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Global optimization and monotonicity in entropy production of weak drivings
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Knowing if an optimal solution is local or global has always been a hard question to answer in more
sophisticated situations of optimization problems. In this paper, for finite-time and weak isothermal driving
processes, we show the existence of a global optimal protocol for the entropy production. We prove this by
showing its convexity as a functional in the derivative of the protocol. This property also proves its monotonicity
in such a context, which leads to the satisfaction of the second law of thermodynamics. In the end, we exemplify
that the analytical technique of the Euler-Lagrange equation applied to overdamped Brownian motion delivers
the global optimal protocol, by comparing it with the results of the global optimization technique of genetic
programming.
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I. INTRODUCTION

In real life, thermodynamic processes always occur in finite
time [1], and energy is irreversibly spent in this manner [2].
An important question is naturally posed: Is it possible to
execute this same process with minimal dissipation? Mathe-
matically this is nothing more than an optimization problem,
where a physical quantity will be minimized in a control
parameter under certain conditions. A gas contained in a box,
where its volume is changed to accomplish some goal, is a
typical example of this scenario.

Several tools have been developed to treat problems of
optimization: from the basic techniques of calculus of varia-
tions and optimal control theory [3,4] to numerical techniques
such as algorithms in convex, global, and nonlinear optimiza-
tions [5–7]. In any of those scenarios, questions involving
the global minimum, that is, the least minimum among all
possible solutions, are always present. Even though answers
are hard to find in general, a simple criterion always used to
guarantee their existence is the idea of convexity. It affirms
that if a function is convex, any local minimum will be always
a global one [5]. Similarly, the existence of a global maximum
is guaranteed with the concept of concavity.

Although those concepts seem to be pure mathematical
ideas, they have important physical consequences. In classical
thermodynamics, for instance, the concavity of the entropy
with respect to the energy guarantees the existence of a unique
new equilibrium state to where the system converges when the
constraints are changed [2]. Also, since a convex function is
always monotonic [5], the fact that informational and quantum
entropy productions are convex [8,9] implies the idea that their
rates are always positive [10].

Some years ago, we have shown that, for finite-time and
weak isothermal driving processes with nonmonotonic proto-
cols, the entropy production rate will not be always greater
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than zero for all times of the process [11,12]. Inevitably,
criticisms were raised, since the community proclaims a pos-
itive entropy production rate as a law of nature [10]. In this
paper, we try to offer another answer to those criticisms than
the simple difference between definitions of entropy produc-
tions [13]. Indeed, the property of monotonicity persists in
our entropy production, but not in the usual sense: We must
observe it as a functional in the control protocol and not as a
function in time. We show from this property that the second
law of thermodynamics is always satisfied, as are many other
monotonic entropy productions in the literature [2,8,9,14]. We
prove the monotonicity by showing that our entropy produc-
tion is a convex functional [15].

At the end, we prove by the convexity of the entropy
production the existence of its global optimal protocols [15].
Therefore, any method that uses the functional of entropy
production to minimize it will return such functions. In par-
ticular, the analytical method used in Ref. [16] must be
in that case. We exemplify that in the same problem of
Ref. [16], by using a global optimization technique called ge-
netic programming [6], where the cost function—our entropy
production—will be minimized by routines of evolutionary
selecting processes [17,18].

II. LINEAR RESPONSE THEORY

We start defining our framework and notations to develop
the main concepts to be used in this paper.

A. Entropy production

Consider a classical system of interest, initially in equilib-
rium with a heat bath of temperature β ≡ (kBT )−1, where kB

is Boltzmann’s constant. The system of interest has a Hamil-
tonian H(z(z0, t )), λ(t )), where z(z0, t ) is a point in the phase
space evolved from the initial point z0 until time t , with λ(t )
being a time-dependent external parameter. Considering that
the heat bath does not depend explicitly on λ(t ), during a
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switching time τ , the external parameter is changed from λ0

to λ0 + δλ. The average work performed on the system during
this interval of time is [19]

W ≡
∫ τ

0
〈∂λH(t )〉λ̇(t )dt, (1)

where ∂λ is the partial derivative with respect to λ, and the
overdot is the total time derivative. The generalized force
〈∂λH〉 is calculated using the averaging 〈·〉 over a nonequilib-
rium probabilistic distribution of the whole system. Consider
also that the external parameter can be expressed as

λ(t ) = λ0 + g(t )δλ, (2)

where to satisfy the initial conditions of the external param-
eter, the protocol g(t ) must satisfy the following boundary
conditions,

g(0) = 0, g(τ ) = 1. (3)

We consider as well that g(t ) ≡ g(t/τ ), which means that the
intervals of time are measured according to the switching time
unit.

Linear-response theory aims to express average quantities
until the first order of some perturbation parameter consider-
ing how this perturbation affects the observable to be averaged
and the nonequilibrium probabilistic distribution [20]. In our
case, we consider that the parameter does not considerably
change during the process, |g(t )δλ/λ0| � 1, for all t ∈ [0, τ ].
In that manner, using the framework of linear-response the-
ory, the generalized force can be approximated until the first
order as

〈∂λH(t )〉 = 〈∂λH〉0 + δλ
〈
∂2
λλH

〉
0g(t )

− δλ

∫ t

0
φ0(t − t ′)g(t ′)dt ′, (4)

where 〈·〉0 is the average over the initial canonical ensemble.
The quantity φ0(t ) is the so-called response function [20],
which can be conveniently expressed as the derivative of the
relaxation function �0(t ) [20],

φ0(t ) = −d�0

dt
. (5)

In our particular case, the relaxation function is calculated as

�0(t ) = β〈∂λH(0)∂λH(t )〉0 − C, (6)

where · is the stochastic average over the stochastic variables
of the system of interest [21], and the constant C is calculated
to vanish the relaxation function for long times [20]. The
generalized force, written in terms of the relaxation function,
can be expressed as

〈∂λH(t )〉 = 〈∂λH〉0 − δλ�̃0g(t )

+ δλ

∫ t

0
�0(t − t ′)ġ(t ′)dt ′, (7)

where �̃0(t ) ≡ �0(0) − 〈∂2
λλH〉0. Finally, combining Eqs. (1)

and (7), the average work performed at the first-order approx-

imation of the generalized force is

W = δλ〈∂λH〉0 − δλ2

2
�̃0

+ δλ2
∫ τ

0

∫ t

0
�0(t − t ′)ġ(t ′)ġ(t )dt ′dt . (8)

We observe that the double integral on Eq. (8) vanishes for
long switching times [11]. Therefore the other terms are part
of the contribution of the difference of free energy since this
quantity is exactly the average work performed for quasistatic
processes in isothermal drivings. Thus, we can split the aver-
age work in the difference of free energy 	F and irreversible
work Wirr ,

	F = δλ〈∂λH〉0 − δλ2

2
�̃0, (9)

Wirr = δλ2
∫ τ

0

∫ t

0
�0(t − t ′)ġ(t ′)ġ(t )dt ′dt . (10)

In particular, the irreversible work can be rewritten using the
symmetric property of the relaxation function, that is, �0(t ) =
�0(−t ),

Wirr = δλ2

2

∫ τ

0

∫ τ

0
�0(t − t ′)ġ(t ′)ġ(t )dt ′dt . (11)

This irreversible work corresponds to the part of the en-
tropy which is internally raised along the driving since the
relaxation function must be a positive kernel [11]. Therefore,
the entropy production of the system, given by Si = Wirr/T ,
will be

Si = δλ2

2

∫ τ

0

∫ τ

0
�0(t − t ′)ġ(t ′)ġ(t )dt ′dt, (12)

where we assume without loss of generality that the temper-
ature of the heat bath is T = 1. Also, the entropy production
rate will be

Ṡi = δλ2

2
ġ(t )

∫ τ

0
�0(t − t ′)ġ(t ′)dt ′, (13)

which can be positive or negative, depending on the charac-
teristics of the system and process [11]. Another approach to
give a physical interpretation of Eq. (13) is by observing it as

Ṡi = δλ2

2

(∫ τ

0
δ(t − t ′)ġ(t ′)dt ′

)(∫ τ

0
�0(t − t ′)ġ(t ′)dt ′

)
,

(14)

where the first and second factors are the instantaneous
and delayed response of the system with respect to ġ [11].
Therefore, the entropy production rate can be seen as an in-
stantaneous response modulated appropriately by the delayed
response.

B. Diagram of nonequilibrium regions

We establish the regimes where the linear-response the-
ory can describe thermodynamic driving processes. Those
regimes are determined by the relative strength of the driving
with respect to the initial value of the protocol, δλ/λ0, and by
the ratio between the relaxation time of the system for the rate
by which the process occurs, τR/τ . See Fig. 1 for a diagram
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FIG. 1. Diagram of nonequilibrium regions. Region 1: slowly
varying processes; region 2: finite-time but weak processes; and
region 3: arbitrarily far-from-equilibrium processes. Linear-response
theorem can describe regions 1 and 2. In this work, we are going to
focus on region 2 only.

depicting the regimes. In region 1, the so-called slowly vary-
ing processes, the ratio δλ/λ0 is arbitrary, while τR/τ � 1.
By contrast, in region 2, the so-called finite-time and weak
processes, the ratio δλ/λ0 � 1, while τR/τ is arbitrary. In
region 3, the so-called arbitrarily far-from-equilibrium pro-
cesses, both ratios are arbitrary. Linear-response theory is only
able to describe regions 1 and 2. In this work, we are going to
focus on region 2 only.

C. Overdamped Brownian motion

To be presented in Sec. V A, we describe now the
examples of overdamped Brownian motions subjected to
time-dependent harmonic traps [16,22]. Consider a particle of
mass m = 1 and position x(t ), subjected to a heat bath and
time-dependent harmonic potentials V (x(t ), λ(t )), where λ(t )
is the external control parameter. Its dynamics are governed
by the Langevin equation

mẍ(t ) + γ ẋ + ∂tV (x(t ), λ(t )) = η(t ), (15)

where γ is the friction constant and η(t ) is a Gaussian white
noise, which obeys

〈η(t )〉 = 0, 〈η(t )η(t ′)〉 ∝ δ(t − t ′). (16)

We say that the system is subjected to a moving laser trap
when

V (x(t ), λ(t )) = ω2
0

2
(x(t ) − λ(t ))2, (17)

where ω0 is the natural frequency of the system. Also, we say
that the system is subjected to a stiffening trap when

V (x(t ), λ(t )) = λ(t )

2
x(t )2. (18)

In particular, we treat the regime of overdamped Brownian
motion, where we consider the limits γ → ∞ and ω2

0/γ <

∞. In this case, the acceleration term is ignored in comparison
to the other terms of the dynamics.

D. Optimization of the entropy production

Consider the entropy production rewritten in terms of the
protocol g(t ) instead of its derivative

Si = δλ2 �(0)

2
+ δλ2

∫ τ

0
�̇0(τ − t )g(t )dt

− δλ2

2

∫ τ

0

∫ τ

0
�̈0(t − t ′)g(t )g(t ′)dtdt ′. (19)

Using the calculus of variations [3,4], we can derive the
Euler-Lagrange equation that gives the optimal protocol of
the system to minimize, in principle, the entropy production
locally, ∫ τ

0
�̈0(t − t ′)g∗(t ′)dt ′ = �̇0(τ − t ). (20)

For applications of the method, see Ref. [16].
At this point, to work with the ideas of global minimum

and monotonicity of the entropy production, we must look
at it as a convex functional in the derivative of the protocol.
In particular, this property is proved by showing that the
functional is twice the Gâteaux differentiable.

III. GÂTEAUX DIFFERENTIABILITY

In the following sections, the demonstrations of the main
results are omitted. We recommend therefore Ref. [15] for a
more detailed discussion.

A. Gâteaux derivative

Consider an inner product space of functions. The Gâteaux
differentiability is a generalization of the traditional direc-
tional derivative applied to functionals defined in that space.
In this manner, the functional J is Gâteaux differentiable at u,
along the direction v, if two things happen: the derivative

J ′[u; v] := dJ[u + εv]

dε

∣∣∣∣
ε=0

(21)

exists for all v and

dJ[u + εv]

dε

∣∣∣∣
ε=0

= (J ′[u], v), (22)

where (·, ·) is the inner product of that space. The quantity
J ′[u] is called the Gâteaux derivative of J in u.

Extensions of that concept to higher derivatives exist as
well. For example, we say that J is twice Gâteaux differen-
tiable at u in the direction v and w if the limit

J ′′[u; v,w] := dJ ′[u + εv; w]

dε

∣∣∣∣
ε=0

(23)

exists for all v and w, and

dJ ′[u + εv; w]

dε

∣∣∣∣
ε=0

= (J ′′[u]v,w), (24)

with J ′′[u] called the second Gâteaux derivative of J in u.

B. Convexity

In what follows, we present a criterion that connects con-
vexity with twice Gâteaux differentiability. Starting from the
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beginning, a functional J (u) is convex if

J[(1 − θ )u + θv] � (1 − θ )J[u] + θJ[v], (25)

for all θ ∈ [0, 1], u, and v.
In the case where the functional is twice Gâteaux differen-

tiable, it is convex if and only if

(J ′′[u]w,w) � 0, (26)

for all u and w [15]. In the following, we briefly present,
from convexity, results involving monotonicity and global
minimization.

C. Monotonicity of Gâteaux derivative

A functional J (u) is convex if and only if its Gâteaux
derivative is monotonic [15],

(J ′[u] − J ′[v], u − v) � 0. (27)

This property will show that the entropy production preserves
the idea of monotonicity [11], but in the sense of a functional
depending on the derivative of the protocol.

D. Global optimization

If a functional is convex, every local minimum will be a
global minimum [15]. Suppose for instance that u is a local
minimum. If it is not a global minimum, there exists a v such
that J[v] < J[u]. By convexity, it holds

J[(1 − θ )u + θv] < J[u], (28)

for sufficiently small θ , and J[u] is not a local minimum,
which contradicts the hypothesis.

We apply those concepts presented at the functional of
entropy production derived from linear-response theory for
weak drivings.

IV. MONOTONICITY OF ENTROPY PRODUCTION

We are going to show that the functional of the entropy
production Si[ġ(t )] is monotonic in ġ(t ) in the sense of func-
tionals. We use the idea of convexity of Si. First, we observe
that Eq. (12) defines a natural inner product of the space of
functions

(ġ(t ), ḣ(t )) =
∫ τ

0

(∫ τ

0
�0(t − t ′)ġ(t ′)dt ′

)
ḣ(t )dt, (29)

where �(t ) is the relaxation function. In Ref. [11], we have
shown that such a relaxation function must be a positive
kernel, such that the inner product becomes well defined. The
first Gâteaux derivative of Si with respect to ġ(t ) is

S′
i[ġ(t )] =

∫ τ

0
�0(t − t ′)ġ(t ′)dt ′, (30)

and the second one

S′′
i [ġ(t )] = 1. (31)

In that manner, since Eq. (31) is a positive number, Si is a
convex functional. Therefore, Si[ġ(t )] must be monotonic,

(S′
i[ġ1(t )] − S′

i[ġ2(t )], ġ1(t ) − ġ2(t )) � 0, (32)

which means∫ τ

0

∫ τ

0
�0(t − t ′)(ġ1(t ) − ġ2(t ))(ġ1(t ′) − ġ2(t ′))dtdt ′ � 0,

(33)

for all ġ1(t ) and ġ2(t ). Equation (33) implies, by Bochner’s
theorem [11], that the relaxation function must have its
Fourier transform positive, as it was supposed at the beginning
in the definition of the inner product. Indeed, the monotonicity
guarantees such a property without taking it for granted. In
this manner, the physical consequence of the monotonicity of
the Gâteaux derivative is the second law of thermodynamics.
This is in complete agreement with many other types of en-
tropy productions whose monotonicities imply the satisfaction
of the second law of thermodynamics [2,8–10,14].

What exactly does this monotonicity of the entropy pro-
duction add to our knowledge besides the satisfaction of the
second law of thermodynamics? Since Jarzynski [19] recovers
this result from its equality for processes of any strength it
seems unnecessary to reprove this fact. But this is not the case:
The result informs the roots about how the forces correlate
at two different times along the process by which the sys-
tem passes. Indeed, the positive Fourier transform property,
assumed before ad hoc to the relaxation function [11], is a
direct consequence of the intrinsic convexity of the entropy
production.

V. GLOBAL MINIMUM FOR ENTROPY PRODUCTION

Another important consequence of Si being convex is that
any local minimum will be the global minimum [15]. In this
manner, the optimal protocols calculated in Ref. [16] by solv-
ing Eq. (20) are indeed global minimum. We verify that by
comparing the analytical results with a global optimization
technique called genetic programming [6,17,18].

A. Global minimum with genetic programming

Consider the global optimization method of genetic pro-
gramming [6,17,18]. It consists basically of finding the
optimal protocol evaluating, among members of a family
of functions, the minimal cost functional using evolution-
ary selecting routines along generations. Using the MATLAB

package MCL2 [18], we develop a code to find the optimal
protocol to minimize the entropy production functional of an
overdamped Brownian motion subjected to time-dependent
harmonic traps [16,22]. In both cases of a moving laser and
stiffening traps, the relaxation function is

�(t ) ∝ e−|t |/τR , (34)

where τR is the characteristic relaxation timescale of the
problem. The cost function of genetic programming will be
Eq. (12). We expect that the code converges to the global
optimal protocol unless it presents an error in their algorithm
or a bad choice of parameters [6]. In this manner, the simula-
tions were repeated several times with different but reasonable
initial conditions and parameters [18]. Except for the final so-
lution, no momentary stop in a particular protocol was found
within our criterion of convergence in any simulation. This
highly suggests the nonexistence of local minima different
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FIG. 2. Comparison between genetic programming (circles) and
analytical (solid lines) results in different switching times. The
matching between them exemplifies that the analytical optimal proto-
cols are global solutions. Our criterion of convergence was achieved
when graphically the protocol does not change significantly for 30
generations.

than those of the global one. Our criterion of convergence
was achieved when graphically the protocol does not change
significantly for 30 generations.

On the other hand, the analytical optimal protocols of this
problem are given by [16,22]

g∗(t ) = t + τ

τ + 2τR
. (35)

The comparison between genetic programming and analyt-
ical results is depicted in Fig. 2. The matching between both
results illustrates that the analytical optimal protocol is indeed
a global minimum, as predicted by its property of convexity.

We remark that we have proven the convexity for ġ(t ),
and not for g(t ). However, the transformation of Eq. (12) to
Eq. (19) will not change the property of convexity. Indeed,
calculating the second Gâteaux derivative of Eq. (19) it will
be positive, since �̈0 is a negative kernel [11]. The question
remains if the optimal derivative of the protocol will be the
derivative of the optimal one. Indeed, expressing the Euler-
Lagrange equation of Eq. (12)∫ τ

0

∫ τ

0
�(t − t ′)ġ(t )ḣ(t )dt ′dt = 0 (36)

in terms of a combination of g(t ) and h(t ), we will arrive at
the same Euler-Lagrange equation of Eq. (19). Therefore, the
solutions are equal.

Observe also that our method is not only restricted to
standard white noise overdamped Brownian motion, or even
isothermal process: The functional (12) always guarantees
convexity. Inertial particles [23], Ornstein-Uhlenbeck pro-
cesses [24], or thermally isolated systems [25–27] may be
good examples to verify global optimization. At this point,
however, we do not possess a general solution of the Euler-
Lagrange equation for their relaxation functions, making a
comparison with genetic programming results unfeasible.

Finally, the existence of a global minimum is guaran-
teed since for relaxation functions—which are symmetric
kernels—there is a solution for the Euler-Lagrange equation,
which can be implemented from the eigenvalue and eigen-
vector problem of the integral equation [28]. The uniqueness,
however, is not always true, since for degenerate relaxation
functions there is an infinite number of solutions for the Euler-
Lagrange equation [28]. The relaxation function of cosine is a
typical example [26].

VI. FINAL REMARKS

We proved that, for finite-time and weak isothermal driving
processes, entropy production is a convex functional in the
derivative of the protocol. Therefore, this quantity presents
a global optimal protocol, and it is monotonic. We verified
the first consequence by comparing the results of the ana-
lytical method presented in Ref. [16] with those of genetic
programming presented in Sec. V A. In the second conse-
quence, the entropy production, by contrast with our previous
works [11,12], is monotonic when seen as a functional in an
inner product space of functions. This property implies the
satisfaction of the second law of thermodynamics, agreeing
therefore with other monotonic entropy productions proposed
in the literature in other contexts. Other optimization meth-
ods using the entropy production functional (12), such as the
minimization of a finite quadratic form with Lagrange multi-
pliers [29–31], present as well the same property of having a
global optimal protocol.
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