives the desired fluctuation, that is, c =
xc− + (1 − x)c+. Furthermore, we note that c+ > c− for the
convexity of λs,N [ν∗] as a function of s. We can give a physical
interpretation of (21) by splitting a trajectory of the uncondi-
tioned Markov chain in two blocks of length xn and (1 − x)n.
Since the temporal length of each block is extensive, the two
events are asymptotically independent and we can estimate
the probability of the system realizing fluctuation c− in the
first block and fluctuation c+ in the second block using large
deviation theory. We arrive at

P(Cxn = c−,C(1−x)n = c+) = P(Cxn = c−)P[C(1−x)n = c+]

= e−nxI (c− )+o(n)e−(1−x)nI (c+ )+o(n) = P(Cn = c), (22)

where equalities are intended logarithmically at leading or-
der in n. Eq. (22) suggests that the most likely way for our
Markov chain to realize a fluctuation c in a critical point is
not by directly sampling c. Instead, it is less costly to spend
a macroscopic fraction of time realizing a fluctuation c− < c
and the rest of the time realizing a fluctuation c+ > c, in such
a way that the average over time yields xc− + (1 − x)c+ = c.
Notice that estimate (22) holds as long as the total times
spent realizing c− and c+ are extensive and respectively equal
to xn and (1 − x)n. In particular, it holds if the number of
blocks chosen to divide the trajectory is greater than two.
Equation (21) reminds the so-called Maxwell construction in
equilibrium thermodynamics, which describes the free energy
of a system undergoing a first-order phase transition [14,36].
In that context, the system becomes spatially heterogeneous:
A fraction x of the volume is occupied by one thermodynamic
state, while the remaining 1 − x is occupied by another ther-
modynamic state. This phenomenon is referred to as phase
coexistence. We stress that it is with these ideas in mind that
in this paper we interpret the emerging DPTs as character-
ized by coexisting phases, without making any claims about
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the driven or conditioned dynamics appearing at the critical
point—which is still an open question.

We remark that the method used here to calculate the SCGF
λs,N [ν∗] via the minimization of (13) is equivalent to spectral
methods based on the so-called tilted matrix [14,15,27,37].
In particular, in Ref. [18] we show that the Euler-Lagrange
equations for the minima of (13) are a useful rewriting of
the dominant eigenvalue problem associated with the tilted
matrix. The main pros of the method reviewed in Ref. [18]
are (i) to give a clear physical interpretation of all the terms in
the action and SCGF and (ii) to express the driven process in
terms of the minimizers of (13), which are the optimal jumps
that create a fluctuation Cn = c.

III. DELOCALIZATION-LOCALIZATION DYNAMICAL
PHASE TRANSITION

Recently, it has been pointed out [19–21] that a URW that
accumulates a cost proportional to the degree of each visited
node, e.g., f (Xl ) = kXl in (5), and that runs on the largest con-
nected component of an Erdős-Rényi random graph seems to
undergo a DPT. This transition is localized in the fluctuations
of the mean degree visited when this is lower than the mean
connectivity of the graph and is interpreted as a “coexistence”
of paths that visit nodes with low degree and paths that visit
the whole graph [19,20]. (Noticeably, another DPT may arise
when the random walk visits more often highly connected
regions of the graph and localizes around the highest degree
node of the graph. Although as interesting, in this paper we
will not focus on this behavior.) The Erdős-Rényi random
graph in question is picked from a “canonical” ensemble of
random graphs having a fixed number of nodes N and edges
randomly placed with a small probability p between each pair
of nodes such that N p = c̄ is fixed to be the mean degree of
the graph. Noticeably, signatures of the DPT disappear when
c̄ is large, revealing that a fundamental topological ingredient
for the appearance of the transition is the presence of lowly
connected structures in the graph (such as trees and dan-
gling chains of nodes). These structures carry strong spatial
correlations—a node of degree one is likely to be connected
with a node of degree two in a dangling chain and these
correlations are responsible for the dynamics of the random
walk when visiting low-degree nodes. The overall picture is
that of a random walk whose behavior fluctuates between two
distinct phases characterized by (i) being localized in lowly
connected regions of the graph and (ii) being spread over
the bulk (most connected region) of the graph which acts
as an ergodic basin absorbing the dynamics (see model in
Appendix A of Ref. [20] and also Ref. [22]).

As far as the current state of the art is concerned, it is not
clear whether such a DPT appears in the infinite-size limit
of ensemble of random graphs. However, as mentioned in
the previous paragraph, various numerical studies indicate an
abrupt change in the mechanisms that generate fluctuations,
endorsing the idea of a dynamical phase transition [19–21].

In the following, by applying the theory discussed in
Sec. II, we analytically characterize the DPT in two models,
which catch what we think are the most relevant physical fea-
tures of this phenomenon. We believe that these characteristics
are shared by the dynamics of URWs on Erdős-Rényi random

FIG. 1. Bulk-dangling model graph for N = 11. Node 1 has
degree k1 = 1, node 2 has degree k2 = 2, and node 3 has degree
k3 = N − 2 = 9: The first two nodes represent the dangling chain,
while node 3 bridges the chain with the bulk, being part of the latter.
All the remaining N − 3 = 8 nodes are of type 4, having degree
k4 = N − 3 = 8. Together with node 3, they form the fully connected
bulk.

graphs: In particular, the heterogeneity of the scaling of the
degree and the presence of lowly connected regions such as
dangling chains. We show that (i) the DPT is first order—that
is, λs,N [ν∗] as a function of s has a nondifferentiable point sc

in which the first derivative is discontinuous; (ii) the behavior
around sc is characterized by a scaling function which is not
universal and depends on both the dynamics of the URW
and the topology of the graph; and (iii) the driven process
can be fully characterized, allowing us to understand how
fluctuations arise in time. These results give further evidence
of the presence of a first-order DPT in random walks exploring
random graphs.

A. Bulk-dangling model

The first model we look at is based on a URW with transi-
tion matrix (2) collecting a cost (5) of the form

Cn = 1

n

n∑
�=1

kX�

k̄
, (23)

by visiting a graph of N nodes composed by a fully connected
bulk of N − 2 nodes and a single dangling chain of 2 nodes
(see Fig. 1). The structure of this graph incorporates two
relevant features: (i) the presence of a spatially correlated
dangling chain and (ii) a fully connected bulk that allows the
URW to uniformly spread over the network. Given this struc-
ture, the mean degree of the graph is k̄ = [(N − 3)(N − 3) +
(N − 2) + 2 + 1]/N , which evidently scales linearly with N
for large-size graphs. This feature allows us to deduce the
behavior of the observable Cn in two opposite scenarios in
the N → ∞ limit. Evidently, if the random walk is uniformly
spread over the bulk, then Cn ∼ 1, whereas if the random
walk is localized in the chain, then Cn ∼ 0. We argue that
this behavior does not depend on the length L of the dangling
chain—the choice L = 2 is made to simplify calculations.
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Following Sec. II we calculate the action λs,N [ν] in (13).
To set the notation, we refer the reader to Fig. 1, where we
color and label nodes according to their degree: The yellow
node of degree 1 is labeled 1, the orange node of degree 2
is labeled 2, the red node of degree N − 2 is labeled 3, and
all equivalent purple nodes of degree N − 3 are labeled 4.
Because of the bulk of the graph being highly symmetric, i.e.,
every link in the bulk is equivalent, and the global balance
imposed on the dynamics, i.e., incoming and outgoing flow
of a node being equal, we are only left with four degrees of
freedom (variables) νi j that determine the action. We name
the fraction of jumps

ν12 for both directions: 1 → 2 and 2 → 1, (24)

ν23 for both directions: 2 → 3 and 3 → 2, (25)

ν34 for both directions of each link: 3 → 4 and 4 → 3,

(26)

ν44 for both directions of each link in the bulk. (27)

Notice that if at this stage we also imposed the normalization
constraint, i.e.,

∑
i, j∈V νi j = 1, we would be left with only

three degrees of freedom. However, for practical reasons in
the calculation of the minimum of the action λs,N [ν], we leave
this last constraint as an implicit parametrization with and
introduce a Lagrange multiplier ε entering the action.

The action can be explicitly written as

λs,N [ν] = h(s, N, ν12, ν23, ν34, ν44) + ε(1 − 2ν12 − 2ν23

− 2(N − 3)ν34 − (N − 3)(N − 4)ν44), (28)

with the long form of the function h postponed to the Ap-
pendix. The minimum and minimizers of the action (28) can
be found by solving the saddle-point equations that can be cast
in the following linear system:

ν12 = ν23
a(s, N, ε)

1 − a(s, N, ε)
, (29)

ν23 = ν34
b(s, N, ε)

1 − b(s, N, ε)
, (30)

ν34 = ν23
c(s, N, ε)

1 − (N − 3)c(s, N, ε)
, (31)

ν44 = ν34
d (s, N, ε)

1 − (N − 4)d (s, N, ε)
, (32)

2ν12 + 2ν23 + 2(N − 3)ν34 + (N − 3)(N − 4)ν44 = 1, (33)

with

a(s, N, ε) = e3 s
k̄
−log 2+2ε, (34)

b(s, N, ε) = eN s
k̄
−log 2−log(N−2)+2ε

1 − e3 s
k̄
−log 2+2ε

, (35)

c(s, N, ε) = e(2N−5) s
k̄
−log(N−2)−log(N−3)+2ε

1 − e(N−3) s
k̄
−log(N−3)+ε

, (36)

d (s, N, ε) = e(N−3) s
k̄
−log(N−3)+ε . (37)

We report the form of the minimizers ν∗ = (ν∗
12, ν

∗
23, ν

∗
34, ν

∗
44)

in the Appendix. It is important to remark that these mini-
mizers are not yet in a fully explicit form as they depend
on the Lagrange parameter ε (which, in Ref. [18], has also
been proved to be the negative SCGF λs,N [ν∗]). However,
the Lagrange parameter ε—hence, also the SCGF we are
after—can be determined by solving the normalization con-
straint in (33) after having replaced the form of the minimizers
ν∗ = (ν∗

12, ν
∗
23, ν

∗
34, ν

∗
44). The equation reads

2(N − 2)(N − 3) − 2τ (N − 2)(N − 4)e(N−3) s
k̄ − τ 2(N − 3)

× [(N − 2)e3 s
k̄ + eN s

k̄ + 2e(2N−5) s
k̄ ] + τ 3(N − 4)

× [(N − 2)eN s
k̄ + e(2N−3) s

k̄ ] + τ 4(N − 3)e(2N−2) s
k̄ = 0,

(38)

with τ = eε . Noticeably, (38) can also be derived by im-
posing that the matrix of the coefficients of the four linear
equations (29)–(32) has a nullspace of dimension greater than
zero—that is, when its determinant is zero. Equation (38) is
fourth order in τ and hence it admits four solutions of which
only one is physical. This can be selected by noticing that,
since ν∗ must be positive, the right-hand side of the four
equations (29)–(32) is also positive (we postpone the exact
form of the inequality constraints to the Appendix). In this
way, we obtained the SCGF λs,N [ν∗] valid for any finite-size
graph. By carefully taking the limit N → ∞ in the polyno-
mial equation (38) we can also explicitly obtain the SCGF in
the infinite-size limit of the graph, which is

λs,∞ =
{− log 2

2 s � − log 2
2

s s > − log 2
2

(39)

and highlights a nondifferentiable point at sc = − log 2/2.
The derivative of λs,∞, according to (19), is

dλs,∞
ds

=
{

0 s � − log 2
2

1 s > − log 2
2

, (40)

which explicitly describes the fluctuation Cn = c happening
with varying tilting parameter s. This confirms our expecta-
tions: On the left of the critical point sc the random walk is
localized in the dangling chain—the only region of the graph
where the cost accumulated Cn [see (5)] does not scale with
the size N—whereas on the right of sc the random walk is
spread in the bulk where it accumulates a cost that scales
linearly with N . Furthermore, the value of sc—and with it all
the left branch of λs,∞ in (39)—can easily be interpreted as
the mean entropy of the random walk that, localized in the
dangling chain, keeps going back and forth from the node
of degree 1 to the node of degree 2 (see also Ref. [18]).
Eventually, the rate function I can easily be obtained by Leg-
endre transforming the two analytical branches of (39) and
by connecting them with a linear section or by implementing
directly (12); in both cases we obtain

I (c) =
{

log 2
2 − c log 2

2 0 � c � 1
∞ otherwise

, (41)

and we remark that the nondifferentiable point sc for the
SCGF λs,∞ is mapped onto the linear section characterizing
the rate function. We graphically show in Fig. 2 the SCGF, its
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FIG. 2. Large deviation study for the bulk-dangling model. In all three figures, different colors correspond to a different number N of
nodes: (i) light blue is N = 15, (ii) orange is N = 25, (iii) green is N = 100, and (iv) black is N → ∞. All finite N curves where obtained by
solving (38) numerically, while analytical expressions for the black curves are presented in (39) for (a), (40) for (b), and (41) for (c).

derivative, and the rate function for finite-size graphs and in
the infinite-size limit.

The nondifferentiability of the SCGF can be physically
related to a first-order DPT that is interpreted here as a coex-
istence of paths that either visit predominantly the bulk of the
graph (Cn ∼ 1) or are localized in the dangling chain (Cn ∼ 0).
A further characterization of this DPT is given by identifying
the mechanisms that give rise to the fluctuations around the
critical point sc.

As it appears from formula (40) and Fig. 2(b), the normal-
ized mean-degree visited by the URW (23) computed from
(19) is a piecewise constant function of the tilting parameter s
in the infinite-size limit of the graph. We refer to the region
s < sc (s > sc) corresponding to the localized (delocalized)

phase as s− (s+) and we study in these two regions the
scaling with N of the transition probabilities of the driven
process (20). The driven process is a biased Markov process
that realizes a fluctuation of the considered observable in the
original dynamics as a typical state [16,35]. The transition
matrix of the driven process (20) is thus a function of the
tilting parameter s, which in our model jumps discontinuously
at the transition point sc.

We can compute the transition matrix of the driven process
in the two regimes s > sc and s < sc—respectively denoted
by s+ and s−—to leading order in N by properly taking the
N → ∞ limit of the minimizer ν∗ = (ν∗

12, ν
∗
23, ν

∗
34, ν

∗
44) and

inserting the result in (20). We get the following two transition
matrices that characterize the probability of stepping from a
node to another one in the graph of Fig. 1:

�s− =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 · · ·
1 + O(N−1) 0 O(N−1) · · · 0 · · ·

0 − es

3s + O(N−1) 0 O(N−1) · · · · · ·
...

. . .
. . . · · ·

0 0 1 − √
2es 0 O(N−1) · · ·

⎤
⎥⎥⎥⎥⎥⎦ (42)

�s+ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 · · ·
e−2s

2 + O(N−1) 0
(

1 − e−2s

2

)
+ O(N−1) · · · 0 · · ·

0 O(N−1) 0 O(N−1) · · · · · ·
...

. . .
. . . · · ·

0 0 O(N−1) 0 O(N−1) · · ·

⎤
⎥⎥⎥⎥⎥⎥⎦

, (43)

where by O(N−1) we mean a term which tends to zero at least as fast as 1/N when N → ∞. We remark that the sum of each
row of �s± must be 1. Evidently, for fluctuations obtained by fixing s < sc the random walk is biased toward localizing in the
dangling chain, e.g., if the random walk is on node two, the probability of hopping onto node one is one order of magnitude
(with respect to the system size) bigger than moving toward the fully connected bulk. For s > sc instead, the bulk behaves as an
entropic basin absorbing the random walk and allowing it to be fully spread over the graph bulk.

We conclude the study of the bulk-dangling model showing how fluctuations scale with the graph size locally around the
critical point sc (in analogy with the study carried out in Ref. [22]). This can be done by centering and rescaling the tilting
variable s as

s = − log 2

2
+ s̃

N
, (44)

and the Lagrange parameter (or negative SCGF)

ε = log 2

2
− ε̃s̃

N
, (45)

024126-6



DELOCALIZATION-LOCALIZATION DYNAMICAL PHASE … PHYSICAL REVIEW E 107, 024126 (2023)

in the polynomial equation (38). Using this scaling and expanding the polynomial to leading order in N we obtain

λs̃,N ≈ − log 2

2
+ ε̃s̃

N
, (46)

with

ε̃s̃ = 1

8

(√
2 + 4s̃ − 7 log 2 +

√
2 + 16

√
2 + 2

√
2 log 2 − log2 2 − 8

√
2s̃ − 8 log 2s̃ + 16s̃2

)
, (47)

which explains how the SCGF locally scales as a func-
tion of the graph size around sc. We report in Fig. 3 the
function ε̃s̃ (translated to be centered in (0,0) and not in
(− log 2/2,− log 2/2)). Evidently, the function continuously
joins the two branches of fluctuations separated by the critical
point sc in Fig. 2(a): On the left, for s̃ � 0, ε̃s̃ tends to 0
[hence, − log 2/2)], and on the right, for s̃ � 0, it behaves
linearly with respect to s̃.

In conclusion, the critical point sc marks a first-order DPT
for the observable Cn in (23); however, thanks to a proper
rescaling showed in (44) and (45) we can get more precise
information on how fluctuations scale with the system size
around the critical point sc. Nonetheless, we point out that,
although our study gives useful insights into the large time
behavior of our Markov chain at the critical point, it does
not provide a precise and exhaustive characterization of the
microscopic dynamics. In fact, the driven process is ill defined
at sc. To investigate dynamical aspects such as intermittency, a
possible approach would be to numerically simulate the driven
process for finite N for s lying in the crossover regime [23].
One could also try to study the ensemble of trajectories of
the conditioned or driven process in the crossover regime.
Although this is an interesting question, it is outside of the
scope of this work.

B. Two-state Markov chain

In this subsection we analyze another model which takes
its cue from the findings in the previous model and is also
inspired by Refs. [20,22]. The model is a two-state Markov
chain as represented in Fig. 4. If the Markov chain is found
on the state on the left, namely 1, at a certain time �, then it
collects a unitary reward 1, whereas if it is on the right, namely

FIG. 3. Crossover regime of the SCGF of the bulk-dangling
model around sc as a function of the scaling variable s̃ for different
values of N . As N increases, the colored curves collapse into the
limiting curve predicted theoretically (47).

b, it collects a reward b � 1 (eventually b → ∞). Further,
although the probability of moving from the left to the right is
totally unbiased, the probability of moving from the right to
the left inversely scales with the reward b.

The observable we focus on has the general form in (5) and
in this particular scenario it reduces to

Cn = 1

n

n∑
�=1

X�

b
, (48)

which is the mean reward collected over time renormalized by
the maximum reward b.

This model tries to catch once again the most relevant phys-
ical ingredients that may lead to a delocalization-localization
first-order DPT. In doing so, however, we take a further sim-
plification: We try to rule out as much as we can the graph
topology, replacing bulk and dangling contributions with two
single states which respectively give a reward of b and 1 to
the observed cost in (48). In comparison with the previous
model, the reward b should be analogous to the graph size
N—a random walk lost in the bulk of a graph observes nodes
with a degree that scales with N in (23)—whereas the reward
1 should mimic the observed degree in the dangling chain.
Furthermore, the inverse scaling with b of the probability of
moving from the right state to the left one, should give rise to
an absorbing dynamics in the right state for b → ∞. As we
will see in the following, the topology of the graph does not
play a pivotal role in the appearance of the first-order DPT,
but it may play an important role in determining the exact
fluctuations in the crossover regime around the critical point.

Once again, following Sec. II we calculate the action
λs,b[ν] in (13). Because the global balance is imposed on the
dynamics, we only have to deal with three degrees of freedom
(variables) νi j that determine the action. These are

ν11 fraction of jumps from 1 to 1, (49)

ν1b for both directions: 1 → b and b → 1, (50)

νbb fraction of jumps from b to b. (51)

FIG. 4. Sketch of the two-state Markov chain model, composed
by state 1 and state b. The transition probabilities—depicted in
the figure above the arrows—read explicitly: p11 = 1/2, p1b = 1/2,
pb1 = 1/b, and pbb = 1 − 1/b.
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Notice that if we also imposed the normalization constraint,
i.e.,

∑
i, j∈{1,b} νi j = 1, we would be left with only two degrees

of freedom. However, analogously to the previous subsection,
we leave this last constraint as an implicit parametrization
with a Lagrange multiplier ε entering the action.

The action can be explicitly written as

λs,b[ν] = − ν11 log ν11 − νbb log νbb − 2ν1b log ν1b + (ν1b

+ νbb) log(ν1b + νbb) + (ν1b + ν11) log(ν1b + ν11)

+ s

b
(ν11 + ν1b) + s(ν1b + νbb) − log 2ν11

+ log
(b − 1)

b
νbb + ν1b(− log 2 − log b) + ε(2ν1b

+ ν11 + νbb − 1). (52)

The minimum and minimizers of the action (52) can be found
by solving the saddle-point equations and imposing the nor-
malization constraint. We get

ν11 = e
s
b +ε (−b + (b − 1)es+ε )

−4b + 2(b − 1)es+ε + be
s
b +ε

, (53)

νbb = (b − 1)es+ε (−2 + e
s
b +ε )

−4b + 2(b − 1)es+ε + be
s
b +ε

, (54)

ν1b = 1
b

b−(b−1)es+ε − 2
−2+e

s
b +ε

, (55)

as still functions of the Lagrange multiplier ε. This last can
be determined by, for instance, using the equation for the
minimum of λs,b[ν] w.r.t ν1b and by replacing the values of
ν11 and νbb with those in (53) and (54). We find that the SCGF
λs,b[ν∗] is analytically given by

λs,b = − ε = log

{
1

4b

[
be

s
b + 2(b − 1)es

+
√

4(b − 1)2e2s + b2e
2s
b − 4(b − 3)be

bs+s
b

]}
. (56)

By carefully taking the limit b → ∞ of (56) we explicitly
obtain the SCGF in the infinite size limit of the reward, which
reads

λs,∞ =
{− log 2 s � − log 2

s s > − log 2 (57)

and highlights the appearance of a nondifferentiable point at
sc = − log 2 (this value can always be interpreted as the mean
entropy of the random walk localized in 1). The derivative
of λs,∞, as in (19), explicitly describes the fluctuation Cn = c
happening with varying tilting parameter s and analogously to
(39) we obtain

dλs,∞
ds

=
{

0 s � − log 2
1 s > − log 2 . (58)

This says that on the left of the critical point sc the Markov
chain is localized in the left state where it accumulates a cost
that does not scale with the reward b, whereas on the right
of sc the Markov chain is localized in the right state where it
accumulates a cost b at every step. We remark that at finite
N the critical point is absent, replaced by a crossover region

where the Markov chain visits both nodes for a finite fraction
of time.

The rate function I can also be easily obtained as explained
in the previous subsection and reads

I (c) =
{

log 2 − c log 2 0 � c � 1
∞ otherwise . (59)

We graphically show in Fig. 5 the SCGF, its derivative, and
the rate function for the finite reward case and in the infinite-
reward b limit. Noticeably, the rate function obtained in (41)
is exactly half the rate function obtained above here. This is
a consequence of the mean entropy λ1,N + λ2,N [Eqs. (14)
and (15)] that the random walk has in the localized state: In
the bulk-dangling model is half with respect to the two-state
model presented here.

The nondifferentiability of the SCGF can be physically
related to a first-order DPT also in this case. Once again, this
is interpreted as a coexistence of paths that are either absorbed
by the state b (Cn ∼ 1) or are localized in the state 1 (Cn ∼ 0).
We can further characterize this DPT by writing the driven
process (20) that leads to fluctuations for s− ≡ s < sc or for
s+ ≡ s > sc. This can be done, in analogy to Eqs. (42) and
(43), by properly taking the b → ∞ limit of the minimizer
ν∗ = (ν∗

11, ν
∗
1b, ν

∗
bb) and inserting the results in (20). We get

the following two transition matrices:

�s− =
[

1 + O(b−1) O(b−1)
1 − 2es + O(b−1) 2es + O(b−1)

]
, (60)

�s+ =
[

1
2es + O(b−1) 1 − 1

2es + O(b−1)
O(b−1) 1 + O(b−1)

]
. (61)

For s < sc the Markov chain is biased toward localizing in the
state 1, whereas for s > sc, the state b absorbs the Markov
chain. This is very similar to what we have seen in the bulk-
dangling model, with the only difference that now the role of
the topology has been replaced by different rewards on the
two states of the chain.

Although this structural change in the model does not seem
to affect the appearance of a first-order DPT, we notice that
fluctuations scale differently around the critical point sc =
− log 2. This is made evident by rescaling the tilting parame-
ter s and the SCGF λs,b similarly to the previous subsection,
we obtain

λs̃,b ≈ − log 2 + ε̃s̃

2
√

b
, (62)

with

ε̃s̃ = s̃ +
√

4 + s̃2. (63)

Equation (62) describes fluctuations locally around sc for large
(but finite) reward b. Also in this case, we plot in Fig. 6 the
function ε̃s̃ along with b-finite scalings.

The scaling of fluctuations is much different from what
we found in (46) for the bulk-dangling model. We argue
that the exact form of the scaling is not only determined by
the dynamics of the model but also by the topology of the
graph considered. Indeed, the two-state Markov chain is only
composed by two nodes playing the role of bulk and dangling
chain, whereas in the bulk-dangling model, as previously
mentioned, we count four key nodes (see Fig. 1) and among
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FIG. 5. Large deviation study for the two-state model. In all three figures, different colors correspond to a different value b of the reward:
(i) light blue is b = 15, (ii) orange is b = 50, (iii) green is b = 250, and (iv) black is b → ∞. All finite b curves were obtained from (56), while
analytical expressions for the black curves are presented in (57) for (a), (58) for (b), and (59) for (c).

these, differently from the two-state Markov chain, the orange
and red one play the role of a gate between the bulk and the
yellow node of degree one.

To further corroborate this argument we also studied gen-
eralizations of the two-state Markov chain analyzed so far.
These are obtained by considering as a probability to es-
cape the rightmost state the value b−γ , with γ � 1, and by
rescaling, or not, the reward b by b−γ . In all cases consid-
ered (not shown here), the scaling of fluctuations around the
critical point for the DPT are different from the case of the
bulk-dangling model. These results support the argument that
changing the dynamics does not make up for having different
graph topologies.

To investigate the robustness of the aforementioned DPT,
we investigated also other variants of the two-state model,
where the reward of the two nodes are set to 1 and k, respec-
tively. In this version of the model k does not depend on b,
and 1/b is only the transition probability to remain in state k.
Interestingly, the DPT appears also in this case when b goes
to infinity, but both the critical tilting parameter sc and the
behavior for s < sc depend on the value of k. This is in line
with previous works on two state models [22], although with
a remarkable difference. In these works, the author considers
models where the transition matrix is symmetric, so that both
nodes become absorbing in the appropriate limit. As a conse-
quence, sc in those models is exactly 0. In our work, instead,

FIG. 6. Crossover regime of the SCGF of the two-state Markov
chain model around sc as a function of the scaling variable s̃ for
different values of b. As b increases, the colored curves collapse into
the limiting curve predicted theoretically (63).

we are naturally led to consider nonsymmetric transition ma-
trices, such that only one of the two states becomes absorbing.
To win this asymmetric absorbing dynamics, an infinitesimal
s is not sufficient, hence sc 
= 0.

IV. CONCLUSION AND FUTURE PERSPECTIVES

In this paper, we have shown the appearance of a first-
order dynamical phase transition in two models that catch the
relevant physical aspects of the dynamics of random walks
on random graphs, for which the dynamical phase transition
has hitherto only been argued. In both models, the random
walk collects a cost—with general form given in (5)—which
scales differently in different regions of the graph. In the bulk-
dangling model, very much similarly to a random walk on a
random graph, the cost scales proportionally to the size of the
graph in the bulk, whereas it gives only a constant contribution
in the dangling chain. In the two-state Markov chain instead,
we greatly simplified the topology of the graph and made the
cost scale with a reward rather than keeping it linked to the
graph structure. As a consequence, to keep the analogy with
random walks on random graphs, we also suitably rescaled the
transition probabilities inversely with the reward. We analyzed
both models by applying a large deviation framework [18] that
allowed us to carry out analytical results.

Remarkably, regardless of the precise details of the model,
a first-order dynamical phase transition in the cost accumu-
lated by the random walk always appears (see Figs. 2 and 5).
This is interpreted as a coexistence of paths that visit regions
of the graph where the cost scales proportionally with the
relevant physical parameter of the model (size N or reward
b) and paths that visit regions that only contribute to the cost
with constant increments. We gave further evidence for this
interpretation by also calculating the relevant driven process,
whose long-time statistics typically recover a fluctuation of
the original dynamics [see Eqs. (42) and (43), and (60) and
(61)]. Furthermore, one could numerically simulate the driven
process dynamics to get insights on how a particular fluctu-
ation arises in time; this could be done around the critical
point to better characterise the DPT, perhaps linking it to
intermittency phenomena [23] of which, however, we do not
have a clear definition for two state systems. In addition, by
zooming around the critical value for the transition, we exactly
determined how fluctuations scale either with the system size
N or the reward b. Since the scaling turns out to be different
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in the two models investigated, we argue that although the
dynamical phase transition is robust to topological changes
in the model in the thermodynamic limit, the exact structure
of the graph plays a role—along with the dynamics—for finite
systems.

These results support the idea that also random walks on
sparse random graphs undergo first-order phase transitions in
the fluctuations of the mean-degree visited [19,20] for infinite-
size graphs. However, a full proof has yet to be advanced. We
believe that by implementing the large deviation framework
discussed in Ref. [18] and in this paper one should be able
to average the relevant action over the infinite realizations of
the random graph ensemble, obtaining the scaled cumulant
generating function in the thermodynamic-size limit. Further-
more, it would also be interesting to study transient regimes
in time—and not only the asymptotics given by the large de-
viation theory—of the URW fluctuations. This could be done
in principle by following ideas presented in Refs. [18,34,38].

Another interesting extension of our work would be the
investigation of analogous localization dynamical phase tran-
sitions in processes that break the detailed balance, which
are relevant for nonequilibrium phenomena. So far, in this
and previous works, too [19,39], the focus has only been
on unbiased random walks on undirected graphs (which sat-
isfy the detailed balance) and only on local, or single-state,
observables. The choice of these observables also make the
driven process time reversible, a well known result of large
deviation theory [16,35,40]. However, by considering (i) di-
rected graphs or (ii) jump-type observables, e.g., the number
of jumps from a node i to a node j, the detailed balance may

break. We note that in case (ii) detailed balance would be
broken only for the driven process, while for case (i) also for
the unbiased process. In case (i), the directionality of the edges
may induce probability currents of the URW over cycles of
the graph, which can lead to a delocalization-localization dy-
namical phase transition similar to the ones we have described
in this paper, where the walker localizes in the cycles that
maximize (or minimize) the observable considered. For case
(ii), we consider the following example: two highly connected
disjoint graphs I and J connected by a link from node i ∈ I
to j ∈ J . In other word, the link from i to j is the only one
allowing the walker to jump from I to J . When the tilting
parameter s � 0, the walker will seldom jump from i to j:
One of the possible ways to achieve this would be that the
walker spends most of the time in the subgraph I . On the other
hand, for s � 0, the walker will often jump between the two
components I and J . A possible scenario is that, when N tends
to infinity, the aforementioned two regimes will be separated
by a dynamical phase transition that happens at a finite sc.

In summary, there is much scope for future work, both
theoretical, as just mentioned, and applied. Related to the lat-
ter, for instance, by appropriately tuning the tilting parameter
one could exploit the driven processes to generate optimal
explorers of networks, a topic that has recently gained much
attention [41–43].
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APPENDIX: DETAILS ON THE “BULK-DANGLING MODEL”

The exact form of the function h appearing in (28) reads

h(s, N, ν12, ν23, ν34, ν44) = ν12

(
3s

k̄
− log 2

)
+ ν23

[
Ns

k̄
− log(2N − 4)

]
+ ν34(N − 3)

[
(2N − 5)s

k̄
− log(N2 − 5N + 6)

]

+ ν44(N − 3)(N − 4)

[
(N − 3)s

k̄
− log(N − 3)

]
+ ν12 log

[
ν12 + ν23

ν12

]
+ ν23

[
log

(
ν12 + ν23

ν23

)

+ log

(
ν23 + (N − 3)ν34

ν23

)]
+ ν34(N − 3)

[
log

(
ν23 + (N − 3)ν34

ν34

)
+ log

(
ν34 + (N − 4)ν44

ν34

)]

+ ν44(N − 3)(N − 4) log

(
ν34 + (N − 4)ν44

ν44

)

+ ε[1 − 2ν12 − 2ν23 − 2(N − 3)ν34 − (N − 3)(N − 4)ν44]. (A1)

The minimizers ν∗ = (ν∗
12, ν

∗
23, ν

∗
34, ν

∗
44) of the action (28) are explicitly given by

ν12(s, N, ε) = (N − 3)
a(s, N, ε)

a(s, N, ε) − 1

b(s, N, ε)

b(s, N, ε) − 1


1(s, N, ε)


2(s, N, ε)
(A2)

ν23(s, N, ε) = (N − 3)
b(s, N, ε)

(b(s, N, ε) − 1)


1(s, N, ε)


2(s, N, ε)
(A3)

ν34(s, N, ε) = 
1(s, N, ε)


2(s, N, ε)
(A4)

ν44(s, N, ε) = c(s, N, ε)

(N − 4)c(s, N, ε) − 1


1(s, N, ε)


2(s, N, ε)
(A5)
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1(s, N, ε) = [a(s, N, ε) − 1][b(s, N, ε) − 1][c(s, N, ε)(N − 4) − 1] (A6)


2(s, N, ε) = (N − 3)a(s, N, ε)[b(s, N, ε) − 1][c(s, N, ε)(N − 4) − 2]

+ (N − 3)[1 + b(s, N, ε)]c(s, N, ε)(N − 4) + 6 − 2N (A7)

The inequality constraints that select the physical solution of (38) are

ε >
3s

2k̄
− log 2

2
, (A8)

ε > −1

2
log

[
2(N − 2)

(N − 2)e3 s
k̄ + eN s

k̄

]
, (A9)

0 > τ 2(N − 3) + τ (N − 2)(N − 4)e−(N−2) s
k̄ τ − (N − 2)(N − 3)e−(2N−5) s

k̄ , (A10)

ε > (N − 3)
s

k̄
− log(N − 3) + log(N − 4). (A11)
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