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Entropy production of multivariate Ornstein-Uhlenbeck processes correlates
with consciousness levels in the human brain
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Consciousness is supported by complex patterns of brain activity which are indicative of irreversible nonequi-
librium dynamics. While the framework of stochastic thermodynamics has facilitated the understanding of
physical systems of this kind, its application to infer the level of consciousness from empirical data remains
elusive. We faced this challenge by calculating entropy production in a multivariate Ornstein-Uhlenbeck process
fitted to Functional magnetic resonance imaging brain activity recordings. To test this approach, we focused on
the transition from wakefulness to deep sleep, revealing a monotonous relationship between entropy production
and the level of consciousness. Our results constitute robust signatures of consciousness while also advancing our
understanding of the link between consciousness and complexity from the fundamental perspective of statistical
physics.
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I. INTRODUCTION

Animal cognition is the most sophisticated example of
information processing found in biological and technological
systems [1]. Consciousness, understood as the capacity to sus-
tain subjective experience, can be considered a property that
emerges when a sufficiently high level of complex cognitive
processing is achieved [2]. From the perspective of physics,
consciousness and cognition seem unlikely to emerge from
regular and predictable systems, such as those which are in
thermodynamic equilibrium and obey the detailed balance
equations [3]. Instead, recent research draws a close parallel
between the level of consciousness and the entropy produc-
tion rate of brain activity time series, highlighting temporal
irreversibility as a landmark feature of conscious information
processing [4–6]. These results suggest a. close link between
consciousness and nonequilibrium dynamics, prompting a
rigorous evaluation from the perspective of stochastic thermo-
dynamics.

In spite of these exciting results, the direct estimation of
entropy production from neural activity recordings is under-
mined by insufficient spatiotemporal sampling, leading to
the adoption of heuristics and approximations which lack
rigorous justification [3,4]. To circumvent these limitations,
we adopted a framework based on multivariate Ornstein-
Uhlenbeck (MOU) processes, which are widely used for
modeling the multivariate dynamics of time series. The im-
portance of MOU derives from the fact that it is the only
continuous stationary stochastic process that is simultane-
ously Gaussian and Markovian. The MOU process is at the
heart of many models used to fit functional magnetic reso-
nance imaging (fMRI) data and to interpret them in terms

of whole-brain communication [7–9], in line with the present
methodology. We first characterize the nonequilibrium steady
state of a generic MOU process. The irreversibility of the
process is encoded in the antisymmetric part of the Onsager
matrix, while the linearity of the Langevin equations allows
us to derive a closed-form expression for the entropy pro-
duction rate in terms of the matrices that define the MOU.
As a result, we obtained a model-based estimation of the
entropy production rate for the MOU fitted to fMRI data of
subjects transitioning different levels of consciousness during
the descent from wakefulness to deep sleep.

II. MULTIVARIATE ORNSTEIN-UHLENBECK PROCESS

We consider the MOU process closely following the nota-
tion in previous work [10]:

dx(t )

dt
= −B x(t ) + η(t ). (1)

Bold symbols denote vectors and matrices. The inputs η(t )
correspond to Gaussian white noise with covariance

〈η(t ) ηT (t ′)〉t = 2D δ(t − t ′). (2)

The angular brackets indicate the mathematical expectation
over time and the superscript T the transpose for vectors or
matrices. The N-dimensional MOU process is thus defined
by two real N × N matrices, the input covariance matrix D,
which is symmetric with positive eigenvalues, and the friction
matrix B, which is not symmetric in general.
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A. Description of the state evolution

Knowing the initial condition x(0) and the realization of
the stochastic input η over time, the trajectory of the solution
of the Eq. (1) is given by:

x(t ) = G(t ) x(0) +
∫ t

0
G(t − s) η(s) ds, (3)

where G(t ) = e−Bt is the Green’s function, also known as
propagator. In addition to its mean value 〈x(t )〉 = G(t ) x(0),
the process is also characterized by its covariance matrix
S(t, t ′) = 〈x(t )xT (t ′)〉. The zero-lag covariance, denoted by
S(t, t ), obeys the following deterministic differential equa-
tion:

dS(t, t )

dt
= −B S(t, t ) − S(t, t ) BT + 2D. (4)

Meanwhile, the lagged covariance with t ′ > t exhibits an ex-
ponential decay as a function of the lag t ′ − t :

S(t, t ′) = S(t, t ) e−BT (t ′−t ). (5)

A standard method for analyzing Eq. (1) consists in de-
scribing the evolution of the probability distribution P(x, t )
via the Fokker-Planck equation:

∂P(x, t )

∂t
= ∇ · [B x(t ) P(x, t ) + D ∇P(x, t )], (6)

where ∇ denotes the spatial derivative with respect to x.
Equation (6) can be rewritten as a continuity equation of the
form

∂P(x, t )

∂t
+ ∇ · J(x, t ) = 0, (7)

with the following expression for the probability current (or
flux):

J(x, t ) = −D∇P(x, t ) − Bx(t )P(x, t ). (8)

B. Stationary state and probability current

The Gauss-Markov property of the Ornstein-Uhlenbeck
process ensures that the mean and covariances converge ex-
ponentially fast toward their respective fixed points, provided
the eigenvalues of B (which may be complex) have positive
real part. The stationary state of the MOU process exhibits
Gaussian fluctuations around a mean equal to zero. This
corresponds to the time-independent multivariate probability
density

P(x) = 1

(2π )N/2(det S)1/2
exp

(
−1

2
xT S−1x

)
, (9)

where S denotes the fixed point of the zero-lag covariance
matrix S(t, t ). From Eq. (9), the gradient of P(x) simply reads

∇P(x) = ∂P(x)

∂x
= −P(x) S−1 x. (10)

From Eq. (8), the stationary probability current J(x) can thus
be rewritten in a compact form

J(x) = D P(x) S−1 x − B x P(x) = μ x P(x), (11)

with

μ = D S−1 − B. (12)

C. Entropy production rate

Going a step further, the (ir)reversibility can be described
using thermodynamic variables evaluated for the dynamic
process. Using the well-known definition for entropy for the
probability distribution P(x, t ), now considering its time-
dependent version, we have

e[P] = −
∫
Rn

P(x, t ) log P(x, t ) dx. (13)

It can be shown that the rate of the increase of entropy
over time can be decomposed into two factors, namely ė[P] =
EPR − HDR, where EPR is the entropy production rate and
HDR the heat-dissipation rate [10–12]. The EPR is the main
quantity of interest here, which we denote by �. Now calcu-
lating � for the time-independent distribution P(x), we have

� =
∫

JT (x)D−1J(x)

P(x)
dx = 〈�T D�〉, (14)

where � is called the the thermodynamic force and is related
to J by the Onsager’s reciprocal relations [11]:

� = D−1J
P

. (15)

The heat-dissipation rate can be computed as follows:

HDR =
∫
Rn

D−1Bx · Jdx. (16)

In the context of the stationary MOU diffusion processes,
a general expression for the entropy production rate per unit
time in the stationary state is the following [10,11,13]:

� =
∫

(∇ log P(x) − DBx)T D(∇ log P(x) − D−1Bx)

× P(x)dx, (17)

which can be obtained from (12), (14), and (15) as follows:

μ = DS−1 − B

D−1μ = S−1 − D−1B D−1·
D−1μx = (S−1 − D−1B)x · x

D−1μxP = (S−1 − D−1B)xP · P

D−1J = (S−1 − D−1B)xP from (11)

� = (S−1 − D−1B)x from (15)

� = S−1x − D−1Bx, (18)

Now, as ∇ log P(x) = S−1x, we obtain (17). From (14)

〈�T D�〉 = 〈xT (D−1B − S−1)T D(D−1B − S−1)x〉,
we obtain that

� = 〈xT (D−1B − S−1)T D(D−1B − S−1)x〉, (19)

where the average is taken over the stationary state of the pro-
cess. From this equation we can verify that when S = B−1D,
then � = 0.

Following previous results [11,14], a sufficient condition
for the MOU process in Eq. (1) to be a time-reversible sta-
tionary process corresponds to a specific relation between the
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matrices B and D:

B D = D BT . (20)

To quantify the time (ir)reversibility of the MOU process, it
is advantageous to examine the Onsager matrix L reparam-
eterized using the matrices B, D, and the pairwise zero-lag
covariance S = 〈x(t )xT (t )〉t :

L = B S = D + Q,

LT = S BT = D − Q. (21)

Here the antisymmetric part Q of L provides a measure for
the irreversibility of the process. When the process is time re-
versible Q = 0 and L is symmetric. The following expression
for the entropy production rate � can then be derived from
the differential entropy of a multivariate Gaussian, which is a
well-defined quantity.

From Eqs. (21) and (12), we have D−1B − S−1 =
D−1QS−1 = −D−1μ. Thus, from Eq. (19) considering that S
and D are symmetric and Q is antisymmetric we obtain:

� = −〈xT S−1QD−1QS−1x〉 = 〈xT μT D−1μx〉. (22)

The entropy production rate � is non-negative. It is strictly
positive if the process is irreversible, and it vanishes only if the
process is reversible. Since the stationary state of the MOU
is Gaussian with covariance matrix S, we have the following
property: 〈xT Ax〉 = tr(SA), and so

� = − tr(S−1QD−1Q) = tr(SμT D−1μ), (23)

which can be written into the following equivalent expressions
that do not involve the covariance matrix S nor its inverse
explicitly:

� = tr(BT D−1Q) = − tr(D−1BQ), (24)

The entropy production rate � provides a scalar measure
for the (ir)reversibility of the whole network process, vanish-
ing only if the process is reversible.

III. METHODS

A. Empirical covariance from fMRI data

The model is fitted to reproduce the two covariance
matrices calculated from the empirical blood oxygen level-
dependent (BOLD) signals, with zero lag and a lag equal to 1
TR:

Ŝi j (0) = 1

T − 2

∑
1�t�T −1

[xi(t ) − x̄i][x j (t ) − x̄ j], (25)

Ŝi j (1) = 1

T − 2

∑
1�t�T −1

[xi(t ) − x̄i][x j (t + 1) − x̄ j]. (26)

Here x̄i denotes the mean empirical signal: x̄i = 1
T

∑
t xi(t ) for

all i, which is used to center the data as all variables xi have
mean zero in the model. These are the empirical counterparts
of the model covariances Si j (t, t ) and Si j (t, t + 1) averaged
over time t .

B. Parameter estimation of the MOU process

We fit the MOU process from the fMRI time-series data
for each subject in each sleep condition. We rely on a recent

estimation method that tunes the MOU model such that its
covariance structure reproduces the matrices in Eq. (25), op-
timizing its parameters the Jacobian matrix −B as well as the
input covariance matrix 2D [7]. Importantly, this optimization
procedure incorporates topological constraints on B, adjusting
only existing anatomical connections, also keeping the input
cross-covariances Di j = 0 for i �= j. Note that our current
notation corresponds to a previous publication [7], using the
following −B ↔ J and 2D ↔ �; note that −B ↔ JT in the
subsequent paper [15].

The model is first calibrated by calculating the time con-
stant τ from the empirical signals,

τ = − N∑
1�i�N a(vi | u)

, (27)

where a(vi | u) is the slope of the linear regression of vi =
[log(Ŝ0

ii ), log(Ŝ1
ii )] by u = [0, 1].

We rely on a gradient descent to iteratively adjust B and
D until reaching the best fit [7]. At each optimization step,
we calculate the model counterparts of the covariance ma-
trices in Eq. (25) S(0) and S(1), assuming stationarity over
each fMRI session. They can be calculated by solving the
Lyapunov equation using, e.g., the Bartels-Stewart algorithm,
which yields here

B S(0) + S(0) BT = 2D, (28)

once again equating the derivative with zero in Eq. (4) and
the equation involving the propagator. We calculate the lagged
covariance rewriting Eq. (5) for the time-lag equation here as

S(1) = S(0) e−BT

. (29)

We then calculate the difference between the model and em-
pirical covariances, �S(t ) = Ŝ(t ) − S(t ) with t ∈ {0, 1}. The
parameter update is given by differentiating Eqs. (29) and
(28):

�B = εB[S(0)]−1
[
�S(0) − �S(1) eBT ]

,

�D = εDB �S(0) + εD�S(0) BT , (30)

with εB and εD small learning rates. The best fit corresponds
to minimizing the squared norm of both �S(0) and �S(1).

C. MOU-based anatomofunctional model to fit
empirical fMRI data

We fitted a MOU process to the time series of BOLD
activity measured using fMRI for a whole-brain parcellation
consisting of N = 90 regions of interest (ROIs). The BOLD
signals were recorded from 15 healthy participants during
wakefulness and three sleep stages of progressively deeper
unconsciousness (N1, N2, N3). Further details about the data
preprocessing like detrending and filtering can be found in
[16]. Example BOLD time series are illustrated in Fig. 1(a).
Figures 1(b) and 1(c) show two functional connectivity matri-
ces, here calculated as covariances with zero lag Ŝ(0) and lag
of 1 time step Ŝ(1). These matrices are the empirical coun-
terparts of the model pairwise covariance S(l ) = 〈x(t )xT (t +
l )〉t with lag l , which is symmetric for l = 0 and was denoted
above by S = S(0).
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(a)

(b)

(e)(d)

(c) Empirical S(1)^Empirical S(0)^

Empirical SC Topological mask

FIG. 1. (a) Example of the filtered BOLD time series with 198
repetition times (TR) of 2 s, corresponding to the 90 ROIs of the
AAL parcellation during wakefulness of one participant. [(b) and (c)]
Functional connectivity matrices calculated from the filtered BOLD
signals in panel (a), Ŝ(0) with zero lag and Ŝ(1) with a lag of one time
step (TR = 2 s). These matrices are used in the objective functions
used to fit the anatomofunctional model. (d) Generic structural con-
nectivity (SC) obtained from DTI data as described in Ref. [17]. (e)
Mask for existing directional connections to constrain the topology
of the B matrix in the network model (symmetric here).

In this application, the activity xi of the MOU process
describes the BOLD activity of node i. Its friction matrix B
quantifies the propagation of BOLD activity between ROIs,
ignoring hemodynamics [7]. Specifically, the diagonal ele-
ments Bii are related to a time constant τ (identical for all
ROIs) and the off-diagonal elements Ci j = −Bi j correspond
to the concept of effective connectivity from ROI j to ROI i
(excitatory when Ci j > 0):

−Bi j = −δi j

τ
+ Ci j, (31)

where δi j is the Kronecker delta. The variance Dii reflects the
fluctuation amplitude of ROI i.

For each subject and condition, the model was fitted to
reproduce the two covariance matrices calculated from the
empirical BOLD signals Ŝ(0) and Ŝ(1) [see Figs. 1(b) and
1(c)]. We used a recent estimation method based on gradient
descent to iteratively adjust B and D until reaching the best fit
[7]. At each optimization step, we calculate the model coun-
terparts of the covariance matrices S(0) and S(1), assuming
stationarity over each fMRI session. Importantly, this opti-

FIG. 2. (a) Our dynamic network model has two sets of op-
timized parameters: the matrix C (effective connectivity), which
describes the causal interaction between brain regions, and the in-
put variance D, which represents the spontaneous activity of each
brain region. Note that the topology of the matrix C corresponds
to the mask inferred from the SC data in Figs. 1(d) and 1(e), but
the weights are estimated from the empirical functional connectivity
(FC) matrices Figs. 1(b) and 1(e), resulting in an anatomofunctional
model. (b) Changes in total C and D weights across sleep stages (x
axis), pooled over the 15 subjects. The sleep stages are represented
by the blue contrasts, from light for wake (W) to dark for the deepest
sleep (N3). (c) Classification accuracy based on the model estimates,
C and D, and the empirical covariance matrices. The classifier is
the multinomial logistic regression (MLR), which captures changes
in individual features across sleep stages. The gray violin plots
correspond to the chance-level accuracy calculated empirically by
shuffling the labels of the sleep stages.

mization procedure incorporates topological constraints on B,
adjusting only existing anatomical connections [see Figs. 1(d)
and 1(e)], also keeping the input cross-covariances Di j = 0
for i �= j. Model fit is quantified by two measures: model
error, defined using the matrix distance, and Pearson corre-
lation between vectorized FC matrices (model versus data).
See Supplemental Material [18] for an illustration (Fig. S2)
showing that all sleep states have Pearson correlation above
0.6, corresponding to an R2 of 0.36.

D. Robust decoding of sleep stages from MOU parameters

Following previous work [15,19], we used the scikit-
learn Python library for the implementations of multinomial
logistic regression (MLR) classifier. The input features corre-
sponded to the vectorized C/D/S matrices after discarding
zero or redundant elements. We implemented a stratified
cross-validation scheme with 80% of the samples for the train
set and 20% for the test set, where the ratio of classes is the
same in both sets. We also use the subject identity as “group
information” to avoid mixing subject data between the train
and test sets. In practice, we use 100 random splits of the data
and report the distribution of the accuracies of the 100 splits.

As illustrated in Fig. 2(b), both the empirical BOLD vari-
ances and the model estimates exhibit global differences
across the four sleep stages, although they do not exhibit a
clear trend. These differences in global measures, which are
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averages over all ROIs, may hide more specific changes at the
ROI level, as well as interactions between them.

Figure 2(c) shows that the model estimates give good clas-
sification accuracy, both for C (in red) and D (in purple).
This indicates that the model captures the differences in brain
dynamics across the sleep stages. Notably, the matrix C gives
a better classification accuracy than the empirical functional
connectivity Ŝ(0) (in blue), meaning that the model inversion
is robust and captures refined information about the sleep
stages. Note that the MLR has better accuracy than the first
nearest neighbor (1NN). See the Supplemental Material [18]
for an illustration (Fig. S1) showing the decoding of the
sleep states by the 1NN classifier indicating that the changes
across sleep stages concern specific features, i.e., connectivity
weights (C) or nodal spontaneous activity (D), rather than
their global profile. We also show a similar plot to Fig. 2(b)
but for the model input variance summed over all ROIs.

E. Reduced entropy production in the transition from
wakefulness to deep sleep

Using the condition-specific estimated parameters, we cal-
culated the entropy production rate in the MOU model using
Eq. (24). These results in Fig. 3(a) show that entropy pro-
duction decreases as a function of sleep depth, which in turn
implies that dynamics become closer to equilibrium.

The model-based approach allows us to dissect this phe-
nomenon. For all ROIs, we observe that the contribution to �,
as measured via the nodal irreversibility, defined as

∑
j |Qi j |

for each ROI i, decreases, as illustrated in Fig. 3(b). This sug-
gests that the reduction of � from W to N3 is a rather global
phenomenon, but with a differentiated magnitude across brain
regions. Notably, regions in the occipital lobes (cuneus, cal-
carine, lingual), as well as regions associated to hubs in the
default-mode network (precuneus, post cingulate), and the
thalamus, remain at a high level of nodal irreversibility in
the deep sleep N3; these regions have been shown to ex-
hibit sleep-related changes in previous studies [20–22]. See
the Supplemental Material [18] for an illustration (figure S3)
showing a more detailed comparison of the nodal irreversibil-
ity across sleep states and the heterogeneity in the reduction
of irreversibility across the ROIs in the transition to deep
sleep.

Last, we examine how the model parameters C and D
contribute to � and its reduction across sleep stages. Fig-
ure 3(d) shows a positive relationship between � and the
sum of weights in C, as well as the sum of variances in D;
conversely, a larger τ (directly calculated from the empirical
BOLD signals) corresponds to a lower �. Then we assess the
importance of the detailed structures in the C and D estimates
by randomizing them spatially, namely redistributing the total
weight and variances across nonzero elements while keeping
the same topology and overall sum. We observe the same
trends with respect to the C and D sums but shifted up or
down depending on the surrogates in Fig. 3(c): Randomizing
C (light gray) decreases slightly �, whereas randomizing
D (middle gray) increases �; randomizing both (dark gray)
decreases �. This indicates that � strongly depends on the
detailed structures of the C and D estimates, being larger
in the data than in the randomized surrogates. The opposing

FIG. 3. (a) Violin plots comparing the entropy production rate
across sleep stages. Same color coding used in previous plots. The
average entropy production values across subjects for the four sleep
stages are 1.99, 1.65, 1.54, and 1.49, respectively. The stars indicate
statistical significance for the Mann-Whitney test with p < 0.05.
(b) Comparison of the nodal irreversibility for each ROI (x axis)
between the W and N3 states (in light and dark blue, respectively).
The plotted values correspond to the absolute value of sums over
rows of Q, averaged for homotopic regions; error bars indicate the
variability across subjects measured as the standard error of the
mean. (c) Heatmap plots of the nodal irreversibility on the cortical
surface for the W and N3 sleep stages. Note the different color scales
for the two stages for the purpose of better readability. (d) To gain
insight into the effects of the matrices C and D on �, we shuffle their
values as a way to destroy their detailed structures (redistributing
their values keeping the topology). We plot � for the estimated C
and D matrices across subjects and sleep stages in blues (same color
code used in previous plots) and the shuffled C matrices (light gray),
D matrices (middle gray), and both (dark gray) as a function of the
sum of C values (left panel), the time constant τ (middle panel), and
the sum of D variances (right panel).

effects in randomizing C and D also suggest a balance im-
plemented by the detailed brain dynamics, which results in a
controlled level of �. See the Supplemental Material [18] for
an illustration (Fig. S4) showing the correlation between the
goodness of fit and the entropy production across all subjects
for each brain state. We observe a lack of statistically signifi-
cant Spearman correlations between variables except for the
awake state, where the effect was close to the significance
threshold. Together, our results hint at a positive relation-
ship between the measured � and the different levels of
consciousness.

IV. DISCUSSION

We measured the entropy production using our anato-
mofunctional MOU process associated to resting-state fMRI
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activity recorded from human subjects in different sleep
stages. The advantage of our model-based approach is that
the entropy production has a closed-form expression from first
principles of stochastic thermodynamics for the MOU pro-
cess, which is numerically fitted to the fMRI data. Our results
show high entropy production rate in conscious wakefulness,
i.e., correlating positively with the presumed level of cognitive
processing. This is consistent with converging theoretical ac-
counts that identify consciousness with an emergent property
of a highly complex physical system [2]. These results are also
consistent with previous findings relating entropy production
with states of consciousness [4–6], with the advantage that
do not depend on heuristic approximations. Importantly, our
approach allows for identifying the brain regions that con-
tribute most to entropy production. The fulfillment of detailed
balance in the brain is scale dependent [3]. At the large scale,
its violation might relate to the large-scale circuit operations
critical for healthy cognition and for the global broadcasting
of information which is identified with the computational
aspect of consciousness [23]. Because of this, metrics related
to the departure from detailed balance (such as entropy pro-
duction rate) might offer valuable tools to determine levels of
consciousness in brain-injured patients and other neurological
populations. In summary, assessing temporal irreversibility
through entropy production of MOU processes derived from

fMRI signals has the potential to highlight different states of
consciousness and cognition. More generally, this can bridge
brain dynamics and thermodynamics and ultimately help to
understand fundamental questions about the brain and con-
sciousness.
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