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We analyze the thermodynamic properties of the random-bond Ising model (RBIM) on closed hyperbolic
surfaces using Monte Carlo and high-temperature series expansion techniques. We also analyze the dual-RBIM,
that is, the model that in the absence of disorder is related to the RBIM via the Kramers-Wannier duality. Even on
self-dual lattices this model is different from the RBIM, unlike in the Euclidean case. We explain this anomaly
by a careful rederivation of the Kramers-Wannier duality. For the (dual-)RBIM, we compute the paramagnet-to-
ferromagnet phase transition as a function of both temperature T and the fraction of antiferromagnetic bonds p.
We find that as temperature is decreased in the RBIM, the paramagnet gives way to either a ferromagnet or a
spin-glass phase via a second-order transition compatible with mean-field behavior. In contrast, the dual-RBIM
undergoes a strongly first-order transition from the paramagnet to the ferromagnet both in the absence of disorder
and along the Nishimori line. We study both transitions for a variety of hyperbolic tessellations and comment
on the role of coordination number and curvature. The extent of the ferromagnetic phase in the dual-RBIM
corresponds to the correctable phase of hyperbolic surface codes under independent bit- and phase-flip noise.
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I. INTRODUCTION

The effect of quenched disorder to critical phenomena in
spin systems has been the subject of intense study for almost
half a century. One of the central models has been the random
bond Ising model (RBIM), which serves as a model for certain
spin-glass materials [1,2], certain localization problems and
plateau transitions in the quantum Hall effect [3,4] but also has
been shown to be relevant for the analysis of the performance
of topological quantum error correcting codes when assuming
certain noise models [5–10].

The RBIM in flat space has been understood quite com-
prehensively by now: While weak disorder is irrelevant in
the renormalization group sense [11], increasing the disor-
der strength lowers the phase transition temperature until the
“Nishimori point” is reached. Beyond this, the system stays
disordered for all temperatures. In more than two dimensions,
the system for low temperatures and large disorder is in a
spin-glass phase, with the Nishimori point being the tricritical
point.

The present paper is now concerned with the properties
of the RBIM in curved space. Condensed matter physics in
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curved spaces has been a subject of intense study. Curva-
ture is known, for example, to alter the critical. properties
of statistical mechanics models [12], circuit quantum elec-
trodynamics [13,14], and band theory [15–19]. The Ising
model in curved space has, to the best of our knowledge,
so far only been studied in the absence of disorder [10,20–
23]. In this limit, the model undergoes a phase transition
from a paramagnetic high-temperature to a low-temperature
ferromagnetic phase, just as its flat-space counterpart. The
transition is mean field in nature, but surprisingly it is not
located at the fixed-point of the Kramers-Wannier duality,
even on self-dual hyperbolic lattices. This observation implies
either the existence of a second phase transition, for which no
evidence was found numerically, or a violation of self-duality
of the Ising model on self-dual hyperbolic lattices. We note
that the existence of a second phase transition for the pure
Ising model on the hyperbolic plane with free boundary con-
dition has been proved [10,24,25].

Studying the Kramers-Wannier duality in the presence of
curvature is interesting on its own right [26]. However, as
Polyakov pointed out already in 1987 (chapter 9 in Ref. [27]),
its understanding will have consequences also for related
constructions. This includes Polyakov’s original example, the
Fermionization of Ising spins [28], and, more recently, the
mapping between the decoding of homological quantum error
correction codes and statistical mechanics models [5–10].

As we show in this work, there is an anomaly in the hy-
perbolic RBIM. It turns out that it is not self-dual even on
self-dual lattices but, in the disorder-free limit, is related by
the Kramers-Wannier duality to what we call the dual-RBIM.
Hence, in this paper we study both the critical properties of
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the random bond Ising model and its dual in hyperbolic space.
Note that what we call the dual-RBIM it is not related to the
RBIM by an exact duality in the presence of disorder.

We begin our study of both models by mapping out their
phase diagrams using a combination of high-temperature se-
ries expansion techniques and Monte Carlo simulations. We
show that the RBIM realizes a paramagnetic, a ferromag-
netic, and a spin-glass phase with the Nishimori point as
the tricritical point. All transitions (with the exception of the
multicritical point) are compatible with second-order mean-
field behavior. In contrast, the dual-RBIM in the disorder-free
limit as well as along the Nishiori line undergoes a strongly
first-order transition as evidenced through Metropolis and
canonical simulations using the Wang-Landau algorithm. We
numerically verify the duality of the two models in the
disorder-free case and show that a duality conjectured by
Takeda et al. [29] is fulfilled only approximately.

The rest of the paper is organized as follows. In Sec. II we
give necessary notions and definitions; in particular the dual-
RBIM is derived in Sec. II B. In Sec. III we derive the high-
temperature expansion for the RBIM and give details on the
Monte Carlo simulations used. Section IV presents the results
on the phase diagram and critical properties of the random
Bond Ising model and Sec. V presents the same for the dual
model. Finally, we discuss the relevance of our results to the
decoding of hyperbolic surface codes in Sec. VI. We conclude
in Sec. VII.

II. THE DISORDERED ISING MODEL AND ITS DUAL
IN THE HYPERBOLIC PLANE

A. Hyperbolic surfaces

The hyperbolic plane is a two-dimensional (2D) manifold
of constant negative curvature. It can be realized in terms
of several models. Here we will employ the Poincaré disk
model, which is defined as follows. Consider a disk in R2 with
unit radius and centered at the origin. Let x and y denote the
standard coordinates of R2. Then the hyperbolic plane is given
by the set of points

H2 = {(x, y) ∈ R2 | x2 + y2 < 1}, (1)

with metric given by

ds2 = dx2 + dy2

(1 − x2 − y2)2
. (2)

It is immediate from Eq. (2) that length scales are highly
distorted toward the boundary of the disk compared to the
Euclidean metric, see Fig. 1.

Just as regular Euclidean space can be tessellated by
squares, triangles, or hexagons, hyperbolic space can be tes-
sellated by regular polygons as well. In fact, it turns out
that hyperbolic space supports an infinite number of regular
tessellations. We can label regular tessellations by the Schläfli
symbol {r, s}, where r is the number of sides of the polygonal
plaquettes and s is the number of plaquettes meeting at each
vertex. For example, the hexagonal lattice has Schläfli symbol
{6, 3}. Its dual lattice can be obtained by reversing the Schläfli
symbol, i.e., the triangular lattice {3, 6}. These two examples,
together with the self-dual square tessellation {4, 4} are all the

FIG. 1. (a) Poincaré disk model of the infinite hyperbolic plane
H2 with the {5, 5} lattice. All edges have the same length with respect
to the hyperbolic metric, see Eq. (2).

possible regular tessellations of the Euclidean plane. The hy-
perbolic plane supports any regular tessellation {r, s} as long
as 1/r + 1/s < 1/2. The {5, 5} tessellation of the hyperbolic
plane in the Poincaré disk model is shown in Fig. 1.

In order to approximate the infinite hyperbolic plane for
numerical analysis, we can consider sequences of finite neigh-
borhoods BR (disks) of increasing radii R. This is commonly
done in the context of statistical mechanics models in Eu-
clidean space for performing finite-size analysis. The models
differ at the boundaries of the finite regions from the infi-
nite Euclidean plane. However, the effects of this deviation
vanish in the thermodynamic limit as vol(∂BR)/ vol(BR) → 0
for R → ∞. This is not the case in hyperbolic space where
vol(∂BR) and vol(BR) have the same asymptotic scaling. This
means that taking finite neighborhoods with boundaries can
not be used to analyze the behavior of the infinite model. We
solve this problem by considering families of boundaryless,
finite surfaces (supporting the same tessellation) which are
indistinguishable from the infinite hyperbolic plane in local
regions of increasing size at any point.

Introducing periodic boundary conditions is a much more
subtle process in hyperbolic spaces compared to Euclidean
spaces. In particular, closed, orientable hyperbolic manifolds
have a genus that is proportional to their area. This is seen
most easily by considering a theorem due to Gauß-Bonnet,
which states that the geometry (curvature) of a 2D surface is
connected to its topology. More concretely, it states that for
any orientable surface S of genus g it holds that

2 − 2g = 1

2π

∫
S
κ dA, (3)

where on the right-hand side we integrate the curvature κ at
every point in S over the area of S. If S is Euclidean, then the
curvature κ is equal to 0 at every point. From Eq. (3) it then
immediately follows that all orientable Euclidean surfaces are
tori (g = 1). On the other hand, if S is hyperbolic, then κ =

024125-2



RANDOM-BOND ISING MODEL AND ITS DUAL IN … PHYSICAL REVIEW E 107, 024125 (2023)

FIG. 2. A hyperbolic surface of genus 3 tessellated by the {7, 3}
tessellation (left). If we cut the surface open, then we obtain a flat
piece of hyperbolic space (right). The plaquettes are colored to guide
they eye.

−1 everywhere. Orientable hyperbolic surfaces hence have

area(S)

2π
= 2g − 2, (4)

so that larger surfaces necessarily have a higher genus. In
Fig. 2 we show an example of a closed g = 3 hyperbolic sur-
face, called Klein quartic, which supports a {7, 3} tessellation.

As it turns out, the subtlety that hyperbolic surfaces are
topologically complex becomes important in the Kramers-
Wannier duality. This is because the Kramers-Wannier duality
is sensitive to the number of closed loops (cycles) in the lattice
and the higher genus of hyperbolic surfaces introduces more
such loops, see discussion in Sec. II B.

B. Duality in the hyperbolic Ising model

We consider the Ising model (for the time being without
quenched disorder) on a lattice L = (V, E , F ). We denote by
V the set of vertices, by E the set of edges and by F the set of
faces of the lattice. Denoting nearest-neighbor bonds between
two vertices i and j of the lattice by 〈i j〉, the Hamiltonian of
the Ising model is then given by

H = J
∑
〈i j〉

σiσ j, (5)

where σ ∈ {±1} are Ising spin variables and we assume J < 0
for ferromagnetic coupling.

In Euclidean space, the Kramers-Wannier duality [30]
relates the high-temperature expansion of the Ising model
[Eq. (5)] to its low-temperature expansion of the same model
on the dual lattice.

In particular, Kramers and Wannier showed an exact rela-
tion the two partition functions

Z (T ) = Z̃ (T ∗), (6a)

where Z and Z̃ are the partition functions of the Ising model
on the lattice and its dual, respectively, and T and T ∗ satisfy

sinh(2J/T ) sinh(2J/T ∗) = 1. (6b)

On a self-dual lattice, Z = Z̃ and thus the duality [Eq. (6)]
constitutes an exact mapping between the behavior of the
system at high and low temperature. In particular, assuming
that a single phase transition occurs, this fixes the critical
temperature to the fixed-point of Eq. (6b),

sinh(2J/Tc) sinh(2J/Tc) = 1 ⇒ Tc ≈ 2.2692J. (7)

FIG. 3. The left shows a cycle on the dual lattice (blue) and
the associate cocycle on the primal lattice (red). The right shows a
boundary on the primal lattice (blue) and the associate coboundary
on the dual lattice (red).

An open question posed by earlier studies [20,23] was how
Eq. (7) is violated in hyperbolic space. That is, if the Kramers-
Wannier duality [Eq. (6)] applies also to hyperbolic lattices,
then one of the following must hold: Either all self-dual hy-
perbolic lattices (that is, tessellations of compact hyperbolic
manifolds with Schläfli symbol {r, s} with r = s) have the
same critical temperature, given by Eq. (7), or there exist two
phase transitions, related by Eq. (6b). In fact, as we will show
below, the Ising model on tessellations of compact hyperbolic
manifolds is not related by the Krammers-Wannier duality to
the same Ising model on the dual lattice. In particular, it is not
self-dual, even on self-dual lattices.

1. Rederivation of the Kramers-Wannier duality

To understand this, let us perform a careful rederivation of
the Kramers-Wannier duality. To this end, we first consider
the high-temperature expansion of the Ising model on a lattice
L = (V, E , F ). Let Z1 be the set of subsets γ ⊂ E such that
in the subgraph induced by any such γ , every vertex has even
degree. The subsets γ ∈ Z1 are called cycles. It is well known
that the partition function can be written as a sum over the set
of all cycles of the graph (see, e.g., chapter 2 in Ref. [31]):

Z (K ) =
∑

σ∈{±1}N

∏
〈i, j〉∈E

exp(Kσiσ j ), (8a)

= (cosh K )|E | ∑
σ

∏
(i, j)

(1 + σiσ j tanh K ), (8b)

= 2N (cosh K )|E | ∑
γ∈Z1

(tanh K )|γ |, (8c)

where we have defined K = −J/T and |S| denotes the size of
the set S.

Note that the set Z1 of cycles γ in Eq. (8) includes ones
that are contractible as well as ones that are noncontractible.
Two examples for such cycles, on a surface with genus 3,
tessellated by the {7, 3} tessellation (cf. Fig. 2), are given in
Fig. 3. On the right we show a contractible cycle on the primal
lattice (solid lines) in blue. On the left we show, also in blue,
a noncontractible cycle on the dual lattice (dashed lines).

To establish the duality, we also consider the low-
temperature expansion of the Ising model but on the dual
lattice L∗ = (V ∗, E∗, F ∗) = (F, E ,V ). For regular tessella-
tions of hyperbolic surfaces, the dual lattice is just obtained
by swapping the first and second entry of its Schläfli symbol
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{r, s}. This is also indicated in Fig. 3. The primal lattice (solid
lines) is the {7, 3} tessellation and its dual (dashed lines) is the
{3, 7} tessellation of the same surface.

The low-temperature expansion follows from expressing
the partition function in terms of excitations on top of the (fer-
romagnetic) ground state. These are given by domain walls.
For example, consider starting from an all-ferromagnetic state
of the Ising model [Eq. (5)] on the (dual) lattice indicated by
dashed lines in Fig. 3. The cost of flipping the spin on the
central cite is given by the size of the domain wall indicated
in red on the right of Fig. 3. Generally, let B1∗ be the set of all
possible domain walls on the dual lattice. We can write

Z̃ (K ) =
∑

σ∈{±1}N

∏
〈i, j〉∈E∗

exp(Kσiσ j ), (9a)

= 2
∑

ω∗∈B1∗
exp(K∗)|E

∗|−2|ω∗|, (9b)

= 2 exp(K )|E
∗| ∑

ω∗∈B1∗
exp(−2K )|ω

∗|, (9c)

where the second equality directly follows from the definition
of B1∗. In the language of homology, the set B1∗ is given
exactly by the set of coboundaries on the dual lattice.

The basis of the Kramers-Wannier duality, homologically
speaking, is the fact that the set of cycles Z1 is in one-to-
one correspondence with the set of cocycles Z1∗ on the dual
lattice L∗. This is also indicated in Fig. 3 where we show
two examples of the correspondence of cocycles (red) and
cycles (blue). The left side shows a noncontractible cocycle
on the primal lattice (solid, red) and the corresponding cycle
on the dual (blue, dashed). The right side shows a contractible
cycle (a boundary) on the primal lattice (red, solid) and the
corresponding cocycle (a coboundary) on the dual lattice (red,
dashed).

Using this equivalence, Z1 = Z1∗, as well as Eq. (6b), and
defining K∗ = −J/T ∗, we can then rewrite

Z (K ) = 2 exp(K∗)|E
∗| ∑

γ ∗∈Z1∗
exp(−2K∗)|γ

∗|. (10)

Above, the right-hand side is almost the low-temperature ex-
pansion of the Ising model on the dual lattice [Eq. (9)] at
temperature T ∗ [Eq. (6b)]. The difference between Eq. (10)
and Eq. (9) is that the sum above is over all cocycles γ ∗ ∈ Z1∗,
whereas the low-temperature expansion is a sum over domain
walls ω∗ ∈ B1∗, that is, coboundaries or “contractible” cocy-
cles. Physically, we can rationalize this difference by looking
at the example of a noncontractible cocycle on the left of
Fig. 3 (red, solid). The corresponding cycle (blue, dashed)
appears in the high-temperature expansion of the dual lattice
(every vertex in it has even degree). However, there is no set
of spins on vertices of the primal lattice that we could flip to
get a domain of that form.

Hence, for Ising models on regular tessellations of closed
manifolds, we have established what is the difference be-
tween their high-temperature expansion [Eq. (8)] and the
low-temperature expansion on the dual lattice, at the dual
temperature [Eq. (10)]. In the following we will show that
(i) for tessellations of closed Euclidean surfaces (tori), this
difference vanishes in the thermodynamic limit, yielding the

Kramers-Wannier duality [Eq. (6)], and (ii) the difference
does not vanish for tessellations of closed hyperbolic surfaces,
leading to a violation of Eq. (6).

Note that the contribution of any cocycle in Eq. (10) has
a weight exp(−2K∗)|γ

∗|. For Euclidean lattices on an L × L
torus this implies that the contribution of any noncontractible
cocycle is at least of order [exp(−2K∗]L. Focusing on such
minimal-size cocycles, of which there are ∼L, the difference
between Eq. (10) and the low-temperature expansion of the
Ising model vanishes in the thermodynamic limit,

Z (T ) − Z̃ (T ∗) ∼ L exp(−2K∗L) −−−→
L→∞

0. (11)

This then yields Eq. (6).
In contrast, in hyperbolic space, the number of minimal,

noncontractible cocycles goes as ∼N [see Eq. (4)] while their
length grows only logarithmically [32,33]. This means that the
same difference goes as

Z (T ) − Z̃ (T ∗) ∼ N1−2K∗
, (12)

which does not generally vanish as N → ∞.

2. The dual Ising model in hyperbolic space

In order to obtain a model that does fulfill the Kramers-
Wannier duality, we have to define a model where possible
domain walls on top of the ferromagnetic ground state include
all noncontractible cocycles.

We achieve this by a rather simple trick. Given an Ising
model [Eq. (5)] on a tessellation of a closed hyperbolic
surface S with 2g nonequivalent, noncontractible cocyles �,
we introduce one additional Ising degree of freedom η� per
nonequivalent, noncontractible cocycle.

We then define the “dual Ising model” as

H = J
∑
〈i j〉

⎛
⎝ ∏

� | 〈i j〉∈�

η�

⎞
⎠ σiσ j, (13)

where J < 0 as before is chosen to be ferromagnetic and we
have chosen one representative per nontrivial cocycle �. One
example of such a representative on a hyperbolic surface with
genus 3, tessellated by the {7, 3} tessellation, is shown on
the left side of Fig. 3, where it is highlighted in red. The
effect of flipping this Ising degree of freedom η� → −η� is to
reverse the sign of the coupling of each edge that is part of the
representative �. One can think of each variable η� to encode
the boundary condition in one possible direction which can
either be periodic (η� = 1) or antiperiodic (η� = −1). Because
of this, the domain walls of the model defined by Eq. (13)
include the nontrivial cocycles of the lattice and its partition
is given by Eq. (10), that is, the dual-RBIM for p = 0 is indeed
the Kramers-Wannier dual of the Ising model.

This model also gives another rational for the difference
between duality of Ising models on tessellations of Euclidian
and hyperbolic manifolds. Strictly speaking, the Kramers-
Wannier dual of the Ising model on finite tessellations of
Euclidean manifolds is also given by Eq. (13). However, since
all closed, orientable Euclidean manifolds are tori, the dual
model has only two additional degrees of freedom � compared
to the original Ising model [Eq. (5)]. Hence, they have no finite
entropic contribution in the thermodynamic limit and the dual
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model has the same thermodynamic properties as the origi-
nal model. In contrast, on tessellations of closed hyperbolic
manifolds, the number of additional variables � in Eq. (13)
is extensive (∼N) and hence changes the properties of the
model, even in the thermodynamic limit.

C. The random-bond Ising model

The RBIM, first introduced by Edwards and Anderson [1]
to model the interaction of dilute magnetic alloys, serves as
a simple model to study critical phenomena in systems with
quenched disorder. The Hamiltonian for the RBIM on a lattice
with nearest-neighbor bonds 〈i j〉 is

H =
∑
〈i, j〉

Ji jσiσ j, (14)

where σi ∈ {±1} are Ising spin variables and Ji j are random
couplings. Whenever we refer to the Ising model in “hyper-
bolic space” or on “hyperbolic lattices” throughout this work,
we refer to a model where spins are located on the vertices
of regular tessellations of compact hyperbolic manifolds, with
Schläfli symbol {r, s}. This emphasis is important, since con-
sidering the same model on noncompact hyperbolic manifolds
with, for example, open or closed boundary conditions will
generally change its properties [24,25]. The couplings are
distributed independently and identically. In this paper, we
take their individual probability distribution to be the “±J-
distribution,”

P(Ji j ) = p δ(Ji j − 1) + (1 − p) δ(Ji j + 1), (15)

so that each coupling is antiferromagnetic Ji j = +1 with prob-
ability p and ferromagnetic Ji j = −1 with probability 1 − p.
Hence, on the infinite hyperbolic plane, p is equal to the
fraction of antiferromagnetic bonds. The free energy of the
model, when considering quenched disorder is then given by

F = [log(Z )], (16)

Z =
∑
{σ }

exp

⎛
⎝−β

∑
〈i, j〉

Ji jσiσ j

⎞
⎠, (17)

where brackets [. . . ] denote the average over disorder config-
urations.

For p = 0, the model reduces to the ferromagnetic Ising
model, which we have studied for regular tessellations of
compact hyperbolic manifolds in a previous paper [23].
This model as a function of temperature undergoes a phase
transition from a high-temperature paramagnetic into a low-
temperature ferromagnetic phase. Our study revealed that this
transition is mean field in nature for all investigated tessella-
tions. In the present work, we extend our previous work to the
case of finite 0 < p < 1/2.

We also study the dual Ising model Eq. (13) in the presence
of quenched disorder. In this case it becomes

H =
∑
〈i j〉

Ji j

⎛
⎝ ∏

� | 〈i j〉∈�

η�

⎞
⎠ σiσ j . (18)

As before, the σ j ∈ {±1} are Ising variables, as are the
η� ∈ {±1}. While the σ j are located on the vertices of the

lattice, each η� is associated with a nontrivial cocycle η� (cf.
Sec. II B). The Ji j are random couplings drawn from the ±J
distribution defined in Eq. (15).

The Kramers-Wannier duality [Eq. (6)], as usual, is only
valid is the disorder-free case. However, there exists a con-
jecture by Takeda and Nihsimori [29] relating the location of
the Nishimori point of the RBIM with the position in the dual
model,

H (pN ) + H (p∗
N ) = 1, (19)

where H (p) = −p log2(p) − (1 − p) log2(1 − p) is the bi-
nary entropy. As discussed in Sec. V, we see that the
conjecture holds approximately but not within error bars.

D. Possible phases and order parameters

At high temperature, both the RBIM and its dual are in
the paramagnetic phase. As the temperature is lowered, at
low disorder this gives way to a ferromagnetic phase which
is continuously connected to that of the pure model at p = 0.
The transition from the paramagnet to the ferromagnet cor-
responds to an instability of the mean of the magnetization
distribution ρ(m). That means while in the paramagnet we
have

ρ(m) = δ(m), (20)

in the ferromagnetic phase

ρ(m) = δ(|m| − M ). (21)

For large disorder, p ≈ 1/2, random systems can also de-
velop spin-glass order at low temperature, which corresponds
to an instability in the variance of the magnetization distribu-
tion, which is also called the Edwards-Anderson (EA) order
parameter

qEA = [m2], (22)

where the magnetization vanishes ([m] = 0). At intermediate
values of disorder, there is in principle also the possibility of a
magnetized spin-glass phase [34,35], where the magnetization
distribution has both finite width (qEA �= 0) and mean ([m] �=
0).

The schematic phase diagram of the RBIM and its dual
on the hyperbolic plane is shown in Fig. 4. Note that for
the dual model, we only indicate the phase boundary of the
ferromagnetic phase. There could exist a spin-glass phase in
principle, but the investigation of that is beyond the scope of
this work. We also indicate the so-called Nishimori line [36],
which is defined by the condition

exp(2βJ ) = p

1 − p
, (23)

that is, the (relative) probability of frustrating a bond due to
thermal fluctuations is equal to that of flipping its sign due to
the quenched disorder. It is known that the multicritical point
in the RBIM lies on the Nishimori line and that the phase
boundary of any magnetized phase must be reentrant or verti-
cal, that is, no magnetized phase can exist for pN < p [36].

As indicated, we expect the ferromagnetic phase of the
RBIM to have a larger extent than that of its dual, since
the additional cocycle degrees of freedom η� have a finite
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FIG. 4. Schematic phase diagram of the random bond Ising
model and its dual on the hyperbolic plane as a function of tem-
perature T and the fraction of antiferromagnetic bonds p. The
high-temperature paramagnetic (PM) phase at low temperatures
gives way either to a ferromagnetic (FM) phase spin-glass (SG)
phase at weak and strong disorder, respectively. For the dual model,
we only indicated the schematic boundary of the FM phase. Note
that although the temperatures Tc and T ∗

c are related by the Kramers-
Wannier relation, the dual model of the hyperbolic Ising model is
different from the original model even on self-dual lattices (see main
text for details). The phase boundary of the dual model corresponds
to the decoding threshold of the hyperbolic surface code under phe-
nomenological noise. The Nishimori line is indicated in dashed gray.

contribution to the entropy, which is then strictly greater than
that of the RBIM.

III. METHODS

A. High-temperature series expansion

Our primary means to map out the phase diagram of the
random-bond Ising model in hyperbolic space will be to
perform high-temperature series expansions of both the sus-
ceptibility

χ = β
1

N

∑
i, j

[〈σiσ j〉 − 〈σi〉〈σ j〉], (24)

as well as of the EA susceptibility

χEA = β
1

N2

∑
i, j

[〈σiσ j〉2 − 〈σi〉2〈σ j〉2]. (25)

Coming from a high temperature, if there is a transition to a
low-temperature ferromagnetic phase, then the susceptibility
χ at the transition should diverge as a power law,

χ ∼ 1

(T − Tc)γ
, (26)

while the Edwards-Anderson susceptibility χEA can have ei-
ther a weak singularity or diverge as well [2]. In contrast, if
there is a transition into a low-temperature spin-glass phase,
then the susceptibility χ will exhibit only a weak singularity

FIG. 5. Some small biconnected subgraphs of the {5, 5} tiling.
Removing a vertex and all its incident edges will leave the
graphs connected. Only biconnected graphs contribute to the series
expansion.

(a cusp), while the Edwards-Anderson susceptibility diverges
as a power law,

χEA ∼ 1

(T − Tc)γ ′ . (27)

1. Biconnected graph expansion of inverse susceptibilities

It turns out that for susceptibilities of the form

χk,l = β
1

N

∑
i, j

[〈σiσ j〉k − 〈σi〉k〈σ j〉k]l , (28)

it is favorable to perform the high-temperature expansion in
the inverse susceptibility. The reason for this is that it can be
shown [37] that the only nontrivial contributions come from
biconnected graphs, that is, graphs which stay connected if
any of their vertices (and the edges attached to it) are being
removed. We show the first few graphs that contribute to the
susceptibility χ = χ1,1 and EA susceptibility χEA = χ2,1 on
the {5, 5} lattice in Fig. 5.

The inverse susceptibility can be expanded in terms of
these graphs as a function of both inverse temperature v =
tanh(βJ ) and disorder strength μ = 1 − 2p. In practice, the
variables in the systematic biconnected graph expansion are
w = v2 and α = μ/v:

χ̃−1(w, α) = 1 +
∑

g

c(g)W (g), (29)

where the sum is over all graphs, c(g) is the coefficient of N of
the number of embeddings of the graph g into the lattice, and
W (g) for each graph is a function of both w and α. Expanding
W as a function of inverse temperature w, one can show that
for each order n, the coefficient of wn is a polynomial in α

of order n with integer coefficients. For example, the inverse
susceptibility on the {5, 5} lattice is given by

χ−1(w, α) = 1 − 5αw + 5α2w2 − 5α3w3 + 5α4w4

+ (10α + 10α2 + 10α3 + 10α4 + 5α5)w5

+ O(w6). (30)

Note that for α = 1 (that is, v = μ), we obtain the series on
the Nishimori line up to order O(wn) = O(v2n).

For more details and a derivation of Eq. (29) see Ref. [37].
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2. Analysis of the series

We analyze the generates series χ̃ (w, α), usually for fixed
α as a function of w, using first-order homogeneous integrated
differential approximants (FO-IDAs). One reason to choose
FO-IDAs over simpler methods is that they are known to be
less biased toward the lower-order coefficients of the expan-
sion [38]. This is important, as the most relevant contributions
on a {r, s} tiling come from graphs with at least r edges.

The analysis using FO-IDAs proceeds as follows: For fixed
disorder strength α, we assume that the series χ̃ is the solution
of a first-order differential equation of the form

QL(w)
dχ̃ (w)

dv
+ RM (w) χ̃ (w) + ST (w) = 0, (31)

where QL, RM , and ST are polynomials of degree L, M, and
T , respectively. By equating the series order by order with
the coefficients of Eq. (31) we obtain a linear system of
equations in the coefficients of the polynomials QL, RM , and
ST . It can be shown that for any root wc of the polynomial QL,
a solution of Eq. (31) has an algebraic singularity of the form
(w − wc)−γ [31]. The exponent of the singularity is given by

γ = RM (wc)

Q′
L(wc)

. (32)

Generally, the results for wc and γ will depend on the choice
of degrees L, M, and T . If we have the series up to order N ,
then we can choose all possible values satisfying L + M +
T � N − 2. Following Ref. [38], we exclude approximants if

(i) a root of RM is close to wc, giving rise to a small
estimate of γ , or

(ii) a complex root of QL with small absolute value smaller
than wc is close to the real axis.

We observe that the convergence of the series is very good,
since the approximants for different choices of L, M, and T
are all close.

B. Monte Carlo simulations

To corroborate our results from the series expansion and
to compute additional observables, we also perform classical
Monte Carlo simulations for some sets of parameters. To
compute the disorder average [. . . ], we perform Monte Carlo
simulations for using 1000 disorder realizations {Ji j}. For each
realization, we simulate two independent copies {σ (1)

j }, {σ (2)
j }

of the system.

1. Equilibration in the (possible) presence of glassiness

Since it is know that there is no spin-glass behavior on
the Nishimori line [36], we expect that a standard local
Metropolis-Hastings algorithm is sufficient to equilibrate the
system at temperatures T > 2J log[p/(1 − p)]−1. When ap-
proaching the spin-glass phase, the local algorithm suffers
from a drastic slowdown. Nevertheless, we are able to study
the spin-glass transition since for that we do not need to
equilibrate the system deep inside the glassy phase. To make
sure that the system is actually equilibrated, we keep track of
the autocorrelation time of all relevant observables (computed
via binning analysis [39]) to ensure that we equilbrate the
system for at least 10 times as long as the largest equilibration

time in the system and that we take 5000 independent samples
per temperature value for each observable

2. Finite-size scaling

Due to the absence of a unique linear dimension in the
compactifications of the hyperbolic plane, we perform finite-
size scaling as a function of the number of sites N . This was
initially proposed for a fully connected model [40] and has
been used for hyperbolic lattices with open boundary condi-
tions [41] as well as in our study of the pure Ising model in
the hyperbolic plane [23]. The main idea is that a quantity A,
close to criticality, follows a scaling form

A ∼ |T − Tc|a F (N/Nc) (33)

with a correlation number Nc. Assuming that a corresponding
system of finite dimension d = dc, where dc is the upper criti-
cal dimension, has the same scaling behavior as its hyperbolic
sibling, it follows that

Nc = ∼|T − Tc|−μ, (34)

with the critical exponent

μ = νMF dc, (35)

and νMF is the mean-field value of the critical exponent of the
correlation length ξ .

3. Observables

To map out the phase diagram and compute critical ex-
ponents, we study a number of observables, all of which are
related to either the magnetization

m(α) = 1

N

∑
j

σ
(α)
j (36)

or the Edwards-Anderson order parameter

q = 1

N

∑
j

σ
(1)
j σ

(2)
j . (37)

First, to determine the location of the critical point and the
critical exponent of the correlation number μ, we compute the
binder cumulants

g = 1 − [〈m4〉]
[〈m2〉2]

, (38)

gEA = 1 − [〈q4〉]
[〈q2〉2]

, (39)

which, for different system sizes, cross at the transition to
a magnetized and a spin-glass phase, respectively. The best
estimate for the transition temperature Tc and the exponent μ

is given by performing a data collapse, using the fact that close
to the transition the respective cumulant is given by

g = G[N1/μ(T − Tc)], (40)

with some universal scaling function G.
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FIG. 6. Phase diagram on the {5, 5} lattice as a function of tem-
perature T and disorder strength p. We show both the magnetization
m as well as the Edwards-Anderson order parameter qEA (inset)
obtained from Monte Carlo (MC) simulations of a N = 1920 system.
We superimpose this with the phase boundaries obtained from the
high-temperature series expansion (HTSE) and MC (see main text
for details).

For both order parameters, we also compute the corre-
sponding susceptibilities

χ = βN ([〈m2〉] − [〈m〉]), (41)

χEA = βN ([〈q2〉] − [〈q〉]). (42)

Again, the best estimate for Tc, γ , and μ are obtained by
performing a data collapse, since close to the transition the
susceptibility is given by

χ = Nγ /μS[N1/μ(T − Tc)], (43)

with some universal scaling function S.

IV. RESULTS FOR THE RBIM

A. Phase diagram on the {5, 5} lattice

To study general features of the phase diagram of the
RBIM in hyperbolic space as well as to assess the reliability of
the high-temperature series expansion (HTSE) in the presence
of disorder, we first map out the phase diagram of the model
on the {5, 5} lattice in detail, using both HTSE as well as
Monte Carlo simulations.

The phase diagram of {5, 5} is obtained from HTSE and
MC simulations is shown in Fig. 6. Compared to the RBIM
on the Euclidean square ({4, 4}) lattice, we find a much larger
ferromagnetic phase and a extended spin-glass phase. In con-
trast to the Bethe lattice, here we do not find evidence for a
magnetized spin-glass phase, although our low-temperature
data are not good enough to rule out a very small extent.

Turning to explain our results in more detail, in Fig. 6
we show both the magnetization m as well as the Edwards-

Anderson order parameter q (in the inset) as obtained from a
MC simulation with system size N = 1920. While the mag-
netization is nonzero only in the ferromagnetic phase, the EA
order parameter is nonzero in both the ferromagnet and the
spin glass. We superimpose these plots with the critical points
obtained using finite-size scaling of the MC data (open circles)
and with the critical lines obtained from HTSE of the (EA)
susceptibility (solid lines). In both methods, we can distin-
guish the transition from the paramagnet to a ferromagnetic
phase and that to a spin-glass phase reliably. In the finite-size
analysis of the MC data, a transition to the ferromagnetic
phase is signaled by a crossing of both the binder cumulant
of the magnetization, g [Eq. (38)], as well as a crossing of the
binder cumulant of the Edwards-Anderson order parameter,
gEA [Eq. (39)]. In contrast, at the transition to a spin-glass
phase, only gEA shows a crossing while g does not, since
the magnetization m vanishes in the spin glass. Finite-size
scaling along the Nishimori line indicates a transition at pN =
0.247 ± 0.02 and finite-size analysis as a function of tempera-
ture at constant disorder shown a transition into a ferromagnet
for p � pN and a transition into a spin glass for p � pN ,
making the Nishimori point the multicritical point.

This result is corroborated by HTSE analysis. Here a
transition to the ferromagnet (spin glass) is signaled by the
divergence ferromagnetic (EA) susceptibility χ(EA). Note that
since the nondivergent susceptibility at both transitions typ-
ically also has a weak singularity (a cusp), series analysis
normally predicts a divergence for both susceptibilities but at
different critical temperatures. In practice, we distinguish the
two transitions by the fact which susceptibility is predicted to
diverge at a larger temperature. Along the Nishimori line, that
is, α = 1 in Eq. (29), the two susceptibilities are equal and
HTSE yields a critical point, wc = 0.256456 ± 8.6 × 10−6,
which corresponds to pN = 0.246793 ± 4.2 × 10−6. For α <

1, we find a transition to a ferromagnetic phase while for α >

1 we find a transition into a spin-glass phase, again suggesting
that the Nishimori point is indeed the multicritical point of the
model.

B. Phase boundaries for different tilings: Coordination
vs curvature

We now use the high-temperature expansion to study how
the paramagnet-ferromagnet and paramagnet-spin-glass phase
boundaries vary for different tilings {r, s}. For low disorder,
the critical temperature is mostly controlled by the coordina-
tion number s and for p = 0 even agrees quantitatively with
that of the Bethe lattice with the same coordination [23]. Qual-
itatively, this behavior can be understood by considering that
the transition into the ferromagnet at low disorder is driven by
a competition between and the entropy of the paramagnet and
internal energy of the ferromagnetic state,

EFM = sN

2
[Ji j], (44)

which is proportional to the coordination number s. This
means that with larger s, the ferromagnet becomes more favor-
able at larger temperatures. As disorder is increased; however,
[Ji j] also increases (approaching zero from a negative value)
and so does the importance of s as a control parameter for
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FIG. 7. Critical temperature Tc obtained from high-temperature
expansion for different tilings of the hyperbolic plane. The inset
shows vc = tanh(J/Tc ) as a function of curvature κ for the pure
model (p = 0), along the Nishimori line [(1 − p)/p = e−2βJ ] and for
the spin-glass boundary (p = 1/2).

the transition temperature. Finally, [Ji j] → 0 as p → 1
2 and

the critical temperature becomes a monotonic function of the
curvature κ , as seen in the inset of Fig. 7.

C. Critical behavior

In Table I, we show our best results for the critical ex-
ponents for the {5, 5} lattice for different scaling axes (with
the p = 0 results taken from Ref. [23]). The best results are
typically obtained from the HTSE, except for the exponent μ

of the correlation volume, which we compute by finite-size
analysis of the Monte Carlo data. In all cases where results
from both methods are available, they are compatible within
errors. The best finite-size scaling collapse of the Monte Carlo
data along the Nishimori line is shown in Fig. 8. The best
collapse is obtained for slightly different values of pc for the
susceptibility and the binder cumulant, which we attribute to
finite-size effects.

The results in Table I are all compatible with the mean-field
expectation, except for the exponents μ = 3 and β = 1, ob-

TABLE I. Critical exponents on the {5, 5} lattice along different
scaling axes. We estimate the correlation volume exponent, μ, from
finite-size analysis of the binder parameter g. For the susceptibility
exponents γ and γEA the best estimates are obtained via HTSE
analysis.

p = 0 Nishimori line p = 1/2

μ 2 3.0 ± 0.1 2.0 ± 0.1
γ 1.000001 ± 0.000005 1.0003 ± 0.0008 —
γEA — 1.0003 ± 0.0008 1.0011 ± 0.0025
β 0.46 ± 0.05 1.00 ± 0.05 —

FIG. 8. Finite-size scaling collapse of the Binder cumulant g
[Eq. (38)], the susceptibility [Eq. (41)], and the magnetization m
[Eq. (36)] of the random bond Ising model on the {5, 5} lattice along
the Nishimori line [Eq. (23)].

served along the Nishimori line. This is because as established
in Sec. IV, the Nishimori line passes through the multicritical
point, which generally shows distinct critical behavior even in
(effectively) infinite dimensions. Note that still the exponents
are consistent with the hyperscaling relation

μ = 2β + γ . (45)

Note that the specific heat does not develop a power-law
singularity for any of the transitions considered and hence we
do not present a critical exponent α.

V. RESULTS FOR THE DUAL-RBIM

In this section, we present results of Monte Carlo simula-
tions of the dual random-bond Ising model (dual-RBIM). We
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FIG. 9. Evidence for a strongly first-order phase transition of the
pure dual Ising model [that is, Eq. (18) with p = 0] on the {5, 5}
lattice. We show the vertex magnetization m = 〈σ j〉, its Binder cu-
mulant g, as well as the loop magnetization mη = 〈η�〉 and its Binder
cumulant gη as a function of temperature.

present evidence that this model exhibits a strongly first-order
transition as a results of its cocycle degrees of freedom and
numerically verify that for p = 0, the critical temperature
of this transition is indeed the Kramers-Wannier dual to the
critical temperature of the Ising model on the dual lattice.

A. Dual Ising model

In Fig. 9, we show results from Monte Carlo siumulations
of the dual Ising model, that is, Eq. (18) with p = 0, on the
{5, 5} lattice. We show the average vertex magnetization m =
〈σ j〉 and loop magnetization mη = 〈η�〉, as well as the Binder
cumulants g and gη for vertex and loop magnetization, respec-
tively. The fact that the magnetizations for different system
sizes cross at a single point, together with the pronounced dip
of the Binder cumulants just before the transition are evidence
that both quantities undergo a strongly first-order transition.
This result is rather surprising, given that the magnetization
of the Ising model on the same lattice undergoes an ordinary
second-order transition, and the two models are related by the
Kramers-Wannier duality.

Since the {5, 5} lattice is self-dual and the Kramers-
Wannier duality [Eq. (6b)] is exact at p = 0, we expect the
transition to occur at a critical temperature dual to the the crit-
ical point of the Ising model. Substituting Tc = 3.93 [23] into
Eq. (6b) yields T ∗

c ≈ 1.44, which we indicate in Fig. 9 by a
vertical dashed line and is in good agreement with the position
of the crossing of both Binder cumulants and magnetizations.

To corroborate the above findings, we also implement the
Wang-Landau algorithm [42–45] and compute the free-energy
difference of the Ising model and its dual, that is,

�F (T ) = log[Ztot (T )] − log[Z0(T )]. (46)

FIG. 10. Free-energy difference [Eq. (46)] between the Ising
model and its dual on the {5, 5} lattice.

Here Ztot is the partition function of the dual Ising model, that
is, it includes a sum over all cocycle variables η� (therefore the
subscript “tot”). Z0 is the partition function of the Ising model
on the same lattice, that is, we fix η� = 1 for all �. Because
of the latter relation between Ztot and Z0, we have �F > 0
for all T . In the ordered phase of the dual Ising model, the
difference vanishes since the sum over cocycle variables does
not contribute. This is shown in Fig. 10. The quantity �F
also has the advantage of indicating both phase transitions
in one observable, since the free energy of the Ising model
shows a visible kink at Tc. Both critical temperatures are again
indicated in the figure by vertical dashed lines.

B. Dual random bond Ising model

In the case of the random model, the dual-RBIM is not
exactly dual to the RBIM and hence we have an a priori guess
for the location of the critical point. Additionally, as is already
the case in the pure model, the strongly first-order nature of
the transition complicates its numerical investigation. We find
that single-spin flip Monte Carlo is unreliable even for small
system sizes. However, the Wang-Landau algorithm is still
converging and hence we can infer the location of the critical
point from the free-energy difference [Eq. (46)]. The differ-
ence for T < T ∗

c vanishes as a function of system size and
diverges as a function of system size for T ∗

c < T , respectively.
In Fig. 11, we show �F as a function of disorder strength p
along the Nishimori line [Eq. (23)]. The data are consistent
with a transition at p∗

N = 0.0228 ± 0.001, which is indicated
in the figure by a shaded area. The inset shows the best data
collapse assuming the same correlation exponent μ = 3 as in
the RBIM.

Substituting the value of pN = 0.246793 ± 4.2 × 10−6 ob-
tained from the high-temperature expansion of the RBIM (see
Sec. IV for details) into the duality relation conjectured by
Nishimori [Eq. (19)] and solving for p∗

N yields a value of
p∗

N = 0.029891 ± 2 × 10−6. As observed for the RBIM on a
range of Euclidean lattice geometries [29] this is somewhat
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FIG. 11. Free-energy difference [Eq. (46)] between the RBIM
and the dual-RBIM on the {5, 5} lattice along the Nishimori line.
The shaded region indicates the location of the Nishimori point pN =
0.0228 ± 0.0010. The inset shows the best data collapse, assuming
the same correlation exponent μ as in the RBIM.

close to our numerical result but not compatible within error
bars.

VI. QUANTUM ERROR CORRECTION

Quantum error correcting codes are used in quantum com-
putation to reduce the effects of decoherence. Certain infinite
families of codes, together with associated quantum error
correction protocols, can be shown to have a threshold. A
threshold is a critical value of a noise parameter, below which
the error correction protocol succeeds with probability ap-
proaching 1 with increasing code sizes.

It was argued in Refs. [5,7] that the threshold of the toric
code corresponds to the phase transition point along the Nishi-
mori line of the RBIM on the square grid {4, 4}. In Ref. [8]
it was proved that this is indeed the case for quantum codes
which encode a finite number of qubits. In Sec. IV C of
Ref. [6] it was mentioned that the statistical mechanical mod-
els associated to quantum codes which encode an extensive
number of qubits may exhibit multiple phase transitions. This
behavior was studied in Ref. [46].

The quantum codes associated to the hyperbolic RBIM
are called hyperbolic surface codes [47–49]. These codes do
encode an extensive number of qubits, so that the proofs of
Refs. [6,8] do not apply to them. In Ref. [10] the authors con-
sider the hyperbolic RBIM and give a condition sufficient for
error correction to be possible, which is equivalent to �F →
0, where �F is the free-energy difference of the RBIM and
the dual-RBIM, see Eq. (46). Hence, assuming all logical op-
erators are equivalent, the phase transition of what we call the
“dual-RBIM” along the Nishimori line corresponds exactly to
the maximum likelihood decoding threshold of the hyperbolic
surface code under independent bit- and phase-flip noise,

pth,ML = p∗
N = 0.0228 ± 0.0010. (47)

This can be compared to the threshold when using
a minimum-weight perfect-matching decoder, which is
pth,MWPM ≈ 0.0175 [50]. Using an optimal decoder rather
than MWPM hence increases the threshold by about 27%.

VII. CONCLUSION

To summarize, we have presented an in-depth study of the
RBIM on the hyperbolic plane as well as the model, that is, its
Kramers-Wannier dual in the absence of disorder. Resolving a
conundrum raised in earlier work [20,23], we showed that this
“dual-RBIM” is different from the RBIM even on self-dual
lattices due to the extensive number of nontrivial cocycles
of hyperbolic lattices. Combining high-temperature expansion
techniques and Monte Carlo techniques, we mapped out the
phase diagrams of both models, establishing the existence of
a spin-glass phase with the Nshimori point as the tricritical
point. Studying the critical properties of the high-temperature
transitions, we showed that with the exception of the mul-
ticritical point, all transitions are mean field in nature. We
verified the duality of both models explicitly in the disorder-
free case and showed that the extended duality as conjectured
by Takeda, Sesamoto, and Nishimori [29] is fulfilled only
approximately. Finally, we commented on the relation of the
above findings to the decoding of hyperbolic surface codes
and argued that the critical disorder along the Nishimori of
what we call the dual-RBIM corresponds to the maximum-
likelihood decoding threshold of hyperbolic surface codes
under independent bit- and phase-flip noise. This generalizes
the statistical mechanics mappings of the decoding of zero-
rate quantum codes [5,6,8] to quantum codes with finite rate.

This work open up multiple interesting areas for future
work. For example, beyond the scope of the current paper
was a detailed investigation of the nature of the spin-glass
phase in hyperbolic space and in particular its fate in the dual-
RBIM. Moreover, a detailed investigation of the phase-space
structure of the dual model could yield valuable insights into
the decoding of finite-rate quantum codes.

ACKNOWLEDGMENTS

We thank Ananda Roy for many helpful discussions in the
early stages of this project. We also thank Leonid Pryadko for
many helpfull comments and suggestions on this work. We
thank Aleksander Kubica, Sounak Biswas, Rajiv Singh, and
Roderich Moessner for fruitful discussions and also Philippe
Suchsland, Dmitry L. Kovrizhin, and Peng Rao for helpful
comments on the paper. B.P. acknowledges support by the
Deutsche Forschungsgemeinschaft under Grant No. SFB 1143
(project-id 247310070) and the cluster of excellence ct.qmat
(EXC 2147, project-id 390858490). N.P.B. acknowledges
support through the EPSRC Prosperity Partnership in Quan-
tum Software for Simulation and Modelling (EP/S005021/1).

APPENDIX: KRAMERS-WANNIER DUALITY AS FOURIER
TRANSFORMATION

The Kramers-Wannier duality is in fact a Fourier transfor-
mation of the partition function. In this section we provide the
formal argument.
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First, let us rewrite the partition function in terms of ho-
mological algebra. To this end, we require some definitions.
Let

C0 =
{∑

v∈V

avv | av ∈ Z2

}

be the vector space containing formal linear combinations of
vertices with coefficients in Z2 and similarly

C1 =
{∑

e∈E

aee | ae ∈ Z2

}

the Z2-vector space spanned by the edges. The cobound-
ary operator δ0 is represented by a Z2 matrix whose rows
are labeled by edges and columns labeled by vertices and
(δ0)e,v = 1 if v ∈ e and 0 otherwise. We may think of the
coboundary operator δ0 as a discrete version of the gradient
operating on Z2-scalar fields φ ∈ C0. The boundary operator
is defined as ∂1 = δtr

0 . As in Eq. (9), we observe that the
sum

∑
i∼ j σiσ j can be rewritten as |E | − 2|δ0φ|, where | · | is

the Hamming weight. To simplify notation, we introduce the
function f (c) = exp(KN − 2|c|). Hence, we can express the
partition function as a sum over all gradients of Z2 fields. In
order to Fourier transform f , we observe that the characters
of Ci, interpreted as Abelian groups, are given by χd (c) =
(−1)〈c,d〉. Hence, we obtain:

∑
φ∈C0

f (δ0φ) =
∑
φ∈C0

1√|C1|
∑
ξ∈C1

(−1)〈δ0φ,ξ〉 f̂ (ξ ), (A1a)

= 1√|C1|
∑
ξ∈C1

f̂ (ξ )
∑
φ∈C0

(−1)〈φ,∂1ξ〉, (A1b)

= |C0|√|C1|
∑
γ∈Z1

f̂ (γ ), (A1c)

= 2N−|E |/2
∑
γ∈Z1

f̂ (γ ). (A1d)

In the second equation we used δtr
0 = ∂1 and in the third

equation we used that the sum over character values is zero,
unless it is the trivial character. Note that Fourier transforming
turned the partition function from a sum over coboundaries
δ0φ ∈ B1 into a sum over cycles γ ∈ ker ∂1.

The Fourier transformed function f̂ can be expressed as
follows:

f̂ (γ ) = 1√|C1|
∑
c∈C1

f (c)(−1)〈γ ,c〉, (A2a)

= 1

2|E |/2

∏
e∈E

[exp(K ) + (−1)γe exp(−K )], (A2b)

= (cosh K )|E |

2|E |/2

∏
e∈E

{1 + (−1)γe

+ [1 − (−1)γe ] tanh(K )}, (A2c)

= 2|E |/2(cosh K )|E |(tanh K )|γ |. (A2d)

Substituting Eq. (A2) in Eq. (A1) gives Eq. (8).
The argument given here can be written more abstractly as

a Pontrjagin duality between the chain complexes associated
with the lattice and its dual, see Ref. [[26], Section 4]. We
also note that the Kramers-Wannier duality can be seen as
a special case of more general dualities derived in algebraic
geometry [51].
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