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This work reports the different information theoretic measures, i.e., Shannon information entropy, order,
disorder, complexity, and their dynamical measure for the interacting bosons in an optical lattice with both
commensurate and incommensurate filling factor. We solve the many-body Schrödinger equation from first
principles by multiconfigurational time-dependent Hartree method which calculates all the measures with high
level of accuracy. We find for both relaxed state as well as quenched state the López-Ruiz–Mancini–Calbet
(LMC) measure of complexity is the most efficient depictor of superfluid (SF) to Mott-insulator transition. In
the quench dynamics, the distinct structure of LMC complexity can be used as a “figure of merit” to obtain the
timescale of SF to Mott state entry, Mott holding time, and the Mott state to SF state entry in the successive
cycles. We also find that fluctuations in the dynamics of LMC complexity measure for incommensurate filling
clearly establish that superfluid to Mott-insulator transition is incomplete. We overall conclude that distinct
structure in the complexity makes it more sensitive than the standard use of Shannon information entropy.
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I. INTRODUCTION

In the recent years, different information theoretic mea-
sures have been proposed in several scientific disciplines. It
has been established that the information theoretical measures
are the most conceptual tool for the study of structures in
various kinds of systems [1–9]. Out of these, entropic uncer-
tainty relations, order, disorder, and complexity in quantum
mechanical systems become the trademark [10–14]. In this
context, the concept of complexity has attracted considerable
interest [15–22]. Measure of complexity is utilized to char-
acterize how a physical or biological system will organize
itself in response to a change in the external parameters. It
is usually believed that, with increase in number of particles
N , the complexity would also increase. Although there are
several definitions of complexity in the literature [23–26], the
usual definition of complexity �αβ was introduced by Shiner,
Davison, and Landsberg [27], known as SDL complexity.
The other statistical measure of complexity C was defined by
López-Ruiz, Mancini, and Calbet [24,28] and known as LMC
measure. In the context of measuring Shannon information
entropy, complexity is taken as the most efficient measure of
how much order and disorder exist in a system [29–35]. The
most common case is the “convex” type complexity where
it is minimum both for completely ordered and disordered
systems. Some systems also exhibit complexity which is ei-
ther increasing or decreasing functions of disorder [27]. The
concept of statistical complexity was first successfully applied
in atomic system by the group of Panos [15]. Both SDL and
LMC were studied as a function of atomic number Z and their
main interest was to explore the connection of the periodicity
of shell structure with the complexity measures. In a recent

work, LMC complexity measure is presented as an efficient
detector for the study of lowest bound and unbound electronic
states of diatomic molecule [9].

In this work, we are interested in the SDL and LMC
complexity measures for interacting bosons in the optical lat-
tice. The realization of fully controlled quantum many-body
systems has been an outstanding challenge in recent years.
Interacting bosons in an external trap at ultracold temperature
allow unprecedented experimental control and serve as the
ideal test bed to study quantum many-body physics. It features
several quantum phases: superfluid phase (SF), Mott-insulator
phase (MI), and fragmented Mott insulator (FMI) [36]. In the
pioneering experiment of Greiner et al. [37], a quantum phase
transition is observed in a Bose-Einstein condensate (BEC)
kept in an optical lattice potential with repulsive interatomic
interaction. It is observed that weakly interacting bosons in
shallow optical lattice exhibit a superfluid phase. In the SF
phase, the atoms exhibit long-range phase coherence across
the lattice. By gradual increase in the depth of the lattice, SF
phase makes a transition to Mott-insulator phase. In MI phase,
atoms are localized in the individual lattice sites, and phase
coherence across the lattice is lost. The quantum phases are
studied by Bose-Hubbard model [38,39], ab initio many-body
technique, and multiconfigurational time-dependent Hartree
for bosons (MCTDHB) [36,40–42]. The many-body features
are characterized by distinct measures of many-body correla-
tion, collapse, and revival dynamics in lattice depth quench
[43]. The collapse-revival dynamics in the measure of corre-
lation show the exact behavior of Fig. 2 of Ref. [44].

In this work, we like to follow the pathway from SF phase
to the insulating phase by directly monitoring the change
in order, disorder, and complexity. Our main attention is to
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explore the crossover from SF phase to MI phase through the
nonmonotonic dependence of LMC complexity on the lattice
depth parameter. We present a systematic study to establish
that lattice depth parameter can be taken as a parameter of
order and disorder. We observe a distinct maxima in the LMC
measure of complexity when a system of interacting bosons
smoothly passes from SF phase to MI phase. We establish
that LMC complexity is a sensitive descriptor and more rich
measure than entropy to study the pathway from SF to MI
phase. In quench dynamics, LMC measure establishes how
the system becomes self-organized in sudden increase of lat-
tice depth. We also find that LMC complexity measure is
a richer quantity compared to Shannon information entropy
(SIE) even for quench dynamics. During the quench process,
when the system passes through successive cycles of SF to
MI phase (Greiner’s experiment [44]), the most important
measure is the timescale. We find entropy fails to detect the
different timescale due to its monotonic oscillating behavior.
Whereas the distinct structure in complexity dynamics estab-
lishes that LMC complexity is a more featured measure and
can be taken as a “figure of merit” to find the timescale with
high precision.

We consider a system of N = 3 bosons interacting
with a contact interaction Ŵ (xi − x j ) = λδ(xi − x j ) in one-
dimensional three-well optical lattice, λ is the strength of
interaction, and the bosons are trapped in a lattice of the
form VOL(x) = V0sin2(kx), where V0 is the depth of the optical
lattice and k is the periodicity of the lattice. Lattice depth is
experimentally tunable. In this work, lattice depth is tuned
to achieve SF phase to MI phase transition. We solve the
many-body Schrödinger equation at a high level of accuracy
by MCTDHB method (presented in Sec. II).

The general information theoretical measure includes
Shannon information entropy measures, order (�), disorder
(�), and complexity (given in Sec. III), we calculate SDL
complexity �αβ = �α�β for several values of α and β. We
observe that the lattice depth parameter acts as a measure of
order-disorder and complexity shows all the three types of
behavior as defined in literature [27] depending on the choice
of α and β. The most interesting is �1,1 which exhibits convex
type nature. We also note that the SF phase is characterized by
maximum order and the MI phase exhibits maximum disorder.
The “SF-MI” transition can be termed as “order-disorder”
transition in the language of statistical measures.

Although the SDL measure of complexity is a powerful
tool to identify the type of complexity inherent in a complex
many-body system, it is uniquely determined by the disorder
(�) of the system. It is reasonable to say that the complexity
cannot be solely defined by the measure of entropy and sys-
tem size. Although �1,1 seems to be an efficient measure of
complexity, it requires further investigation. Here we measure
the LMC complexity as it is more deterministic and not as
overuniversal as SDL measure. In this paper, we numerically
calculate both LMC and SDL complexity as a function of the
lattice depth parameter following the procedure mentioned in
Sec. III. Our goal is to find out the best value of (α, β) for
which C � �αβ . We choose the pair of (α, β) = ( 1

4 , 0), (1,1),
and (0,4). In all cases, we observe different trends of �αβ , i.e.,
increasing or decreasing, or convex type. However, we find

a significant overall similarity between �1,1 and C. For other
choices of (α, β), we observe less similarity.

We also establish that out of all information theoretic mea-
sures, complexity is the most sensitive measure. With increase
in lattice depth, when the system smoothly passes from SF
phase to MI phase, the corresponding information entropy
smoothly increases with no clear signature at what value of
lattice depth the crossing happens. We find the complexity
measure clearly shows a distinct maxima at the point of cross-
ing and we conclude complexity is a richer and more sensitive
measure than the entropy.

For lattice depth quench, we prepare an initial state, which
is a pure SF phase. An instantaneous increase in the lattice
depth triggers the system to go into the MI phase. From the
time evolution of entropy measures, we further calculate the
time dynamics of complexity. We observe collapse revival in
short time dynamics, as discussed in detail in Sec. IV. We
again observe that maximum order is associated with SF phase
and MI phase is associated with maximum disorder. However,
the intriguing observation is that we are able to focus on the
timescale of entry and exit of different phases over several
cycles. We find the holding time of the Mott phase, which
is exposed as a plateau region in the time dynamics of com-
plexity. Although the corresponding entropy demonstrates the
collapse revival cycle, however, its nondistinct behavior can
not find the timescale of different cycles. This observation
reconfirms that complexity dynamics is a more sensitive de-
pictor than the time evolution of entropy.

The intriguing physics is also observed when the filling
factor ν = N

W is not equal to unity. In this article, we have
studied the distinct case of ν < 1, where the true Mott phase is
never possible. Entropy again exhibits the oscillatory behavior
as before which should signify the SF-MI collapse revival
cycle [43]. Thus, it is more confusing and may lead to a
wrong conclusion as for ν < 1, SF to true MI transition does
not happen. However, the corresponding complexity exhibits
fluctuation and the plateau region disappears. It clearly man-
ifests that SF to MI transition is incomplete. We reconfirm
that complexity is the best deterministic measure to depict the
SF-MI transition and the corresponding timescale. We also
find that in the collapse-revival dynamics, the system does not
return to the initial SF phase in long time.

The paper is structured as follows. In Sec. II, we introduce
the setup and the necessary theory. Section III deals with
the basic equations to measure the different quantities.
Section IV explains our numerical results. Section V draws
our conclusions.

II. SETUP AND METHODOLOGY

In this work, we consider N = 3 bosons confined in
one-dimensional (1D) optical lattice and interacting with con-
tact interparticle interaction. This one-dimensional regime is
easily achieved by tight transverse confinement. Quantum
many-body effect is also important in such reduced dimen-
sion as the quantum fluctuation plays an important role. The
Hamiltonian for N interacting bosons in 1D optical lattice is
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given by

H =
N∑

i=1

(
−1

2

∂2

∂x2
+ VOL(xi )

)
+

∑
i< j

Ŵ (xi − x j ), (1)

where VOL represents the external lattice potential and Ŵ (xi −
x j ) is the two-body interaction. We make the Hamiltonian

dimensionless by dividing it by the factor h̄2

mL2 , where m is
the mass of the bosons and L is some arbitrary length scale.
The Hamiltonian is scaled in terms of recoil energy ER = h̄2k2

2m .
Thus, the time is expressed in units of h̄

ER
and the unit of dis-

tance becomes k−1. We use natural units, i.e., h̄ = m = k = 1.
We fix up the grid at xmin = − 3π

2 to xmax = 3π
2 which can ac-

commodate three wells. We find the stationary solution of the
many-body Schrödinger equation by MCTDHB implemented
in the MCTDH-X software [45–47] with periodic boundary
condition. In MCTDHB, the wave function of the interacting
bosons is expanded over a set of permanents which are the
symmetrized bosonic states of N bosons distributed over M
single particle states:

|�(t )〉 =
∑

n̄

Cn̄(t )|n̄; t〉. (2)

The vector �n = (n1, n2, . . . , nM ) represents the occupation of
the orbitals and n1 + n2 + · · · + nM = N preserve the total
number of particles:

|n̄; t〉 =
M∏

i=1

(
(b†

i (t ))ni

√
ni!

)
|vac〉. (3)

b†
k (t ) creates a boson occupying the time-dependent orbital

φk (x, t ). The number of possible configurations are (N + M − 1
N ).

It is important to note that both the expansion coefficients
[C�n(t )] and the orbitals [φi(x, t )] that build the permanents
|�n, t〉 are time dependent and fully variationally optimized
quantities. Thus, MCTDHB has been established as the
most efficient way to solve the time-dependent many-body
Schrödinger equation [48–50]. The efficiency of MCTDHB
is to make the sampled Hilbert space dynamically follow the
time evolution of the many-body system. MCTDHB has been
widely used in different theoretical calculations [36,51–53]
and results are very close to experimental predictions [54,55].
For M → ∞ limit, as the set of permanents |n̄; t〉 span the
complete Hilbert space, the expansion is exact. But during
computation, we limit the size of the Hilbert space. As the
permanents are now time dependent, a given degree of accu-
racy is achieved with the truncated basis as compared to a
time-independent basis. It is also proved that significant com-
putational advantage is achieved over exact diagonalization
[56]. To solve the time-dependent many-body Schrödinger
equation Ĥ |ψ〉 = i ∂|ψ〉

∂t for the wave function |ψ〉, we calcu-
late the time evolution of the coefficients C�n(t ) and the orbitals
φi(x, t ). We utilize variational principle [57–60] to obtain
the equation of motion of the time-dependent coefficient and
orbital [48,49,61–63]. Finally, the coupled nonlinear integrod-
ifferential equations (IDE) are solved by MCTDHB package
[47]. For the calculation of the eigenstates of the Hamiltonian,
we propagate the MCTDHB equations in imaginary time,

called improved relaxation method. For quench dynamics, we
consider the total Hamiltonian

Ĥ (x1, x2, . . . xN ) =
N∑

i=1

ĥ(xi ) + �(t )
N∑

i< j=1

Ŵ (xi − x j ), (4)

where ĥ(x) is the one-body part that includes the external trap
and kinetic energy. �(t ) is the Heaviside step function of time
t which triggers the quench at t = 0.

III. MEASURES OF ORDER-DISORDER, COMPLEXITY,
AND CORRELATION

The key quantity for the calculation of order and dis-
order is entropy S. Shannon information entropies, both
in coordinate space and momentum space, are usually
taken as the key measure of information entropy. They
are defined as Sx(t ) = − ∫

dx ρ(x, t ) ln[ρ(x, t )] and Sk (t ) =
− ∫

dk ρ(k, t ) ln[ρ(k, t )], where ρ(x, t ) is the one-body den-
sity in position space and ρ(k, t ) is the same in momentum
space. The reduced one-body density in coordinate space is
defined as

ρ (1)(x′
1|x1; t ) = N

∫
dx2 dx3 . . . dxN ψ∗(x′

1, x2, . . . , xN ; t )

×ψ (x1, x2, . . . , xN ; t ). (5)

Its diagonal gives the one-body density ρ(x, t ) defined as

ρ(x; t ) = ρ (1)(x′
1 = x|x1 = x; t ). (6)

Density distributions are normalized to unity. However, the
one-body density is insensitive to address correlations present
in the many-body wave function. So we define an alternative
measure of many-body information entropy as

S = −
∑

i

n̄i(t ) ln n̄i(t ), (7)

where n̄i(t ) = ni (t )
N are the eigenvalues of the reduced one-

body density matrix. This can be called occupational infor-
mation entropy. For the mean-field theory as there is only one
natural occupation, occupational entropy is always zero. In
our earlier calculation [43], we have also discussed how time
evolution of occupational entropy can be chosen as a good
measure for the description of fragmentation. It is also a key
quantity in the study of nonequilibrium quench dynamics to
establish whether thermalization and relaxation are ubiquitous
in nature.

A. SDL measure of complexity

Complexity is measured in terms of order and disorder. Of-
ten, entropy was taken as an appropriate measure of disorder.
However, with increase in the number of available states, the
disorder of the system increases, as well as entropy increases.
Later, Landsberg’s definition of the disorder parameter (�)
is well accepted, which circumvents the previous problem.
Disorder is defined as

� = S

Smax
, (8)

where S is the actual information entropy of the system. Smax

is the maximum entropy which is accessible to the system.
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Thus, in the Landsberg definition, entropy and disorder are
decoupled. Order is defined as

� = (1 − �). (9)

� = 1 corresponds to perfectly ordered and predictable
system. � = 0 corresponds to complete disorder and random-
ness. Both order and disorder are size independent and lie
between 0 and 1. The measure of complexity is further defined
appropriately in terms of order and disorder. In the literature,
we find three categories of complexity measure, as mentioned
in the Introduction. To take into account all three categories,
we utilize the most generic form of complexity, defined as

�αβ = �α�β = �α (1 − �)β = (1 − �)α�β. (10)

It defines the complexity of disorder strength α and order
strength β. Thus, three categories are subsumed here. With
β = 0 and α > 0, complexity is an increasing function of
disorder; with α = 0 and β > 0, complexity is an increasing
function of order. When α 
= 0, β 
= 0, one finds the most
common case of convex type complexity. Complexity van-
ishes at zero disorder and zero order and exhibits a maximum
in-between.

B. LMC measure of complexity

The most interesting is the behavior of �1,1 in the measure
of SDL complexity. Although it can be considered a useful
structural measure of complexity, but �1,1 measure is criti-
cized as “overuniversal” by Feldman and Crutchfield [64], as
it is uniquely determined by disorder (�). Thus, this criticism
is applicable for any other measure of complexity as well, i.e.,
for any values of α and β. Here we consider another statistical
measure of complexity. The LMC measure is defined as

C = SD, (11)

where S denotes the information content stored in the sys-
tem. In our calculation, S = Sx + Sk . Total information of the
system is defined as the sum of Shannon information entropy
in coordinate space (Sx) and Shannon information entropy in
momentum space (Sk). D corresponds to the disequilibrium of
the system. For continuous probability distribution in position
space as well as momentum space

D = DxDk, (12)

where

Dx =
∫

ρ2(x)dx (13)

and

Dk =
∫

ρ2(k)dk. (14)

So, we numerically calculate the LMC measure of complexity
by C = SD and the SDL measure of complexity by �αβ =
�α�β as a function of lattice depth parameter V0.

C. Measure of correlation

A superfluid phase exhibits global correlation across the
lattice whereas the Mott phase exhibits onsite correlations.
To explore the link between order-disorder to complexity, we

further make an analysis of first-order correlation function
g(1)(x′, x, t ), defined as

g(1)(x′, x; t ) = ρ (1)(x′|x; t )√
ρ(x, t )ρ(x′, t )

, (15)

where ρ (1)(x′|x; t ) is the one-body reduced density matrix and
ρ(x, t ) is the diagonal part of the one-body density matrix
given in Eqs. (5) and (6). g(1)(x′, x, t ) quantify how the par-
ticles are correlated in the specific system. g(1)(x′, x, t ) is a
good quantitative measure of first-order correlation [65,66].
In recent experiment with ultracold atoms in optical lattice,
higher-order correlations are also measured experimentally
[67–70]. Note that g(1)(x′, x; t ) < 1 denotes a loss of co-
herence, which indicates that the visibility of interference
fringes in the interference experiments will be less than 100%,
whereas g(1)(x′, x; t ) = 1 corresponds to full coherence, which
implies the maximal fringe visibility in the interference pat-
tern. Correlations are affected by the strength and nature of the
interactions between the particles; for example, a larger loss of
coherence occurs with a larger interparticle repulsion. It is to
be noted that, similar to the normalized Glauber correlation
function, one can utilize the quantum similarity index (QSI)
[71]. Like g(1)(x′, x; t ), QSI also provides a real value range
of [0,1] and has been successfully utilized in the measure of
interelectronic correlation. However, in our present study, the
use of g(1)(x′, x; t ) is more elegant.

IV. RESULTS

A. Measure of complexity in relaxed state

The present calculation is performed in one dimension
with N = 3 repulsively interacting bosons in the optical
lattice. The dimensionless strength parameter λ of the re-
pulsive interaction is kept fixed to λ = 0.3 and the lattice
depth potential is varied. We present detailed results for three
particles in three wells, and in the Appendix, we briefly
present results for seven particles in seven wells. For both
calculations, we consider repulsive interaction and conclude
that nature of complexity is independent of the size of
the system.

As pointed out earlier, fragmentation is the hallmark of
MCTDHB, where several natural orbitals exhibit significant
population. Thus, convergence is an important issue, and to
capture the correct physics, we need an adequate number
of orbitals. For the stationary state solution, we follow the
improved relaxation method: we propagate the MCTDHB
equation in imaginary time. For relaxation, we keep M = 6
orbitals and find that with further increase in the number of
orbitals, there is no change in the computed quantities. In
Fig. 1, we plot the occupation of the first, second, and third
natural orbitals as a function of lattice depth potential. For
very small lattice depth, the first orbital has close to 100%
occupation and second and third orbitals have insignificant
occupation. The many-body wave function can be well ap-
proximated by the mean-field state |N = 3, 0, 0, 0, 0, 0〉. With
increase in V0, fragmentation is built up and thus makes a
transition from SF phase to fragmented phase. Finally, at V0 =
10.0, we observe complete fragmentation with the occupation
of first three natural orbitals by 33.33%. The corresponding
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FIG. 1. Population of the first three natural orbitals as a func-
tion of lattice depth (V0). As V0 increases, the occupation in the
first orbital starts to decrease while another two orbitals start to
contribute. At V0 = 10.0, the state becomes threefold fragmented
(n1 � n2 � n3 � 1

3 ).

configuration is |1, 1, 1, 0, 0, 0〉 which is a Mott state. Thus,
for such a finite size system, there is a smooth crossover
from SF phase to MI phase which is termed as pathway. The
smooth crossover is nicely demonstrated by the gradual loss
of global correlation across the lattice and finally keeping only
the diagonal correlation with increase in V0. In Fig. 2, we
plot the absolute value of the first-order correlation function
g(1)(x′, x, t ). Figure 2(a) (V0 = 0.7) exhibits both interwell and
intrawell coherence which is a SF phase whereas Fig. 2(f)
(V0 = 10.0) exhibits only intrawell coherence with complete
loss of interwell coherence which is a MI phase. It is clearly
exhibited that between V0 = 2.5 and 3.5, the system exits SF
phase and enters to fragmented phase. It is not possible to find
out the exact value of V0 when the crossover takes place which
needs further study.

In Fig. 3(a), we plot the many-body SIE as a function
of lattice depth (V0). For SF phase, entropy is minimum but
not zero. With increase in lattice depth, entropy gradually
increases and finally saturates at V0 = 10.0 which is the MI
phase. With further increase in the lattice depth parameter,
entropy remains at its saturation value. The monotonic in-
crease in the entropy and its saturation detect the two phases;
however, SIE is unable to find the crossover point.

In Fig. 3(b), We plot the order and disorder for varying
lattice depth. We observe for SF state, order is maximum
and disorder is minimum. As neither the order is one nor
the disorder is zero, the SF state is not a perfectly ordered
state. With increase in lattice depth, order gradually decreases
and disorder increases. At V0 = 2.8, order and disorder plots
intersect each other, which we considered as the initiation of
SF to MI state. At V0 = 10.0, order becomes exactly zero and
the disorder becomes exactly 1.0, which confirm that Mott
phase is a random phase or a perfectly disordered phase.
Thus, our numerical calculations exhibit that the “SF-MI”
transition can be renamed as “order-disorder” transition. The
corresponding SDL complexity �αβ is plotted in Fig. 3(c)
for various choices of α and β. �1,1 shows convex type,
i.e., type II complexity. For SF phase, complexity is mini-

(a) (b)

(c) (d)

(e) (f)

FIG. 2. First-order normalized correlation function g(1)(x′, x, t )
as a function of lattice depth (V0). (a) V0 = 0.7 is in the superfluid
phase. A complete first-order coherence is observed within each
well with g(1)(x′, x, t ) � 1; interwell coherence as well as intrawell
coherence are maintained throughout the lattice. (b) V0 = 1.5: it is
a mixed state of SF and MI. Diagonal correlation starts to build up
which means the loss of interwell coherence. (c) V0 = 2.5: interwell
coherence loss is now more prominent. (d) V0 = 3.5: structure along
the diagonal begins to emerge, while off-diagonal portions fade away.
(e) V0 = 5.0: MI is the dominating phase. Intrawell coherence is
prominent whereas interwell coherence faded away. (f) V0 = 10.0,
g(1)(x′, x, t ) � 1.0 along the diagonal and g(1)(x′, x, t ) � 0.0 when
x 
= x′, corresponds to pure MI phase at the cost of absolute loss of
interwell coherence and 100% buildup of diagonal correlations.

mum. With increase in lattice depth, complexity increases,
reaches a maximum, and smoothly reduces to zero for Mott
phase. Whereas for �0,4, the complexity with zero disorder
exhibits type III complexity of the literature [27]. �1/4,0, the
complexity with zero order, exhibits type I complexity [27].
Thus, we find the existence of all three types of complexity
in our calculation. However, as in Fig. 3(c), we observe three
different kinds of behavior in the measure of SDL complexity
for different choices of α, β; we fail to conclude which pair
(α, β) values can uniquely define the nature of complexity.
We found the definition given in Eq. (10) is overuniversal as
complexity is basically determined by the disorder � for any
arbitrary choice of α, β. So, we calculate a more informative
measure of complexity C using the equations from Sec. III B.
In Fig. 4, we plot LMC complexity C for different lattice depth
parameter V0 and observe C behaves similarly to �αβ only
when α = 1 and β = 1. It leads to conclude that the bosonic
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FIG. 3. (a) Plot of Shannon information entropy (S) as a function
of lattice depth (V0). Entropy is minimum for shallow lattice depth.
As lattice depth increases, transition from SF to MI phase is followed
by saturation in the entropy at maximum value. (b) Order and dis-
order: in the superfluid to Mott-insulator transition, order gradually
decreases to zero and disorder gradually increases to one. SF phase
is characterized as ordered state, and MI phase is characterized as a
disordered state. (c) Plot of complexity measures (�αβ ) as a function
of V0. �1/4,0, �1,1, �0,4 exhibit type I, type II, and type III complexity
as discussed in the literature [27].

atoms in an optical lattice exhibit type II complexity during
transition from SF phase to MI phase. The other complexity
measures do not have any significance.

The most interesting is the distinct maxima in the LMC
complexity measure which appears at V0 = 3.1, which is very
close to the point where order-disorder intersects. Thus, for
the current system parameter, V0 = 3.1 is the precursor point
of entry to Mott phase and exit of SF phase. The calculation
exhibits that LMC complexity is more efficient and detailed to
find the entry-exit point, which is impossible to find from the
monotonic increase in SIE.

FIG. 4. Measures of complexity as a function of lattice depth
(V0). The upper graph is for LMC complexity measure and the lower
one is for SDL (�1,1) complexity measure. Initially, when the system
is in SF phase, complexity has finite value. As V0 increases, the
system gets more and more fragmented, and its complexity also goes
up, shows a maxima. Then, for large V0, when the system is in MI
phase, it saturates to a fixed value. The saturation value is nearly
zero for SDL measures and 14.6 for LMC measures. Both LMC and
SDL (�1,1) complexity exhibit nearly identical characteristics. The
maxima in complexity measure indicates exit from SF phase and
entry to MI phase.

To check the finite size effect, we pursue our numerical
calculation in a large system with N = 7 particles in seven
wells. The corresponding graphs showing the occupation in
natural orbitals are presented in the Appendix. We observe
how the initial state with occupation |7, 0, 0, 0, 0, 0, 0〉 gradu-
ally changes and then settle to |1, 1, 1, 1, 1, 1, 1〉 with increase
in lattice depth V0 which is a MI state. We have also calculated
the LMC and SDL (�1,1) complexity for this system and
find no change in the behavior of complexity but amount of
complexity increases as the system size increases. Thus, we
can conclude that the qualitative measure of complexity is
independent of the size of the system but quantitative measure
is determined by the system size.

B. Dynamical measure of complexity for lattice depth quench

In this section, we discuss the dynamical measures of SIE
and LMC complexity. The motivation of the study is three-
fold. First: How does the system organize itself to optimize
complexity during the quench? Second: How good is the
dynamical measure of complexity to find out the timescale
of dynamics? Third: To establish that dynamical measure of
complexity is richer indicator than time dynamics of SIE. We
monitor the time evolution of the natural orbitals, entropy
production, and finally LMC complexity. In the dynamical
evolution, the convergence is a serious issue and we need
M = 12 orbitals for quench dynamics. We report long-time
dynamics (up to t = 300) in all measured quantities. We ini-
tially prepare the system in SF phase with weak interaction
strength λ = 0.1 in shallow lattice depth of V0 = 3.0. We
quench the system to MI phase by sudden increase in lattice
depth to V0 = 10.0. For dynamical analysis, we keep N = 3
particles in three wells. Of course, the dynamics of a large
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FIG. 5. Time evolution of natural occupation of N = 3 bosons in
optical lattice as a function of time. The first three natural orbitals
exhibit oscillation with time. Initially, when n1 has a maximum and
the other orbitals have a minimum, the state is known as the SF
phase. At the crossing points of the first three orbitals, the system is
in the MI phase with n1 � n2 � n3 � 1

3 . At point A (t = 30.1), three
orbitals merge for the first time signifies first entry to MI phase. Point
C (t = 81.0): when the system again achieves maximum contribution
from the first orbital and negligible contribution from the other two.
This is a SF phase. The other points at B (t = 53.9), D (t = 113.1),
and E (t = 137.2) are explained in the text.

system can be handled. However, as convergence is a big
issue in numerical simulation, we are unable to run the code
with quite high numbers of natural orbitals. In Fig. 5, we plot
the natural occupation in the first three orbitals as a function
of time. At t = 0.0, only the first natural orbital contributes,
which corresponds to SF phase. With increase in time, frag-
mentation occurs. We observe that at t = 30.1 (point A), the
system is a fully fragmented MI state, the lowest three natural
orbitals n1, n2, n3 have close to 33% population. Between
t = 30.1 to 53.9 (point B), n1, n2 overlap, n3 becomes down.
From the one-body correlation plot (not shown here), between
t = 30.1 and 53.9, we find that the system exhibits only the di-
agonal correlation, which signifies the system is in MI phase.
So, for this choice of parameter, MI state is retained in this
interval. Then at t = 81.0 (point C), it enters to SF phase with
maximum occupation only in the first orbital. At t = 113.1
(point D) it again enters the second MI phase and retained
the MI phase until t = 137.2 (point E). The above scenario
repeats with entry and exit in SF and MI phases. The timescale
for different phases during the time evolution is presented
in Table I for the first three cycles. We use integration time
step equal to 0.1 in our numerical calculation. This basically
simulates collapse-revival dynamics as observed in Greiner’s
experiment [44].

FIG. 6. Time evolution of LMC complexity and Shannon in-
formation entropy of N = 3 bosons in optical lattice as a function
of time. Picks in LMC complexity (top) measures quantify the SF
phase, and flat minima signify the holding time for the system in MI
phase. The Shannon information entropy (bottom) exhibits maxima
for MI phase and minima for SF phase. The MI state entry time can
be determined with more accurately and efficiently using LMC com-
plexity as there are distinct maxima or minima in LMC complexity.

The observations based on the timescale need further
explanation. We calculate the time dependence in LMC com-
plexity and Shannon information entropy and plot it in Fig. 6.
We strictly follow the timescale of three cycles as presented
in Table I. Our observations are as follows. (i) For SF phase:
LMC complexity exhibits distinct maxima for all cycles. The
same are represented by local minima in the entropy. (ii) Mott
state entry: LMC complexity exhibits distinct minima. The
broad peak in the entropy measure signifies the Mott state
but the entry point is not distinct. (iii) Mott phase: LMC
complexity shows distinct plateau in the same timescale as
shown in Table I for all cycles. The corresponding SIE does
not exhibit any clear plateau. In the first two cycles, there are
broad, flat peaks but they gradually become deteriorated in
the next cycle. Thus, it is not possible to preciously find the
Mott holding time from the SIE measure. (iv) MI state exit:
LMC measure shows sharp increase just after the plateau in
the same timescale as in Table I. Corresponding SIE measure
starts to fall but no distinct change can be claimed from the
SIE measure. We may conclude that SIE exhibits qualitatively
collapse-revival dynamics after the quench. However, due to
monotonic oscillatory behavior, SIE is not able to predict any
timescale of the dynamical evolution, whereas LMC com-
plexity has distinct structure which clearly exhibits the same
timescale of dynamics for all cycles which we have configured
from the fragmentation. We conclude that the study of time
evolution of SIE is not a very sensitive tool.

TABLE I. Superfluid to Mott-insulator phase transition time dynamics.

Period SF state Mott state entry MI phase holding time Mott state exit SF state

First cycle 0.0 30.1 23.8 53.9 81.0
Second cycle 81.0 113.1 24.1 137.2 161.9
Third cycle 161.9 196.0 23.2 219.2 243.1
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FIG. 7. Time dynamics of N = 3 bosons in W = 5 wells (ν < 1).
(a) Time evolution of natural orbitals as a function of time. The con-
tributing orbitals exhibit oscillation but they do not merge together
to form a MI phase. Here, n2 and n3 overlap and n4 and n5 overlap.
Very small contribution from n6 is noted. The contribution from ni

for i > 6 is insignificant and not shown here. (b) Plot of Shannon
information entropy as a function of time. SIE oscillates in a same
manner as in the case of ν = 1. (c) Plot of LMC complexity as a
function of time. Unilke the case of Fig. 6, here no distinct maxima,
minima, or plateau region are observed. See text for further details.

In quench dynamics, a sudden increase in lattice depth
means we are pumping energy into the system externally,
and it will be distributed through the one-body term in the
Hamiltonian. The system is able to distribute the extra energy
between the interacting bosons and thus able to self-organize
the external perturbation. But in the long-time dynamics,
many excited states contribute in a complex manner. So it is
very hard for the system to back in perfect SF phase, which
is manifested by the slow decrease in height in the maxima of
LMC measure.

However, to conclude whether LMC complexity measure
can be taken as a rich universal indicator in finding the
timescale of quench dynamics, we redo the simulation for

filling factor less than one. For ν < 1, we choose N = 3
bosons in W = 5 wells, when entering a true Mott phase is
not possible. Our goal is to find how the LMC complexity
measures able to distinguish imperfect Mott transition from a
perfect Mott transition. For this case, we have calculated the
natural occupation, SIE measure, and the LMC complexity
and present our results in Fig. 7. From Fig. 7(a), it is clearly
seen that complete fragmentation does not happen even in
the long-time dynamics. We conclude that the Mott phases
are not reached for this configuration. The corresponding SIE
is plotted in Fig. 7(b). Entropy exhibits the similar kind of
oscillation as observed in Fig. 6. One can now be misled as
the maxima in the SIE correspond to Mott phase as discussed
before (ν = 1), although existence of Mott phase is already
ruled out in the calculation of natural occupation in case
of ν < 1. The corresponding LMC complexity is plotted in
Fig. 7(c). In the complexity measure, we do not find any
distinct minima or maxima or plateau region which firmly
confirm our conclusion forms natural occupation. So, we can
conclude that the SF to MI transition is not obtained for this
chosen parameter. The very complex structure in the complex-
ity additionally signifies that during time evolution, the system
passes very complex phases which may be a fragmented SF
phase or quasi-Mott phase. We conclude the same physics for
ν > 1, with same lattice depth quench.

V. CONCLUSION

“Statistical complexity” is one of the most circulating
words in scientific research of physics, biology, mathematics,
computer science, etc. Although there is no strictly followed
definition of “what is complexity,” it is defined in many ways
in the literature. From its vast application, it is found that LMC
and SDL measures of complexity are well understood.

The measure of complexity has been extensively applied
in different systems including atoms and molecules. Here
we consider ultracold trapped atoms in the optical lattice
which has been proved as a most challenging platform to
study the many-body physics. Interacting bosons in the op-
tical lattice exhibit different quantum phases like superfluid
and Mott-insulator phases. The quantum phase transition has
been experimentally studied as well as there are numerous
theoretical calculations on the dynamical evolution. Although
most of the calculations are based on mean-field level or uti-
lizing Bose-Hubbard model, the strongly interacting bosons
in shallow lattice deserve quantum many-body calculation.
We report our results on a small ensemble of few particle
systems utilizing the MCTDHB method which is exact by
its construction and retains many-body correlation. We obtain
many-body states which are the few-body analogy of different
thermodynamic phases.

The main motivation of our work is how to consult the var-
ious quantum phases with the measure of SIE, order-disorder,
and complexity. The intriguing question is how to justify
complexity measure as the better descriptor than SIE in the
quantum phase transition. Our present calculation is exten-
sive, which includes both relaxed state and quenched state
and covers different filling factors. For the relaxed state, the
distinct maxima in the complexity measure clearly identify the
crossover point from the SF to MI phase. Between the SF and
Mott phases, corresponding SIE exhibits smooth increase and
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FIG. 8. Population of the first seven natural orbitals as a function
of lattice depth (V0) for N = 7 bosons in seven-well one-dimensional
optical lattice. As V0 increases, the occupation in the first orbital starts
to decrease while the other six orbitals start to contribute. At V0 =
12.0, the state becomes sevenfold fragmented (n1 � n2 � n3 � n4 �
n5 � n6 � n7 � 1

7 ).

absolutely fails to detect the exit of SF phase and entry to MI
phase. The results for dynamics is more rich and informative.
Additionally, we get the full timescale of dynamics in different
cycles from the complexity measures. The distinct structure
in complexity makes it richer than the monotonic behavior of
SIE. For incommensurate filling factor, when the SF → MI
transition is incomplete, we observe that the SIE may even
lead to conclude wrong physics. The dynamical structural
difference in complexity provides a clear signature of such in-
complete phase transition. This elaborate calculation leads to
conclude that complexity measure is not only richer, but it can
be taken as a “figure of merit” to identify the transition point.
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APPENDIX: NATURAL OCCUPATION AND COMPLEXITY
FOR N = 7 BOSONS IN SEVEN WELLS

In this Appendix, we report the relaxed state calculation for
seven bosons in seven-well optical lattice. Although we keep
the commensurate filling factor, i.e., ν = N

W = 1, however, as
the number of particles are now increased, a greater number
of natural orbitals began to participate. For convergence, we

FIG. 9. Measures of complexity as a function of lattice depth (V0)
for N = 7 bosons in seven-well one-dimensional optical lattice. The
upper graph is for LMC complexity measure and the lower one is
for SDL complexity measure. Initially, when the system is in SF
phase, complexity has finite value. As V0 increases, the system gets
fragmented and both the complexity increases, shows maxima, and
then saturates to a finite value for large V0, when the system is in
MI phase. Both LMC and SDL complexity exhibit nearly identical
characteristics.

keep M = 21 orbitals in our simulation. In Fig. 8, we plot the
natural occupation in the first seven orbitals. The contributions
of the remaining orbitals are negligible. For extremely small
lattice depth, the first orbital is nearly completely occupied,
whereas the other orbitals have little occupancy. The single
orbital mean-field state provides a good approximation for
the many-body wave function as N = |7, 0, 0, 0, 0, 0, 0〉. We
can call this as SF phase. Participation from the remaining
six orbitals begins to contribute as lattice depth increases.
At V0 = 12.0, contributions from the seven orbitals saturate
to 14.2% and we get sevenfold fragmented MI phase. In
Fig. 9, we plot the LMC and SDL measures of complexity.
As discussed in the main text, �1,1 is the most deterministic
measure of SDL complexity for our system. Here we com-
pare only �1,1 with LMC complexity. As higher number of
orbitals are now participating, complexity will be more in
case of LMC measure as expected. When V0 is small, state
is superfluid, and complexity has a finite value. Complexity
builds up gradually and reaches a maximum as lattice depth
increases. This peak is reached when the system is in a mixed
state of SF and MI. When the system is perfectly in MI state,
complexity saturates. The same type of behavior is exhib-
ited by both SDL and LMC complexity. Both the SDL and
LMC complexity have same kind of nature for N = 3 and
7 particles. In LMC measure, complexity is more for N = 7
compared to N = 3 case. This is quite obvious as the number
of particles of a system increase, the system will spread more
in the Hilbert space. Thus, for bosons in an optical lattice,
�1,1 is a reasonable choice for measuring system complexity,
and the nature of complexity is independent of the size of the
Hilbert space.
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