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Effect of the thermodynamic factor on the intrinsic and tracer diffusivities in binary mixtures
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One of the Darken equations gives a relationship between the intrinsic and the tracer diffusion coefficients, DA

and D∗
A, of species A in a solid binary mixture. In its original formulation, the equation reads DA = D∗

A�, with
� the thermodynamic factor. The question addressed in this paper is how DA and D∗

A depend separately on �.
Using a recent result for transition probabilities in terms of the excess chemical potential [M. Di Muro and M.
Hoyuelos, Phys. Rev. E 104, 044104 (2021)], it is shown that the intrinsic diffusivity does not depend on �. This
approach simplifies a previous theoretical analysis that reaches the same result. Experimental results of diffusion
in Ni-Pd and Fe-Pd alloys [M. J. H. van Dal et al., Acta Mater. 48, 385 (2000)] are used to check the theory.
Numerical simulations of Ni-Pd were performed to show that the migration energy is the main factor responsible
for the increase in diffusivity at intermediate concentrations.

DOI: 10.1103/PhysRevE.107.024123

I. INTRODUCTION

In 1948, Darken [1] obtained two equations to describe
substitutional diffusion in solid binary mixtures, governed pri-
marily by the presence of vacancies. Let us consider a binary
mixture composed by species A and B that have molar concen-
trations cA and cB. The Darken equations represented a major
advancement in the theoretical understanding of diffusion
processes by establishing a connection between diffusivity
and the thermodynamic factor, defined as � = β

∂μA

∂ log cA
, where

β = (kBT )−1, and μA is the chemical potential (per particle)
of species A. In terms of the excess chemical potential, the

thermodynamic factor is � = 1 + β
∂μA

ex
∂ log cA

. It can be shown,
through the Gibbs-Duhem relationship, that the thermody-
namic factor is the same for both species.

The diffusion current (moles per unit area and time) for
species A with respect to the crystalline lattice, along the x
axis, is given by

jA = −DA
∂cA

∂x
, (1)

where DA is the intrinsic diffusion coefficient for species A,
different, in general, from DB; this difference gives rise to a
volume flux through a plane of the lattice perpendicular to
the current direction. In the laboratory reference frame, where
volume flux is zero, A and B have the same diffusion coeffi-
cient, D̃, known as the interdiffusion coefficient and given by

D̃ = vBcBDA + vAcADB, (2)

where vA and vB are the partial molar volumes; see, for exam-
ple, [2–4].

*hoyuelos@mdp.edu.ar

On the other hand, the diffusivity of a tagged particle
of species A in the mixture is given by the tracer diffusion
coefficient D∗

A, connected with the mobility, BA, through the
Einstein relation, D∗

A = BART , where R is the ideal gas con-
stant. Darken showed that DA and D∗

A are related through the
thermodynamic factor. More specifically,

DA = D∗
A

vm

vB
�, (3)

where vm = NAvA + NBvB is the total molar volume, with
NA and NB the mole fractions. Originally, Darken considered
species with similar molar volumes such that vm � vA � vB,
and DA � D∗

A�. Combining Eqs. (2) and (3), the interdiffusion
coefficient can be written as

D̃ = (NAD∗
B + NBD∗

A)�. (4)

Equations (3) and (4) are known as Darken equations.
Information about how DA and D∗

A separately depend on
the thermodynamic factor was obtained in Ref. [5]. It was
shown that the tracer diffusivity, D∗

A, behaves as 1/� and
that the intrinsic diffusivity, DA, does not depend on �. In
this paper, we present an alternative and simpler derivation
of the same results using an expression for transition rates
in terms of the excess chemical potential that was recently
derived in [6].

The paper is organized as follows. The form of transition
rates is introduced in Sec. II. In Sec. III, it is demonstrated
that the intrinsic diffusion coefficient does not depend on the
thermodynamic factor. Numerical evaluation of the Debye
frequency for the Ni-Pd alloy are also included in Sec. III
in order to justify a linear approximation in its concentra-
tion dependence. Verification of the theoretical results using
experimental data of the intrinsic diffusivity in solid mix-
tures of Ni-Pd and Fe-Pd, taken from Ref. [7], is presented
in Sec. IV. The question of whether vacancy or migration
energy is responsible of the observed increase in diffusivity at
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intermediate concentrations is addressed in Sec. V. Conclu-
sions are presented in Sec. VI.

II. TRANSITION RATES

When vacancies and atoms of species A and B occupy sites
of the same lattice we have a substitutional alloy. Movement
of atoms through vacancies is the dominant diffusion mecha-
nism in substitutional alloys. This is a frequent situation when
atoms are of similar size. An atom has to overcome a migra-
tion energy in order to abandon its position in the lattice and,
simultaneously, a vacancy should be present in the destination
site. Then, the jump rate of an atom is characterized by two
energies: the migration energy (of species A), GA

M , and the
vacancy formation energy, GV . The combination of both is
the activation energy: GA = GA

M + GV for species A. The jump
rate for an atom of species A is

WA = ωAe−βGA , (5)

where ωA is the jump attempt frequency of the order of the
Debye frequency (see, for example, (Sec. 5.3.5 of [3]).

Equation (5) is based on a picture at the microscopic level
since jumps between neighboring lattice sites are taken into
account. Interactions at a thermodynamic level, represented
by the excess chemical potential, are not explicitly represented
in (5).

The thermodynamic aspects of transition rates and diffu-
sivity are analyzed in Ref. [6]. A coarse grained picture is
adopted in which microscopic details are lost. The system is
divided into cells; each cell of size a has volume V = a3 and
contains many lattice sites. Two neighboring cells, labeled one
and two, contain n1 and n2 atoms of species A, respectively.
It can be demonstrated that the transition rate per particle be-
tween the two cells depends on the excess chemical potential
in the following way [6]:

W A
n1,n2

= νA
eβμA

ex,n1
/2

�
1/2
n1

e−βμA
ex,n2

/2

�
1/2
n2

, (6)

where the excess chemical potential and the thermodynamic
factor with subindex ni are evaluated at particle concentration
ni/V , and νA is a jump frequency, independent of the excess
chemical potential; νA contains information of the substra-
tum, such as the number of vacancies, that is not included in
this coarse grained picture. The order of subindices in W A

n1,n2

indicates the jump direction from cell one to cell two. The
derivation of (6) is based on statistical mechanics concepts,
such as the detailed balance relationship and the Widom in-
sertion formula; an outline is presented in the Appendix.

Equations (5) and (6) contain information at different lev-
els. The main difference between them is that (5) is based on
a microscopic picture of jumps between neighboring lattice
sites, while jumps between cells containing many lattice sites
are considered in the derivation of (6). This last approach
allows an explicit representation of the transition rate depen-
dence on the excess chemical potential. Both equations are
used in the next section to obtain the intrinsic diffusion
coefficient.

III. INTRINSIC DIFFUSION COEFFICIENT

The purpose of this section is to determine the dependence
of the intrinsic diffusion coefficient, DA, on the thermody-
namic factor and on concentration. The transition rates (6)
that contain the thermodynamic information can be used to
calculate the particle current. Smooth spatial variations of the
concentration are assumed. The average particle concentration
is ρ = n̄/V , and concentrations in each cell are ρ1 = n1/V
and ρ2 = n2/V , with n1 � n2 � n̄. Let us assume that cells
one and two are aligned along the x axis. The number of
particles per unit time that jump between cells is n1Wn1,n2 −
n2Wn2,n1 and the area connecting cells is a2. Then, the particle
current is

JA = (
n1W

A
n1,n2

− n2W
A

n2,n1

)
/a2

= νA

a2
(
�n1�n2

)1/2

(
n1e−β�μA

ex/2 − n2eβ�μA
ex/2)

� νA

a2�

[
n1 − n2 − β(n1 + n2)�μA

ex/2
]

� − νA

a2�
�n

[
1 + βn̄

�μA
ex

�n

]
︸ ︷︷ ︸

�

= −νA

a2
�n

= −νAa2 �ρ

a
, (7)

where �n = n2 − n1 and �μA
ex = μA

ex,n2
− μA

ex,n1
. The par-

ticle current is proportional to the concentration gradient,
�ρ/a, that is, the first Fick’s law, and the proportionality
constant is the intrinsic diffusion coefficient:

DA = νAa2. (8)

The resulting coefficient is independent of the thermodynamic
factor, or the excess chemical potential. This information is
used below to support a simple approximation for the intrinsic
diffusivity. The tracer diffusivity can also be obtained from
transition rates in a mean field approximation (see Sec. II.C
in [6]); in this case, the average jump rate in equilibrium is
obtained by replacing n1 and n2 by the average n̄ in Eq. (6)
where the result is W A = νA/�. Using the continuous limit of
a random walk with this transition rate, the tracer diffusivity
is D∗

A = W Aa2 = νAa2/� = DA/�; that is, the Darken equa-
tion for species with approximately equal molar volumes. This
result demonstrates the consistency of the present approach
with the Darken equation.

From Eq. (5) we have

DA ∝ e−βGA+ln ω, (9)

where ω is the Debye frequency, a function of the mole frac-
tion NA. The proportionality can be written in terms of the
diffusivity, the activation energy and the Debye frequency in
the limit of small concentration, DA0, GA0, and ω0:

DA = DA0e−β(GA−GA0 )+ln(ω/ω0 ). (10)

(In the limit of small concentration of species A, interactions
between A atoms can be neglected and we have that DA =
D∗

A = DA0.)
Then, knowing that DA does not depend on the excess

chemical potential reduces the problem of determining the
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FIG. 1. Numerical results of the logarithm of the relative Debye
frequency ω/ω0 against Pd mole fraction, NPd, in a solid mixture
Ni-Pd at zero temperature. The linear fit captures the approximately
linear behavior. See Sec. III A for the simulation details.

concentration dependence of the intrinsic diffusivity to obtain-
ing the concentration dependence of the activation energy GA

and the Debye frequency ω.
Molecular dynamics simulations were performed to obtain

the Debye frequency for different mole fractions in a solid
binary mixture of Ni-Pd at zero temperature; see Sec. III A for
the methodology. The results are shown in Fig. 1; ln(ω/ω0)
has an approximately linear behavior against mole fraction.
Some variation of the Debye frequency with temperature is
expected; however, it is assumed that the linear behavior is
preserved for different temperatures, so that

ln(ω/ω0) � cNA, (11)

where c is a constant.
The two extreme values of the activation energy are GA0,

for NA = 0, and GA1, for NA = 1. A simple expression for GA

based on Vegard’s law is proposed. The activation energy is
approximated by

GA = NAGA1 + NBGA0 − εANANB, (12)

where the first two terms correspond to the Vegard’s law, a
linear approximation between the two extreme values of GA,
and the last term is a possible deviation including the next
nonlinear term in the molar fraction.

Replacing (11) and (12) in (10), and knowing that the
value of the intrinsic diffusivity for the pure system is DA1 =
DA0e−β(GA1−GA0 )+c, we have

DA = DNB
A0 DNA

A1 eβεANANB . (13)

Using the Darken equation (3) combined with (10), the
tracer diffusivity is

D∗
A = vB

vm

1

�
DA0e−β(GA−GA0 )+ln(ω/ω0 ). (14)

We obtained that D∗
A behaves as 1/�. A concentration of

vacancies in thermal equilibrium is assumed in the derivation
of the Darken equation. This is an approximation that works
in many cases, but it is not always valid. Vacancies are created
and annihilated at opposite sites of the interdiffusion zone
due to the volume flux (Kirkendall effect) that was mentioned

in the introduction. The Darken-Manning equations that con-
sider the effect of vacancy-wind factors include necessary
corrections; see, for example, (Sec. 10.4 of [2]). In order to
avoid these difficulties, the comparison with experimental re-
sults presented in Sec. IV is restricted to the intrinsic diffusion
coefficient.

The Darken equation has also been applied to surface dif-
fusion; in general, the so-called correlation factor, f , has to be
included to take into account memory effects. The tracer and
collective diffusivities in the literature on surface diffusion
[8–10] are usually written as

D∗ = a2W f , (15)

D = a2W �, (16)

where the average jump rate W is a function of the coverage

. For example, for the Langmuir gas (hard core interaction),
it is known that W ∝ 1 − 
 and � = 1/(1 − 
) (Sec. 2.6.2.3
of [9]); therefore, the dependence on � is canceled. The result
we obtained can be thought of as a generalization since we
demonstrate that the dependence on � for the collective (or
intrinsic) diffusivity is canceled for any interaction.

This conclusion is consistent with other approaches. For
example, a variational method [11,12] was proposed to calcu-
late the collective diffusion of adsorbates on different surfaces
taking into account microscopic details such as geometric
aspects of the energy landscape, but the method does not use
the thermodynamic information provided by � or the excess
chemical potential.

A. Method to calculate the Debye frequency

The Debye frequency is given by

ω = b
vs

α
, (17)

where vs is the sound speed, α is the lattice spacing, and b is a
proportionality constant, equal to (6π2)1/3 for a cubic crystal
[13]. The sound in a solid has longitudinal and transverse
modes, each one with speeds given by

vL =
√

K + 4G/3

ρ
, (18)

vT =
√

G

ρ
, (19)

where K is the bulk modulus, G is the shear modulus, and ρ

is the density [14]. Following Ref. [15], we use the average
sound speed given by

vs = 3/(2/vT + 1/vL ). (20)

The elastic constants, K and G, were calculated using
LAMMPS software [16]. A box of 6 × 6 × 6 unit cells of
the Ni-Pd fcc lattice, with periodic boundary conditions, was
considered. The box is deformed in different directions and
the elastic constants are obtained from the change in the stress
tensor. The procedure was repeated for different values of
the mole fraction NPd from zero to one, using an average
lattice spacing α that varies linearly from 3.521 (pure Ni)
to 3.889 (pure Pd); the approximately linear behavior of α
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FIG. 2. Intrinsic diffusivities, DNi (a) and DPd (b) (units: m2/s),
in the Ni-Pd mixture against mole fraction. Circles correspond to
experimental data of Ref. [7] and the curves correspond to Eq. (13)
(see Table I for the parameters used).

in Ni-Pd alloys was reported in [17]. The resulting value
of ω was averaged over ten samples for each value of the
mole fraction. The interaction potential in the Ni-Pd alloy was
taken from the Interatomic Potentials Repository [18]; it is an
angular-dependent potential of the Ni-Pd system, obtained by
fitting the experimental data and first-principles calculations,
reported in Ref. [19].

IV. COMPARISON WITH EXPERIMENTS

Equation (13) for the intrinsic diffusivity was compared
with experimental results in Ref. [5] using data for the follow-
ing mixtures: Au-Ni (at 900 ◦C) [20], Ag-Au (at 894 ◦C) [21],
and Fe-Pd (at 1150 ◦C) [22]. Here we extend the experimental
data set, including Ni-Pd (at 1100 ◦C) and Fe-Pd (at 1100 ◦C)
[7], to further test the validity of the equation. The data
used here for the mixture Fe-Pd, taken from Ref. [7], were
obtained using an experimental technique (diffusion couple
technique including incremental and “multi-foil” couples) that
allows a direct measurement of intrinsic diffusivity; instead,
in Ref. [22] the tracer diffusivity is measured and the intrinsic
diffusivity is indirectly obtained from these measurements.

FIG. 3. Intrinsic diffusivities, DFe (a) and DPd (b) (units: m2/s),
in the Fe-Pd mixture against mole fraction. Circles correspond to
experimental data of Ref. [7] and the curves correspond to Eq. (13)
(see Table I for the parameters used).

Figures 2 and 3 show the intrinsic diffusivities for Ni-Pd
and Fe-Pd mixtures, respectively, against the corresponding
mole fractions. The curves correspond to Eq. (13) with ad-
justed values of D0, D1, and βε (sub-index A is omitted
for simplicity). It can be seen that the equation satisfactorily
represents the data, specially for the Ni-Pd mixture. Table I
contains the values used for D0, D1, and βε in each case.

In the limit NA → 1, DA1 is the self-diffusion coefficient of
species A; it can be obtained from Table 13.1 in Ref. [23];
the reference values for Ni, Pd, and Fe at 1100 ◦C are
DNi,1 = 0.261, DPd,1 = 0.153, and DFe,1 = 0.06, with units
10−14 m2/s. The differences with the values of Table I can

TABLE I. Adjusted parameters of Eq. (13) for each metal in their
respective alloy. Units for D0 and D1 are 10−14 m2/s.

D0 D1 βε

Ni 0.14 0.031 16.1
Pd 0.26 0.21 12.2
Fe 0.54 0.01 15.3
Pd 0.01 0.46 14.6
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be understood as a consequence of the simple form assumed
for the activation energy (12). Despite these discrepancies, the
approximation for GA is still able to provide a good descrip-
tion of the intrinsic diffusivity in the whole range of the mole
fraction.

V. VACANCY VERSUS MIGRATION ENERGY

In all the mixtures analyzed, here and in Ref. [5], positive
values of the nonlinear term parameter, εA, were obtained.
This means that the diffusivity is larger than the value pre-
dicted by Vegard’s law for intermediate concentrations. The
mixture enhances the diffusivity. The activation energy is the
sum of the migration and the vacancy formation energies,
GA = GA

M + GV . It is interesting to establish whether the mi-
gration energy or the vacancy formation energy is the main
thing responsible for the increase in diffusivity at intermediate
concentrations. A possible interpretation of the results is that,
for intermediate concentrations, the mixture of atoms with dif-
ferent sizes introduces a disorder in the lattice that favors the
vacancy formation. But this is not actually the case. Numerical
simulations show that the vacancy formation energy does not
decrease in the mixture. On the contrary, in Ref. [24] it was
shown that an illustrative generic alloy system with ordering
tendencies has a vacancy formation energy that increases at
intermediate concentrations, meaning that the mean number
of vacancies is smaller than the value predicted by Vegard’s
law; see Fig. 16 in [24]. A qualitatively similar result was ob-
tained in [25] for a high entropy alloy using grand-canonical
lattice Monte Carlo simulations; in this case the vacancy
formation energy is slightly above Vegard’s law. These re-
sults indicate that the observed increase in diffusivity with
respect to Vegard’s law at intermediate concentrations is more
likely a consequence of a decrease in migration energy than
in vacancy formation energy. This supposition was checked
with numerical simulations of the mixture Ni-Pd in which
the migration energy was calculated; see Sec. V A for the
methodology. The results obtained are shown in Fig. 4; they
present a decrease of the migration energy for intermediate
concentrations.

A. Method to calculate migration energy

The migration energy was calculated using LAMMPS soft-
ware [16] and the nudged elastic band method (NEB). The
NEB allows to find the height of an energy barrier associated
with a transition state. In this case we use it for the transition
of an atom toward a vacancy.

As in Sec. III A, a box of 6 × 6 × 6 unit cells of Ni-Pd
fcc lattice with periodic boundary conditions was considered,
and the interaction potential reported in Ref. [19] was used; a
linear behavior for the lattice spacing α as a function of mole
fraction was also assumed [17]. A vacancy is created in the
lattice, and the species (Ni or Pd) of a first neighbor is set as
the initial configuration; this atom is the one that will perform
the hop. The final configuration corresponds to the vacancy at
the site of the jumping atom and the atom at the site where the
vacancy was initially found.

For the hop of a Ni atom we considered 2000 different
configurations of atoms in the mole fraction NPd range from

FIG. 4. Numerical results of migration energy of Ni and Pd, GNi
M

(a) and GPd
M (b) (units: eV), in a Ni-Pd solid mixture, against mole

fraction, using the angle-dependent potential of Ref. [19]. The line
corresponds to Vegard’s law. See Sec. V A for the simulation details.

0.1 to 0.9. Note that for NPd equal to zero or one it is not
necessary to average different configurations, since all atoms
are of the same type. For the case of Pd, 1000 realizations
were enough.

We perform NEB calculations for six replicas, the first
and last are the initial and the end point of the transition
path. During the NEB calculation the set of replicas converge
toward a minimum energy path of conformational states that
transition over a barrier. The configuration of highest energy
along the path corresponds to a saddle point, and the potential
energies for the set of replicas represents the energy profile of
the transition along the minimum energy path.

Migration energy is the energy of the barrier, which is the
difference in energy between the saddle point and the first
replica. Both the final and initial replicas have approximately
the same energy.

VI. CONCLUSIONS

The Darken equation (3) gives a relationship between the
intrinsic and the tracer diffusion coefficients, DA and D∗

A,
through the thermodynamic factor �. Nevertheless, it does
not provide information about how DA and D∗

A separately
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depend on �. This problem was addressed in Ref. [5], where
it was shown that the intrinsic diffusivity does not depend
on �. Here, we arrive at the same result using a general
expression for transition rates that contains information at the
thermodynamic level, that is, the expression determines how
transition rates depend on the excess chemical potential [6]. A
more direct derivation is obtained in this way; one important
simplification is that it is not necessary to apply the concept of
“interpolation parameter” used in [5]. The procedure provides
a deeper understanding of the problem of the dependence of
diffusivity on the thermodynamic factor.

It is well known that vacancies play a fundamental role in
substitutional diffusion. According to our result, the concen-
tration dependence of the intrinsic diffusivity is completely
determined by the Debye frequency and the form of the acti-
vation energy GA, that includes the vacancy formation energy
and the migration energy (as usual, experiments are more
complicated than theoretical idealizations; some ingredients
that are not taken into account, and that may be relevant,
are, for example, the presence of impurities or the impurity
vacancy binding energy; see [26]). Numerical simulations
of the Ni-Pd alloy show that the Debye frequency behaves
approximately linearly as a function of the mole fraction. A
simple form for GA against mole fraction is proposed using
Vegard’s law and including a quadratic term proportional
to parameter ε. This approximation allows a theoretical de-
scription of the dependence of the intrinsic diffusivity on
mole fraction, see Eq. (13). Experimental data of diffusion
in Ni-Pd and Fe-Pd mixtures [7] are consistent with the
theoretical results. Positive values of ε were obtained; this
implies diffusion coefficient values that are larger than a linear
interpolation between DA0 and DA1, for mole fractions zero
and one, respectively. Regarding the question of whether this
increase in diffusivity with respect to Vegard’s law is mainly
a consequence of a decrease in the migration energy or the
vacancy formation energy, numerical simulation of other au-
thors suggest that vacancy formation energy actually increases
at intermediate concentrations. Therefore, the diffusivity in-
crease at intermediate concentrations should be a consequence
of a decrease of migration energy. Such decrease of the mi-
gration energy was numerically observed in the solid mixture
of Ni-Pd.

Equation (13) in logarithmic scale has the form of a
parabola. A parabolic form for the intrinsic diffusion coef-
ficient against concentration is assumed as a hypothesis in
Refs. [27,28] where a method for calculating intrinsic diffu-
sivities in multi component systems is proposed.
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APPENDIX: DERIVATION OF TRANSITION RATES

A short version of the derivation of transition rates, Eq. (6),
is presented in this Appendix (the full version can be found
in [6]). The demonstration refers to a system of particles
in contact with a reservoir at temperature T and chemical

potential μ. The system is divided into cells; cell i contains ni

particles. Spatial and temporal variations are smooth and local
thermal equilibrium holds. Interaction energy at cell walls is
neglected with respect to the bulk.

We analyze transitions between cells one and two, with n1

and n2 particles. The initial state is A = {n1, n2}, and, after a
jump from one to two, the final state is B = {n1 − 1, n2 + 1}.
Transition rate from A to B is WA,B. Local equilibrium is a
sufficient condition for detailed balance:

PA WA,B = PB WB,A, (A1)

where PA and PB are the probabilities of states A and B.
The canonical partition function of a cell is Zn; it depends

on number of particles n, temperature T , and , a measure of
the cell’s volume given by the number of microscopic states
for one particle. In the absence of interactions, the canonical
partition function is equal to the total number of microstates:
Z0,n = n/n! (for a continuous system,  = V/λ3, where λ is
the thermal de Broglie wavelength and V is the cell’s volume).

The grand partition function for a cell is given by

Q =
∞∑

n=0

eβμnZn. (A2)

The probability of having n particles is Pn = eβμnZn/Q. The
probabilities for states A and B are PA = Pn1 Pn2 and PB =
Pn1−1Pn2+1. Then, Eq. (A1) implies

Zn1Zn2 WA,B = Zn1−1Zn2+1 WB,A. (A3)

We define the configuration energy, φn, as

e−βφn = Zn

Z0,n
, (A4)

so that, in the thermodynamic limit, φ is equal to the excess
free energy Fex (quantities without subindex n are evaluated at
the mean value n̄). Using the definition of φn, Eq. (A3) leads to

WA,B

WB,A
= e−β(φn2+1−φn2 )

e−β(φn1 −φn1−1 )

n1

n2 + 1
. (A5)

Since all particles are equivalent, the jump rate for one par-
ticle in cell one is WA,B/n1. Defining Wn1,n2 = WA,B/n1 and
Wn2+1,n1−1 = WB,A/(n2 + 1), Eq. (A5) becomes

Wn1,n2 e−β(φn1 −φn1−1 ) = Wn2+1,n1−1 e−β(φn2+1−φn2 ). (A6)

The order of subscripts in Wni,n j indicates the jump direction.
The next step is to apply the Widom insertion formula

([29], see p. 30 of [30]):

e−βμex = 〈e−β �φn〉, (A7)

where �φn = φn+1 − φn, and the angular brackets represent
the average in the grand canonical ensemble. See Appendix A
in Ref. [6] for a derivation of the Widom insertion formula in
the grand canonical ensemble.

We need expressions for the differences φn1 − φn1−1 and
φn2+1 − φn2 that appear in (A6). Using (A7), it can be shown
that (see Appendix B in [6]),

φn2+1 − φn2 = μex,n2 + εn2 + h.t., (A8)

φn1 − φn1−1 = μex,n1 + εn1 + h.t., (A9)
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where μex,ni ∼ O(0) and εni ∼ O(1/). Higher order terms
are represented by “h.t.”. Equation (A6) becomes

Wn1,n2 e−β(μex,n1 +εn1 +h.t.) = Wn2+1,n1−1 e−β(μex,n2 +εn2 +h.t.).

(A10)

As usual in thermodynamics, we consider that the configu-
ration energy or the transition rates are continuous functions
of the number of particles, so that Wn2+1,n1−1 = Wn2,n1 +
∂n2Wn2,n1 − ∂n1Wn2,n1 + h.t., and, from Eq. (A10), we have

Wn1,n2 e−βμex,n1
(
1 − βεn1 + h.t.

)
= (

Wn2,n1 + ∂n2Wn2,n1 − ∂n1Wn2,n1

− βεn2Wn2,n1 + h.t.
)

e−βμex,n2 . (A11)

Since the particle number is an extensive quantity, the transi-
tion rate derivatives are of order 1/.

We separate terms at orders 0 and −1 (higher order
terms are not necessarily negligible):

O(0) : Wn1,n2 e−βμex,n1 = Wn2,n1 e−βμex,n2 (A12)

O(−1) : −βεn1Wn1,n2 e−βμex,n1

= (∂n2Wn2,n1 − ∂n1Wn2,n1 − βεn2Wn2,n1 ) e−βμex,n2 . (A13)

It can be shown (see Appendix B in [6]) that

εn2 = − 1

2β

�′
n2

�n2

+ μ′
ex,n2

/2, (A14)

εn1 = − 1

2β

�′
n1

�n1

− μ′
ex,n1

/2, (A15)

where primed quantities are derivatives in respect to the parti-
cle number. Combining (A12) and (A13) we get(
∂n2 − ∂n1

)
ln Wn2,n1 = β

(
εn2 − εn1

)
= − �′

n2

2�n2

+ β

2
μ′

ex,n2
+ �′

n1

2�n1

+ β

2
μ′

ex,n1
.

(A16)

The following ansatz is proposed:

Wn2,n1 = νn2,n1

1(
�n2�n1

)1/2

eβμex,n2 /2

eβμex,n1 /2 . (A17)

Wn1,n2 is obtained by exchanging n1 ↔ n2. Replacing the
ansatz in (A12) and (A16) we obtain the following conditions
for νn2,n1 :

νn2,n1 = νn1,n2 , (A18)

∂n2 ln νn2,n1 = ∂n1 ln νn2,n1 . (A19)

The solution for νn2,n1 is a function that depends on the sum
n1 + n2, and can be written as νn2+n1 . Then, the transition
rate is

Wn2,n1 = νn2+n1

e−βμex,n1 /2

�
1/2
n1

eβμex,n2 /2

�
1/2
n2

, (A20)

that is, Eq. (6) (with n1 ↔ n2). The jump frequency ν rep-
resents effects of the substratum that, in general, may depend
on concentration (the average concentration in both cells); this
kind of information depends on microscopic details, such as
the energy barrier landscape, and cannot be inferred using the
present coarse-grained approach.
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